1
|
Engin AB, Engin A. Obesity-Senescence-Breast Cancer: Clinical Presentation of a Common Unfortunate Cycle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:821-850. [PMID: 39287873 DOI: 10.1007/978-3-031-63657-8_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
There are few convincing studies establishing the relationship between endogenous factors that cause obesity, cellular aging, and telomere shortening. Without a functional telomerase, a cell undergoing cell division has progressive telomere shortening. While obesity influences health and longevity as well as telomere dynamics, cellular senescence is one of the major drivers of the aging process and of age-related disorders. Oxidative stress induces telomere shortening, while decreasing telomerase activity. When progressive shortening of telomere length reaches a critical point, it triggers cell cycle arrest leading to senescence or apoptotic cell death. Telomerase activity cannot be detected in normal breast tissue. By contrast, maintenance of telomere length as a function of human telomerase is crucial for the survival of breast cancer cells and invasion. Approximately three-quarters of breast cancers in the general population are hormone-dependent and overexpression of estrogen receptors is crucial for their continued growth. In obesity, increasing leptin levels enhance aromatase messenger ribonucleic acid (mRNA) expression, aromatase content, and its enzymatic activity on breast cancer cells, simultaneously activating telomerase in a dose-dependent manner. Meanwhile, applied anti-estrogen therapy increases serum leptin levels and thus enhances leptin resistance in obese postmenopausal breast cancer patients. Many studies revealed that shorter telomeres of postmenopausal breast cancer have higher local recurrence rates and higher tumor grade. In this review, interlinked molecular mechanisms are looked over between the telomere length, lipotoxicity/glycolipotoxicity, and cellular senescence in the context of estrogen receptor alpha-positive (ERα+) postmenopausal breast cancers in obese women. Furthermore, the effect of the potential drugs, which are used for direct inhibition of telomerase and the inhibition of human telomerase reverse transcriptase (hTERT) or human telomerase RNA promoters as well as approved adjuvant endocrine therapies, the selective estrogen receptor modulator and selective estrogen receptor down-regulators are discussed.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
2
|
Likonen D, Pinchasi M, Beery E, Sarsor Z, Signorini LF, Gervits A, Sharan R, Lahav M, Raanani P, Uziel O. Exosomal telomerase transcripts reprogram the microRNA transcriptome profile of fibroblasts and partially contribute to CAF formation. Sci Rep 2022; 12:16415. [PMID: 36180493 PMCID: PMC9525320 DOI: 10.1038/s41598-022-20186-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
It is now well accepted that cancer cells change their microenvironment from normal to tumor-supportive state to provide sustained tumor growth, metastasis and drug resistance. These processes are partially carried out by exosomes, nano-sized vesicles secreted from cells, shuttled from donor to recipient cells containing a cargo of nucleic acids, proteins and lipids. By transferring biologically active molecules, cancer-derived exosomes may transform microenvironmental cells to become tumor supportive. Telomerase activity is regarded as a hallmark of cancer. We have recently shown that the transcript of human telomerase reverse transcriptase (hTERT), is packaged in cancer cells derived- exosomes. Following the engulfment of the hTERT transcript into fibroblasts, it is translated into a fully active enzyme [after assembly with its RNA component (hTERC) subunit]. Telomerase activity in the recipient, otherwise telomerase negative cells, provides them with a survival advantage. Here we show that exosomal telomerase might play a role in modifying normal fibroblasts into cancer associated fibroblasts (CAFs) by upregulating \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm{\alpha }$$\end{document}αSMA and Vimentin, two CAF markers. We also show that telomerase activity changes the transcriptome of microRNA in these fibroblasts. By ectopically expressing microRNA 342, one of the top identified microRNAs, we show that it may mediate the proliferative phenotype that these cells acquire upon taking-up exosomal hTERT, providing them with a survival advantage.
Collapse
Affiliation(s)
- Daniela Likonen
- The Felsenstein Medical Research Center, Petah-Tikva, Israel
| | - Maria Pinchasi
- The Felsenstein Medical Research Center, Petah-Tikva, Israel
| | - Einat Beery
- The Felsenstein Medical Research Center, Petah-Tikva, Israel
| | - Zinab Sarsor
- The Felsenstein Medical Research Center, Petah-Tikva, Israel
| | | | - Asia Gervits
- School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel
| | - Roded Sharan
- School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel
| | - Meir Lahav
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Pia Raanani
- The Felsenstein Medical Research Center, Petah-Tikva, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah-Tikva, Israel
| | - Orit Uziel
- The Felsenstein Medical Research Center, Petah-Tikva, Israel. .,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel. .,Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah-Tikva, Israel.
| |
Collapse
|
3
|
Monsen RC, Maguire JM, DeLeeuw LW, Chaires JB, Trent JO. Drug discovery of small molecules targeting the higher-order hTERT promoter G-quadruplex. PLoS One 2022; 17:e0270165. [PMID: 35709230 PMCID: PMC9202945 DOI: 10.1371/journal.pone.0270165] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/03/2022] [Indexed: 12/15/2022] Open
Abstract
DNA G-quadruplexes (G4s) are now widely accepted as viable targets in the pursuit of anticancer therapeutics. To date, few small molecules have been identified that exhibit selectivity for G4s over alternative forms of DNA, such as the ubiquitous duplex. We posit that the lack of current ligand specificity arises for multiple reasons: G4 atomic models are often small, monomeric, single quadruplex structures with few or no druggable pockets; targeting G-tetrad faces frequently results in the enrichment of extended electron-deficient polyaromatic end-pasting scaffolds; and virtual drug discovery efforts often under-sample chemical search space. We show that by addressing these issues we can enrich for non-standard molecular templates that exhibit high selectivity towards G4s over other forms of DNA. We performed an extensive virtual screen against the higher-order hTERT core promoter G4 that we have previously characterized, targeting 12 of its unique loop and groove pockets using libraries containing 40 million drug-like compounds for each screen. Using our drug discovery funnel approach, which utilizes high-throughput fluorescence thermal shift assay (FTSA) screens, microscale thermophoresis (MST), and orthogonal biophysical methods, we have identified multiple unique G4 binding scaffolds. We subsequently used two rounds of catalogue-based SAR to increase the affinity of a disubstituted 2-aminoethyl-quinazoline that stabilizes the higher-order hTERT G-quadruplex by binding across its G4 junctional sites. We show selectivity of its binding affinity towards hTERT is virtually unaffected in the presence of near-physiological levels of duplex DNA, and that this molecule downregulates hTERT transcription in breast cancer cells.
Collapse
Affiliation(s)
- Robert C. Monsen
- UofL Health Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Jon M. Maguire
- UofL Health Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Lynn W. DeLeeuw
- UofL Health Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Jonathan B. Chaires
- UofL Health Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail: (JBC); (JOT)
| | - John O. Trent
- UofL Health Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail: (JBC); (JOT)
| |
Collapse
|
4
|
DE Souza Dutra C, Martello CL, Cadore NA, Ferreira HB, Zaha A, Monteiro KM. Proteomic Analysis of the Non-genetic Response to Cisplatin in Lung Cancer Cells. CANCER DIAGNOSIS & PROGNOSIS 2021; 1:235-243. [PMID: 35399307 PMCID: PMC8962784 DOI: 10.21873/cdp.10032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/27/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Drug resistance is the main cause of therapy failure in advanced lung cancer. Although non-genetic mechanisms play important roles in tumor chemoresistance, drug-induced epigenetic reprogramming is still poorly understood. MATERIALS AND METHODS The A549 cell line was used to generate cells with non-genetic resistance to cisplatin (CDDP), namely A549/CDDP cells. Bioorthogonal non-canonical amino acid tagging (BONCAT) and mass spectrometry were used to identify proteins modulated by CDDP in A549 and A549/CDDP cells. RESULTS Proteins related to proteostasis, telomere maintenance, cell adhesion, cytoskeletal remodeling, and cell redox homeostasis were found enriched in both cell lines upon CDDP exposure. On the other hand, proteins involved in drug response, metabolic pathways and mRNA processing and splicing were up-regulated by CDDP only in A549/CDDP cells. CONCLUSION Our study revealed proteome dynamics involved in the non-genetic response to CDDP, pointing out potential targets to monitor and overcome epigenetic resistance in lung cancer.
Collapse
Affiliation(s)
- Cristine DE Souza Dutra
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carolina Lumertz Martello
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Nathan Araujo Cadore
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Arnaldo Zaha
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Karina Mariante Monteiro
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
5
|
Engin AB, Engin A. The effect of environmental Bisphenol A exposure on breast cancer associated with obesity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 81:103544. [PMID: 33161112 DOI: 10.1016/j.etap.2020.103544] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA) is a widely used endocrine disrupter. Its environmental exposure is a causative factor of cell aging via decreasing telomerase activity, thus leading to shortening of telomere length. Epidemiological studies confirm positive associations between BPA exposure and the incidence of obesity and type 2 diabetes (T2DM). Increased urinary BPA levels in obese females are both significantly correlated with shorter relative telomere length and T2DM. BPA is a critically effective endocrine disrupter leading to poor prognosis via the obesity-inflammation-aromatase axis in breast cancer. Environmental BPA exposure contributes to the progression of both estrogen dependent and triple negative breast cancers. BPA is a positive regulator of human telomerase reverse transcriptase (hTERT) and it increases the expression of hTERT mRNA in breast cancer cells. BPA exposure can lead to tamoxifen resistance. Among patients treated with chemotherapy, those with persistent high telomerase activity due to BPA are at higher risk of death.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey.
| | - Atilla Engin
- Gazi University, Faculty of Medicine, Department of General Surgery, Ankara, Turkey
| |
Collapse
|
6
|
Eckburg A, Dein J, Berei J, Schrank Z, Puri N. Oligonucleotides and microRNAs Targeting Telomerase Subunits in Cancer Therapy. Cancers (Basel) 2020; 12:E2337. [PMID: 32825005 PMCID: PMC7565511 DOI: 10.3390/cancers12092337] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022] Open
Abstract
Telomerase provides cancer cells with replicative immortality, and its overexpression serves as a near-universal marker of cancer. Anti-cancer therapeutics targeting telomerase have garnered interest as possible alternatives to chemotherapy and radiotherapy. Oligonucleotide-based therapies that inhibit telomerase through direct or indirect modulation of its subunits, human telomerase reverse transcriptase (hTERT) and human telomerase RNA gene (hTERC), are a unique and diverse subclass of telomerase inhibitors which hold clinical promise. MicroRNAs that play a role in the upregulation or downregulation of hTERT and respective progression or attenuation of cancer development have been effectively targeted to reduce telomerase activity in various cancer types. Tumor suppressor miRNAs, such as miRNA-512-5p, miRNA-138, and miRNA-128, and oncogenic miRNAs, such as miRNA-19b, miRNA-346, and miRNA-21, have displayed preclinical promise as potential hTERT-based therapeutic targets. Antisense oligonucleotides like GRN163L and T-oligos have also been shown to uniquely target the telomerase subunits and have become popular in the design of novel cancer therapies. Finally, studies suggest that G-quadruplex stabilizers, such as Telomestatin, preserve telomeric oligonucleotide architecture, thus inhibiting hTERC binding to the telomere. This review aims to provide an adept understanding of the conceptual foundation and current state of therapeutics utilizing oligonucleotides to target the telomerase subunits, including the advantages and drawbacks of each of these approaches.
Collapse
Affiliation(s)
| | | | | | | | - Neelu Puri
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (A.E.); (J.D.); (J.B.); (Z.S.)
| |
Collapse
|
7
|
Mangaonkar AA, Patnaik MM. Hereditary Predisposition to Hematopoietic Neoplasms: When Bloodline Matters for Blood Cancers. Mayo Clin Proc 2020; 95:1482-1498. [PMID: 32571604 DOI: 10.1016/j.mayocp.2019.12.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/23/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
With the advent of precision genomics, hereditary predisposition to hematopoietic neoplasms- collectively known as hereditary predisposition syndromes (HPS)-are being increasingly recognized in clinical practice. Familial clustering was first observed in patients with leukemia, which led to the identification of several germline variants, such as RUNX1, CEBPA, GATA2, ANKRD26, DDX41, and ETV6, among others, now established as HPS, with tendency to develop myeloid neoplasms. However, evidence for hereditary predisposition is also apparent in lymphoid and plasma--cell neoplasms, with recent discoveries of germline variants in genes such as IKZF1, SH2B3, PAX5 (familial acute lymphoblastic leukemia), and KDM1A/LSD1 (familial multiple myeloma). Specific inherited bone marrow failure syndromes-such as GATA2 haploinsufficiency syndromes, short telomere syndromes, Shwachman-Diamond syndrome, Diamond-Blackfan anemia, severe congenital neutropenia, and familial thrombocytopenias-also have an increased predisposition to develop myeloid neoplasms, whereas inherited immune deficiency syndromes, such as ataxia-telangiectasia, Bloom syndrome, Wiskott Aldrich syndrome, and Bruton agammaglobulinemia, are associated with an increased risk for lymphoid neoplasms. Timely recognition of HPS is critical to ensure safe choice of donors and/or conditioning-regimen intensity for allogeneic hematopoietic stem-cell transplantation and to enable direction of appropriate genomics-driven personalized therapies. The purpose of this review is to provide a comprehensive overview of HPS and serve as a useful reference for clinicians to recognize relevant signs and symptoms among patients to enable timely screening and referrals to pursue germline assessment. In addition, we also discuss our institutional approach toward identification of HPS and offer a stepwise diagnostic and management algorithm.
Collapse
Affiliation(s)
| | - Mrinal M Patnaik
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN.
| |
Collapse
|
8
|
Hidaka D, Onozawa M, Miyashita N, Yokoyama S, Nakagawa M, Hashimoto D, Teshima T. Short-term treatment with imetelstat sensitizes hematopoietic malignant cells to a genotoxic agent via suppression of the telomerase-mediated DNA repair process. Leuk Lymphoma 2020; 61:2722-2732. [PMID: 32571117 DOI: 10.1080/10428194.2020.1779256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Imetelstat is a specific and competitive inhibitor of telomerase enzymatic activity. We demonstrated that imetelstat could interfere with the DNA repair process and enhance the effect of DNA damaging agents using hematological tumor cell lines. Short-term administration of imetelstat enhanced growth suppression by anticancer agents and radiation. It also upregulated γH2AX expression induced by irradiation. Immunofluorescence staining showed that both human telomerase reverse transcriptase (hTERT) and γH2AX were upregulated and co-localized in the nucleus of peripheral blood mononuclear cells after irradiation, suggesting that hTERT was involved in the DNA-DSB repair process. Imetelstat enhanced growth inhibitory effect of cytotoxic agents in short-term culture without shortening of telomeres, indicating that this effect was attributed by telomere length independent mechanism. Our results suggest that the combination of short-term treatment with imetelstat and cytotoxic agent is a promising strategy to treat a wide variety of hematopoietic malignancies.
Collapse
Affiliation(s)
- Daisuke Hidaka
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, Japan
| | - Masahiro Onozawa
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, Japan
| | - Naohiro Miyashita
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, Japan
| | - Shota Yokoyama
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, Japan
| | - Masao Nakagawa
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, Japan
| | - Daigo Hashimoto
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, Japan
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
9
|
Schrank Z, Khan N, Osude C, Singh S, Miller RJ, Merrick C, Mabel A, Kuckovic A, Puri N. Oligonucleotides Targeting Telomeres and Telomerase in Cancer. Molecules 2018; 23:molecules23092267. [PMID: 30189661 PMCID: PMC6225148 DOI: 10.3390/molecules23092267] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/27/2018] [Accepted: 09/04/2018] [Indexed: 02/07/2023] Open
Abstract
Telomeres and telomerase have become attractive targets for the development of anticancer therapeutics due to their involvement in cancer cell immortality. Currently, several therapeutics have been developed that directly target telomerase and telomeres, such as telomerase inhibitors and G-quadruplex stabilizing ligands. Telomere-specific oligonucleotides that reduce telomerase activity and disrupt telomere architecture are also in development as novel anticancer therapeutics. Specifically, GRN163L and T-oligos have demonstrated promising anticancer activity in multiple cancers types via induction of potent DNA damage responses. Currently, several miRNAs have been implicated in the regulation of telomerase activity and may prove to be valuable targets in the development of novel therapies by reducing expression of telomerase subunits. Targeting miRNAs that are known to increase expression of telomerase subunits may be another strategy to reduce carcinogenesis. This review aims to provide a comprehensive understanding of current oligonucleotide-based anticancer therapies that target telomeres and telomerase. These studies may help design novel therapeutic approaches to overcome the challenges of oligonucleotide therapy in a clinical setting.
Collapse
Affiliation(s)
- Zachary Schrank
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Nabiha Khan
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Chike Osude
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Sanjana Singh
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Rachel J Miller
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Collin Merrick
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Alexander Mabel
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Adijan Kuckovic
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Neelu Puri
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| |
Collapse
|
10
|
Yang SH, Kuo TC, Wu H, Guo JC, Hsu C, Hsu CH, Tien YW, Yeh KH, Cheng AL, Kuo SH. Perspectives on the combination of radiotherapy and targeted therapy with DNA repair inhibitors in the treatment of pancreatic cancer. World J Gastroenterol 2016; 22:7275-7288. [PMID: 27621574 PMCID: PMC4997635 DOI: 10.3748/wjg.v22.i32.7275] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/20/2016] [Accepted: 07/21/2016] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is highly lethal. Current research that combines radiation with targeted therapy may dramatically improve prognosis. Cancerous cells are characterized by unstable genomes and activation of DNA repair pathways, which are indicated by increased phosphorylation of numerous factors, including H2AX, ATM, ATR, Chk1, Chk2, DNA-PKcs, Rad51, and Ku70/Ku80 heterodimers. Radiotherapy causes DNA damage. Cancer cells can be made more sensitive to the effects of radiation (radiosensitization) through inhibition of DNA repair pathways. The synergistic effects, of two or more combined non-lethal treatments, led to co-administration of chemotherapy and radiosensitization in BRCA-defective cells and patients, with promising results. ATM/Chk2 and ATR/Chk1 pathways are principal regulators of cell cycle arrest, following DNA double-strand or single-strand breaks. DNA double-stranded breaks activate DNA-dependent protein kinase, catalytic subunit (DNA-PKcs). It forms a holoenzyme with Ku70/Ku80 heterodimers, called DNA-PK, which catalyzes the joining of nonhomologous ends. This is the primary repair pathway utilized in human cells after exposure to ionizing radiation. Radiosensitization, induced by inhibitors of ATM, ATR, Chk1, Chk2, Wee1, PP2A, or DNA-PK, has been demonstrated in preclinical pancreatic cancer studies. Clinical trials are underway. Development of agents that inhibit DNA repair pathways to be clinically used in combination with radiotherapy is warranted for the treatment of pancreatic cancer.
Collapse
|
11
|
Zvereva MI, Zatsepin TS, Azhibek DM, Shubernetskaya OS, Shpanchenko OV, Dontsova OA. Oligonucleotide inhibitors of telomerase: prospects for anticancer therapy and diagnostics. BIOCHEMISTRY (MOSCOW) 2015; 80:251-9. [PMID: 25761680 DOI: 10.1134/s0006297915030013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The activity of telomerase allows eukaryotic cells to have unlimited division potential. On its functioning, telomerase synthesizes short DNA repeats at the 3'-end of DNA within chromosomes that ensures genome stability during cell division. Telomerase is active in the majority of cancer cell types and is virtually absent in somatic cells with rare exceptions. This difference allows us to consider inhibition of telomerase activity as a possible approach to antitumor therapy. Telomerase is a nucleoprotein composed of two main components: the reverse transcriptase (hTERT), which is a catalytic subunit, and telomerase RNA (hTR), which encodes a template for synthesis of repeats. The biogenesis and features of telomerase seem very promising for its inhibition due to complementary interactions. In this review, we analyze putative pathways of oligonucleotide influence on telomerase and consider the known native and modified oligonucleotide inhibitors of telomerase, as well as possible mechanisms of their action. We also discuss the application of telomerase-targeted oligonucleotide conjugates for in vivo imaging of tumor cells.
Collapse
Affiliation(s)
- M I Zvereva
- Lomonosov Moscow State University, Chemistry Faculty, Moscow, 119991, Russia.
| | | | | | | | | | | |
Collapse
|
12
|
Cheng J, Liu W, Zeng X, Zhang B, Guo Y, Qiu M, Jiang C, Wang H, Wu Z, Meng M, Zhuang H, Zhao L, Hao J, Cai Q, Xie D, Pang Q, Wang P, Yuan Z, Qian D. XRCC3 is a promising target to improve the radiotherapy effect of esophageal squamous cell carcinoma. Cancer Sci 2015; 106:1678-86. [PMID: 26383967 PMCID: PMC4714664 DOI: 10.1111/cas.12820] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/28/2015] [Accepted: 09/09/2015] [Indexed: 12/18/2022] Open
Abstract
Radiotherapy is widely applied for treatment of esophageal squamous cell carcinoma (ESCC). The Rad51-related protein XRCC3 plays roles in the recombinational repair of DNA double-strand breaks to maintain chromosome stability and repair DNA damage. The present study aimed to investigate the effect of XRCC3 on the radiotherapy response of ESCC and the underlying mechanisms of the roles of XRCC3 in ESCC radiosensitivity. XRCC3 expression in ESCC cells and tissues was higher than that in normal esophageal epithelial cells and corresponding adjacent noncancerous esophageal tissue. High XRCC3 expression was positively correlated with resistance to chemoradiotherapy in ESCC and an independent predictor for short disease-specific survival of ESCC patients. Furthermore, the therapeutic efficacy of radiotherapy in vitro and in vivo was substantially increased by knockdown of XRCC3 in ESCC cells. Ectopic overexpression of XRCC3 in both XRCC3-silenced ESCC cells dramatically enhanced ESCC cells' resistance to radiotherapy. Moreover, radiation resistance conferred by XRCC3 was attributed to enhancement of homologous recombination, maintenance of telomere stability, and a reduction of ESCC cell death by radiation-induced apoptosis and mitotic catastrophe. Our data suggest that XRCC3 protects ESCC cells from ionizing radiation-induced death by promoting DNA damage repair and/or enhancing telomere stability. XRCC3 may be a novel radiosensitivity predictor and promising therapeutic target for ESCC.
Collapse
Affiliation(s)
- Jingjing Cheng
- Department of Radiotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Weiran Liu
- Department of Anesthesiology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Xianliang Zeng
- Department of Radiotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Bin Zhang
- Department of Lung Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yihang Guo
- Department of Radiotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Minghan Qiu
- Department of Radiotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Chao Jiang
- Department of Radiotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Huanhuan Wang
- Department of Radiotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Zhiqiang Wu
- Department of Radiotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Maobin Meng
- Department of Radiotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Hongqing Zhuang
- Department of Radiotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Lujun Zhao
- Department of Radiotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Jihui Hao
- Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Qingqing Cai
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Qingsong Pang
- Department of Radiotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Ping Wang
- Department of Radiotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Zhiyong Yuan
- Department of Radiotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Dong Qian
- Department of Radiotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
13
|
Abstract
In a previous study, we have shown that shortening of telomeres by telomerase inhibition sensitized cancer cells to cisplatinum, slower their migration, increased DNA damage and impaired DNA repair [1]. In the following study, we present a network model combining microRNA and proteomic profiling attempting to decipher the molecular mechanism underlying the effect of shortened telomeres on the obtained phenotype of cancer cells [2]. The microRNA and proteomic data were used for a network model construction, which provided us with several nodal candidates that may potentially mediate the shortened-telomeres dependent features. These protein expressions were experimentally validated, supporting their potential central role in this system [2]. In this article, we delineate the full proteomic data and a microarray analyses performed on cells with shortened telomeres compared to their cognate parental intact telomere cells. The data is attached as excel files. In principle, clarifying the mechanism behind telomere shortened phenotype may facilitate novel therapeutics development and may also obviate the time consuming process of telomere shortening achieved by telomerase inhibition.
Collapse
Affiliation(s)
- Orit Uziel
- The Felsenstein Medical Research Center, Rabin Medical Center and Sackler School of Medicine, Tel Aviv University, Israel
| | - Meir Lahav
- The Felsenstein Medical Research Center, Rabin Medical Center and Sackler School of Medicine, Tel Aviv University, Israel
| |
Collapse
|
14
|
Laster BH, Isaacson C, Perets E, Msamra M, Priel E, Kalef-Ezra J, Kost J. Keeping those telomeres short! an innovative intratumoral long-term drug delivery system. J Cancer Res Clin Oncol 2015; 141:23-34. [PMID: 25073436 DOI: 10.1007/s00432-014-1747-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/10/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND Telomerase activation and an alternative lengthening of telomeres (ALT) mechanism are two telomere-lengthening cancer cell survival mechanisms elicited by both chemo- and/or radiotherapy. Telomere lengthening interferes with cell lethality and results in the immortalization of cancer cells. To counteract these mechanisms, we developed a drug delivery system (DDS) consisting of a polymeric implant that is inserted directly into tumors. The DDS releases, continuously and gradually, a cationic porphyrin (PdTMPyP4) for >30 days after a single application, and inhibits telomerase activation. METHODS The PdTMPyP4 porphyrin is incorporated into a poly(co-glycolic lactic)acid (PLGA) polymer, solidified and cut into small rods. PdTMPyP4 release from the rods was measured spectrophotometrically over time. Uptake of Pd in the DNA of in L428 Hodgkins lymphoma cells was measured by ICP-MS, and telomerase activation by the TRAP assay. The rods were placed into the growth medium of cells whose growth rate was measured for 11 and 19 days. The cylinders were also inserted directly into KHJJ murine mammary tumors borne on the thighs of BALB/c mice and the tumor growth rate measured. RESULTS In vitro, >10(9)Pd atoms were measured in the DNA of each L428 cell and telomerase activity was reduced by ~15% within 24 h. A one-time application of the rod in the cell medium induced a factor of >5 greater lethality compared to a blank rod or untreated controls. In vivo, a one-time insertion of the rod into tumors resulted in the retardation of the growth rate by factors of 3-5 compared to untreated controls. Systemic uptake after intratumoral insertion of the rod was negligible. CONCLUSION The results suggest that the direct intratumoral insertion of a PdTMPyP4-containing polymeric rod would be of benefit as an adjuvant treatment for patients undergoing chemo- or radiotherapy. By preventing the lengthening of telomeres and therefore the unrestricted growth of cancer cells, our DDS will provide a significant therapeutic advantage to these treatments without affecting normal tissues.
Collapse
Affiliation(s)
- B H Laster
- Jerry J. Cohen Radiobiology Research Laboratory, Ben Gurion University, 84105, Beer Sheva, Israel,
| | | | | | | | | | | | | |
Collapse
|
15
|
Uziel O, Yosef N, Sharan R, Ruppin E, Kupiec M, Kushnir M, Beery E, Cohen-Diker T, Nordenberg J, Lahav M. The effects of telomere shortening on cancer cells: a network model of proteomic and microRNA analysis. Genomics 2014; 105:5-16. [PMID: 25451739 DOI: 10.1016/j.ygeno.2014.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 10/08/2014] [Accepted: 10/27/2014] [Indexed: 12/21/2022]
Abstract
Previously, we have shown that shortening of telomeres by telomerase inhibition sensitized cancer cells to cisplatinum, slowed their migration, increased DNA damage and impaired DNA repair. The mechanism behind these effects is not fully characterized. Its clarification could facilitate novel therapeutics development and may obviate the time consuming process of telomere shortening achieved by telomerase inhibition. Here we aimed to decipher the microRNA and proteomic profiling of cancer cells with shortened telomeres and identify the key mediators in telomere shortening-induced damage to those cells. Of 870 identified proteins, 98 were differentially expressed in shortened-telomere cells. 47 microRNAs were differentially expressed in these cells; some are implicated in growth arrest or act as oncogene repressors. The obtained data was used for a network construction, which provided us with nodal candidates that may mediate the shortened-telomere dependent features. These proteins' expression was experimentally validated, supporting their potential central role in this system.
Collapse
Affiliation(s)
- O Uziel
- FMRC, RMC, Sackler School of Medicine, Tel Aviv University, Israel.
| | - N Yosef
- School of Computer Science, Tel Aviv University, Israel
| | - R Sharan
- School of Computer Science, Tel Aviv University, Israel
| | - E Ruppin
- School of Computer Science, Tel Aviv University, Israel
| | - M Kupiec
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Israel
| | | | - E Beery
- FMRC, RMC, Sackler School of Medicine, Tel Aviv University, Israel
| | - T Cohen-Diker
- FMRC, RMC, Sackler School of Medicine, Tel Aviv University, Israel
| | - J Nordenberg
- FMRC, RMC, Sackler School of Medicine, Tel Aviv University, Israel
| | - M Lahav
- FMRC, RMC, Sackler School of Medicine, Tel Aviv University, Israel
| |
Collapse
|
16
|
Polese C, Mottet D. [HDAC5 inhibition: a tool to stop cancer cell immortality]. Med Sci (Paris) 2014; 30:730-2. [PMID: 25174744 DOI: 10.1051/medsci/20143008005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Catherine Polese
- Laboratoire de recherche sur les métastases, groupe HDAC, Université de Liège, Institut de pathologie B23, B-4000 Liège (Sart-Tilman), Belgique - Adresse actuelle : Signalisation et interaction des protéines, GIGA-R (B34), avenue de l'Hôpital, 1, B-4000 Liège, Belgique
| | - Denis Mottet
- Laboratoire de recherche sur les métastases, groupe HDAC, Université de Liège, Institut de pathologie B23, B-4000 Liège (Sart-Tilman), Belgique - Adresse actuelle : Signalisation et interaction des protéines, GIGA-R (B34), avenue de l'Hôpital, 1, B-4000 Liège, Belgique
| |
Collapse
|
17
|
Zhang Y, Calado R, Rao M, Hong JA, Meeker AK, Dumitriu B, Atay S, McCormick PJ, Garfield SH, Wangsa D, Padilla-Nash HM, Burkett S, Zhang M, Kunst TF, Peterson NR, Xi S, Inchauste S, Altorki NK, Casson AG, Beer DG, Harris CC, Ried T, Young NS, Schrump DS. Telomerase variant A279T induces telomere dysfunction and inhibits non-canonical telomerase activity in esophageal carcinomas. PLoS One 2014; 9:e101010. [PMID: 24983628 PMCID: PMC4077737 DOI: 10.1371/journal.pone.0101010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 06/02/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Although implicated in the pathogenesis of several chronic inflammatory disorders and hematologic malignancies, telomerase mutations have not been thoroughly characterized in human cancers. The present study was performed to examine the frequency and potential clinical relevance of telomerase mutations in esophageal carcinomas. METHODS Sequencing techniques were used to evaluate mutational status of telomerase reverse transcriptase (TERT) and telomerase RNA component (TERC) in neoplastic and adjacent normal mucosa from 143 esophageal cancer (EsC) patients. MTS, flow cytometry, time lapse microscopy, and murine xenograft techniques were used to assess proliferation, apoptosis, chemotaxis, and tumorigenicity of EsC cells expressing either wtTERT or TERT variants. Immunoprecipitation, immunoblot, immunofluorescence, promoter-reporter and qRT-PCR techniques were used to evaluate interactions of TERT and several TERT variants with BRG-1 and β-catenin, and to assess expression of cytoskeletal proteins, and cell signaling. Fluorescence in-situ hybridization and spectral karyotyping techniques were used to examine telomere length and chromosomal stability. RESULTS Sequencing analysis revealed one deletion involving TERC (TERC del 341-360), and two non-synonymous TERT variants [A279T (2 homozygous, 9 heterozygous); A1062T (4 heterozygous)]. The minor allele frequency of the A279T variant was five-fold higher in EsC patients compared to healthy blood donors (p<0.01). Relative to wtTERT, A279T decreased telomere length, destabilized TERT-BRG-1-β-catenin complex, markedly depleted β-catenin, and down-regulated canonical Wnt signaling in cancer cells; these phenomena coincided with decreased proliferation, depletion of additional cytoskeletal proteins, impaired chemotaxis, increased chemosensitivity, and significantly decreased tumorigenicity of EsC cells. A279T expression significantly increased chromosomal aberrations in mouse embryonic fibroblasts (MEFs) following Zeocin™ exposure, as well as Li Fraumeni fibroblasts in the absence of pharmacologically-induced DNA damage. CONCLUSIONS A279T induces telomere dysfunction and inhibits non-canonical telomerase activity in esophageal cancer cells. These findings warrant further analysis of A279T expression in esophageal cancers and premalignant esophageal lesions.
Collapse
Affiliation(s)
- Yuwei Zhang
- Thoracic Surgery Section, Thoracic and GI Oncology Branch; National Cancer Institute, Bethesda, Maryland, United States of America
| | - Rodrigo Calado
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, United States of America
| | - Mahadev Rao
- Thoracic Surgery Section, Thoracic and GI Oncology Branch; National Cancer Institute, Bethesda, Maryland, United States of America
| | - Julie A. Hong
- Thoracic Surgery Section, Thoracic and GI Oncology Branch; National Cancer Institute, Bethesda, Maryland, United States of America
| | - Alan K. Meeker
- Departments of Pathology and Oncology, Johns Hopkins University of Medicine, Baltimore, Maryland, United States of America
| | - Bogdan Dumitriu
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, United States of America
| | - Scott Atay
- Thoracic Surgery Section, Thoracic and GI Oncology Branch; National Cancer Institute, Bethesda, Maryland, United States of America
| | - Peter J. McCormick
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Susan H. Garfield
- Laboratory of Experimental Carcinogenesis, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Danny Wangsa
- Section of Cancer Genomics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Hesed M. Padilla-Nash
- Section of Cancer Genomics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Sandra Burkett
- Comparative Molecular Cytogenetics Core Facility, National Cancer Institute, Frederick, Maryland, United States of America
| | - Mary Zhang
- Thoracic Surgery Section, Thoracic and GI Oncology Branch; National Cancer Institute, Bethesda, Maryland, United States of America
| | - Tricia F. Kunst
- Thoracic Surgery Section, Thoracic and GI Oncology Branch; National Cancer Institute, Bethesda, Maryland, United States of America
| | - Nathan R. Peterson
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, United States of America
| | - Sichuan Xi
- Thoracic Surgery Section, Thoracic and GI Oncology Branch; National Cancer Institute, Bethesda, Maryland, United States of America
| | - Suzanne Inchauste
- Thoracic Surgery Section, Thoracic and GI Oncology Branch; National Cancer Institute, Bethesda, Maryland, United States of America
| | - Nasser K. Altorki
- Department of Thoracic Surgery, Weill Cornell Medical Center, New York, New York, United States of America
| | - Alan G. Casson
- Department of Surgery, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - David G. Beer
- Section of Thoracic Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Curtis C. Harris
- Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Thomas Ried
- Section of Cancer Genomics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Neal S. Young
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, United States of America
| | - David S. Schrump
- Thoracic Surgery Section, Thoracic and GI Oncology Branch; National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
18
|
The effects of erythropoietin signaling on telomerase regulation in non-erythroid malignant and non-malignant cells. Biochem Biophys Res Commun 2014; 450:274-82. [PMID: 24907467 DOI: 10.1016/j.bbrc.2014.05.105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 05/23/2014] [Indexed: 01/27/2023]
Abstract
Treatment with erythropoietin (EPO) in several cancers is associated with decreased survival due to cancer progression. Due to the major importance of telomerase in cancer biology we hypothesized that some of these effects may be mediated through EPO effect on telomerase. For this aim we explored the possible effects of EPO on telomerase regulation, cell migration and chemosensitivity in non-erythroid malignant and non-malignant cells. Cell proliferation, telomerase activity (TA) and cell migration increased in response to EPO. EPO had no effect on cancer cells sensitivity to cisplatinum and on the cell cycle status. The inhibition of telomerase modestly repressed the proliferative effect of EPO. Telomere shortening caused by long term inhibition of the enzyme abolished the effect of EPO, suggesting that EPO effects on cancer cells are related to telomere dynamics. TA was correlated with the levels of Epo-R. The increase in TA was mediated post-translationally through the Lyn-Src and not the canonical JAK2 pathway.
Collapse
|
19
|
Novo CL, Polese C, Matheus N, Decottignies A, Londono-Vallejo A, Castronovo V, Mottet D. A new role for histone deacetylase 5 in the maintenance of long telomeres. FASEB J 2013; 27:3632-42. [PMID: 23729589 DOI: 10.1096/fj.12-224204] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Telomeres are major regulators of genome stability and cell proliferation. A detailed understanding of the mechanisms involved in their maintenance is of foremost importance. Of those, telomere chromatin remodeling is probably the least studied; thus, we intended to explore the role of a specific histone deacetylase on telomere maintenance. We uncovered a new role for histone deacetylase 5 (HDAC5) in telomere biology. We report that HDAC5 is recruited to the long telomeres of osteosarcoma- and fibrosarcoma-derived cell lines, where it ensures proper maintenance of these repetitive regions. Indeed, depletion of HDAC5 by RNAi resulted in the shortening of longer telomeres and homogenization of telomere length in cells that use either telomerase or an alternative mechanism of telomere maintenance. Furthermore, we present evidence for the activation of telomere recombination on depletion of HDAC5 in fibrosarcoma telomerase-positive cancer cells. Of potential importance, we also found that depletion of HDAC5 sensitizes cancer cells with long telomeres to chemotherapeutic drugs. Cells with shorter telomeres were used to control the specificity of HDAC5 role in the maintenance of long telomeres. HDAC5 is essential for the length maintenance of long telomeres and its depletion is required for sensitization of cancer cells with long telomeres to chemotherapy.
Collapse
Affiliation(s)
- Clara Lopes Novo
- University of Liege Sart-Tilman, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-Cancer, Metastasis Research Laboratory, Pathology Institute B23, Liege, Belgium
| | | | | | | | | | | | | |
Collapse
|
20
|
Holysz H, Lipinska N, Paszel-Jaworska A, Rubis B. Telomerase as a useful target in cancer fighting-the breast cancer case. Tumour Biol 2013; 34:1371-80. [PMID: 23558965 PMCID: PMC3661921 DOI: 10.1007/s13277-013-0757-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/20/2013] [Indexed: 12/17/2022] Open
Abstract
Telomerase was initially considered as a relevant factor distinguishing cancer from normal cells. During detailed studies, it appeared that its expression and activity is not only limited to cancer cells however, but in this particular cells, the telomerase is much more abundant. Thus, it has become a very promising target for an anticancer therapy. It was revealed in many studies that regulation of telomerase is a multifactorial process in mammalian cells, involving regulation of expression of telomerase subunits coding genes, post-translational protein–protein interactions, and protein phosphorylation. Numerous proto-oncogenes and tumor suppressor genes are engaged in this mechanism, and the complexity of telomerase control is studied in the context of tumor development as well as aging. Additionally, since numerous studies reveal a correlation between short telomeres and increased genome instability or cell mortality, the telomerase control appears to be one of the crucial factors to study in order to improve the cancer diagnostics and therapy or prevention. Interestingly, almost 100 % of adenocarcinoma, including breast cancer cells, expresses telomerase which makes it a good target for telomerase-related therapy. Additionally, telomerase is also supposed to be associated with drug resistance. Thus, targeting the enzyme might result in attenuation of this phenomenon. Moreover, since stem cells existence was reported, it must be considered whether targeting telomerase can bring some serious side effects and result in stem cells viability or their regenerative potential decrease. Thus, we review some molecular mechanisms engaged in therapy based on targeting telomerase in breast cancer cells.
Collapse
Affiliation(s)
- Hanna Holysz
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, ul. Przybyszewskiego 49, 60-355, Poznan, Poland
| | | | | | | |
Collapse
|
21
|
Wong L, Unciti-Broceta A, Spitzer M, White R, Tyers M, Harrington L. A yeast chemical genetic screen identifies inhibitors of human telomerase. CHEMISTRY & BIOLOGY 2013; 20:333-40. [PMID: 23521791 PMCID: PMC3650558 DOI: 10.1016/j.chembiol.2012.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 12/11/2012] [Accepted: 12/20/2012] [Indexed: 01/13/2023]
Abstract
Telomerase comprises a reverse transcriptase and an internal RNA template that maintains telomeres in many eukaryotes, and it is a well-validated cancer target. However, there is a dearth of small molecules with efficacy against human telomerase in vivo. We developed a surrogate yeast high-throughput assay to identify human telomerase inhibitors. The reversibility of growth arrest induced by active human telomerase was assessed against a library of 678 compounds preselected for bioactivity in S. cerevisiae. Four of eight compounds identified reproducibly restored growth to strains expressing active human telomerase, and three of these four compounds also specifically inhibited purified human telomerase in vitro. These compounds represent probes for human telomerase function, and potential entry points for development of lead compounds against telomerase-positive cancers.
Collapse
Affiliation(s)
- Lai Hong Wong
- Wellcome Trust Centre for Cell Biology, King’s Buildings, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Asier Unciti-Broceta
- Edinburgh Cancer Research UK Centre, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Michaela Spitzer
- Wellcome Trust Centre for Cell Biology, King’s Buildings, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Rachel White
- Wellcome Trust Centre for Cell Biology, King’s Buildings, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Mike Tyers
- Wellcome Trust Centre for Cell Biology, King’s Buildings, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JR, UK
- Faculty of Medicine, University of Montreal, Institute for Research in Immunology and Cancer, Chemin de Polytechnique, Montreal, Quebec, H3T 1J4 Canada
| | - Lea Harrington
- Wellcome Trust Centre for Cell Biology, King’s Buildings, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JR, UK
- Faculty of Medicine, University of Montreal, Institute for Research in Immunology and Cancer, Chemin de Polytechnique, Montreal, Quebec, H3T 1J4 Canada
| |
Collapse
|
22
|
Qian D, Zhang B, He LR, Cai MY, Mai SJ, Liao YJ, Liu YH, Lin MC, Bian XW, Zeng YX, Huang JJ, Kung HF, Xie D. The telomere/telomerase binding factor PinX1 is a new target to improve the radiotherapy effect of oesophageal squamous cell carcinomas. J Pathol 2013; 229:765-74. [PMID: 23341363 DOI: 10.1002/path.4163] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 11/22/2012] [Accepted: 12/21/2012] [Indexed: 12/31/2022]
Abstract
Chemoradiotherapy (CRT) is a standard treatment for oesophageal squamous cell carcinoma (ESCC) in its advanced stages. The telomerase/telomere interacting protein PinX1 contributes to telomere maintenance, tumourigenicity, and influences the DNA damage agent-induced apoptotic response in telomerase-positive cancer cells. However, the clinical and biological significance of PinX1 in human ESCCs remains unclear. We examined the expression dynamics of PinX1 by immunohistochemistry in a learning cohort (n = 98) and a validation cohort (n = 59) of ESCC patients treated with definite chemoradiotherapy (CRT). A series of in vivo and in vitro assays were performed to elucidate the effect of PinX1 on ESCC cells' CRT response and underlying mechanisms. Knockdown of PinX1 did not affect ESCC cells' chemosensitivities to 5-fluorouracil and cisplatin, but substantially increased ESCC cells' therapeutic efficacy of radiation both in vitro and in vivo. Ectopic overexpression of PinX1 dramatically enhanced ESCC cells' resistance to radiotherapy. Furthermore, we demonstrated that PinX1 resistance to radiotherapy (RT) was attributed to PinX1 maintaining telomere stability, reducing ESCC cell death by RT-induced mitosis catastrophe (MC). High expression of Pinx1 correlated positively with ESCC's resistance to CRT, and was a strong and independent predictor for short disease-specific survival (DSS) of ESCC patients. Our data suggest that PinX1 could serve as a novel predictor for a CRT response to ESCC patients, and the pathway of PinX1-mediated telomere stability might represent a new target to improve the RT effect of ESCC.
Collapse
Affiliation(s)
- Dong Qian
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Weiss C, Uziel O, Wolach O, Nordenberg J, Beery E, Bulvick S, Kanfer G, Cohen O, Ram R, Bakhanashvili M, Magen-Nativ H, Shilo N, Lahav M. Differential downregulation of telomerase activity by bortezomib in multiple myeloma cells-multiple regulatory pathways in vitro and ex vivo. Br J Cancer 2012; 107:1844-52. [PMID: 23169337 PMCID: PMC3504947 DOI: 10.1038/bjc.2012.460] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/12/2012] [Accepted: 09/12/2012] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The importance of telomerase in multiple myeloma (MM) is well established; however, its response to bortezomib has not been addressed. METHODS The effect of bortezomib on telomerase activity and cell proliferation was evaluated in four MM cell lines and in myeloma cells obtained from eight patients. The mechanism of telomerase regulation on epigenetic, transcriptional, and post-translational levels was further assessed in two selected cell lines: ARP-1 and CAG. Clinical data were correlated with the laboratory findings. RESULTS Bortezomib downregulated telomerase activity and decreased proliferation in all cell lines and cells obtained from patients, albeit in two different patterns of kinetics. ARP-1 cells demonstrated higher and earlier sensitivity than CAG cells due to differential phosphorylation of hTERT by PKCα. Methylation of hTERT promoter was not affected. Transcription of hTERT was similarly inhibited in both lines by decreased binding of SP-1 and not of C-Myc and NFκB. The ex vivo results confirmed the in vitro findings and suggested existence of clinical relevance. CONCLUSION Bortezomib downregulates telomerase activity in MM cells both transcriptionally and post-translationally. MM cells, both in vitro and in patients, exhibit different sensitivity to the drug due to different post-translational response. The effect of bortezomib on telomerase activity may correlate with resistance to bortezomib in patients, suggesting its potential utility as a pre-treatment assessment.
Collapse
Affiliation(s)
- C Weiss
- Laniado Medical Center, Netanya, Israel
| | - O Uziel
- Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
| | - O Wolach
- Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
| | - J Nordenberg
- Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
| | - E Beery
- Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
| | - S Bulvick
- Laniado Medical Center, Netanya, Israel
| | - G Kanfer
- Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
| | - O Cohen
- Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
| | - R Ram
- Institute of Hematology, Davidoff Cancer Center, Davidoff, Israel
- Internal Department A, Beilinson Hospital, Rabin Medical Center, Sackler School of Medicine, Tel Aviv University, Peetah-Tikva 49100, Israel
| | - M Bakhanashvili
- Division of Infectious Diseases, Sheba Medical Center, Tel-Hashomer, Israel
| | - H Magen-Nativ
- Institute of Hematology, Davidoff Cancer Center, Davidoff, Israel
| | - N Shilo
- Internal Department A, Beilinson Hospital, Rabin Medical Center, Sackler School of Medicine, Tel Aviv University, Peetah-Tikva 49100, Israel
| | - M Lahav
- Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
- Internal Department A, Beilinson Hospital, Rabin Medical Center, Sackler School of Medicine, Tel Aviv University, Peetah-Tikva 49100, Israel
| |
Collapse
|
24
|
Cai Z, Yan LJ, Ratka A. Telomere Shortening and Alzheimer’s Disease. Neuromolecular Med 2012; 15:25-48. [PMID: 23161153 DOI: 10.1007/s12017-012-8207-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 11/02/2012] [Indexed: 10/27/2022]
|
25
|
Effect of targeted silencing of hTERT mRNA by lentivirus-mediated siRNA on A549 lung cancer cells in vitro. Mol Biol Rep 2012; 40:605-16. [PMID: 23054018 DOI: 10.1007/s11033-012-2099-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 10/03/2012] [Indexed: 12/11/2022]
Abstract
In our present study, we took advantage of the characteristics of RNA interference technology, which can efficiently, stably, and specifically silence target genes, and designed a small interfering RNA (siRNA) that could specifically target hTERT mRNA. We used a lentiviral vector (LV) to deliver the hTERT siRNA into telomerase-positive A549 lung cancer cells and investigated the effect of hTERT siRNA on the hTERT mRNA levels, hTERT protein levels, cell proliferation, and apoptosis in the lung cancer cells. The results from quantitative PCR, Western blotting, and the MTT assay showed that the expression levels of both hTERT mRNA and protein in the cells were significantly decreased and that the cell proliferation rate started to significantly slow down at 48 h after transfection with hTERT-LV. Our study demonstrated that siRNA sequences specifically targeting hTERT mRNA, which were packaged into lentivirus particles and then used to transfect the lung cancer cell line A549, can specifically silence the mRNA of the target gene, hTERT, and then reduce the hTERT protein expression level, which, in turn, reduces cell proliferation, inhibits cell growth, and induces apoptosis.
Collapse
|
26
|
Ruden M, Puri N. Novel anticancer therapeutics targeting telomerase. Cancer Treat Rev 2012; 39:444-56. [PMID: 22841437 DOI: 10.1016/j.ctrv.2012.06.007] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 06/14/2012] [Accepted: 06/19/2012] [Indexed: 12/12/2022]
Abstract
Telomeres are protective caps at the ends of human chromosomes. Telomeres shorten with each successive cell division in normal human cells whereas, in tumors, they are continuously elongated by human telomerase reverse transcriptase (hTERT). Telomerase is overexpressed in 80-95% of cancers and is present in very low levels or is almost undetectable in normal cells. Because telomerase plays a pivotal role in cancer cell growth it may serve as an ideal target for anticancer therapeutics. Inhibition of telomerase may lead to a decrease of telomere length resulting in cell senescence and apoptosis in telomerase positive tumors. Several strategies of telomerase inhibition are reviewed, including small molecule inhibitors, antisense oligonucleotides, immunotherapies and gene therapies, targeting the hTERT or the ribonucleoprotein subunit hTER. G-quadruplex stabilizers, tankyrase and HSP90 inhibitors targeting telomere and telomerase assembly, and T-oligo approach are also covered. Based on this review, the most promising current telomerase targeting therapeutics are the antisense oligonucleotide inhibitor GRN163L and immunotherapies that use dendritic cells (GRVAC1), hTERT peptide (GV1001) or cryptic peptides (Vx-001). Most of these agents have entered phase I and II clinical trials in patients with various tumors, and have shown good response rates as evidenced by a reduction in tumor cell growth, increased overall disease survival, disease stabilization in advanced staged tumors and complete/partial responses. Most therapeutics have shown to be more effective when used in combination with standard therapies, resulting in concomitant telomere shortening and tumor mass shrinkage, as well as preventing tumor relapse and resistance to single agent therapy.
Collapse
Affiliation(s)
- Maria Ruden
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107-1822, USA
| | | |
Collapse
|
27
|
Binding of gemini bisbenzimidazole drugs with human telomeric G-quadruplex dimers: effect of the spacer in the design of potent telomerase inhibitors. PLoS One 2012; 7:e39467. [PMID: 22737240 PMCID: PMC3380826 DOI: 10.1371/journal.pone.0039467] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 05/21/2012] [Indexed: 11/19/2022] Open
Abstract
The study of anticancer agents that act via stabilization of telomeric G-quadruplex DNA (G4DNA) is important because such agents often inhibit telomerase activity. Several types of G4DNA binding ligands are known. In these studies, the target structures often involve a single G4 DNA unit formed by short DNA telomeric sequences. However, the 3′-terminal single-stranded human telomeric DNA can form higher-order structures by clustering consecutive quadruplex units (dimers or n-mers). Herein, we present new synthetic gemini (twin) bisbenzimidazole ligands, in which the oligo-oxyethylene spacers join the two bisbenzimidazole units for the recognition of both monomeric and dimeric G4DNA, derived from d(T2AG3)4 and d(T2AG3)8 human telomeric DNA, respectively. The spacer between the two bisbenzimidazoles in the geminis plays a critical role in the G4DNA stability. We report here (i) synthesis of new effective gemini anticancer agents that are selectively more toxic towards the cancer cells than the corresponding normal cells; (ii) formation and characterization of G4DNA dimers in solution as well as computational construction of the dimeric G4DNA structures. The gemini ligands direct the folding of the single-stranded DNA into an unusually stable parallel-stranded G4DNA when it was formed in presence of the ligands in KCl solution and the gemini ligands show spacer length dependent potent telomerase inhibition properties.
Collapse
|
28
|
The combined use of known antiviral reverse transcriptase inhibitors AZT and DDI induce anticancer effects at low concentrations. Neoplasia 2012; 14:44-53. [PMID: 22355273 DOI: 10.1593/neo.11426] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 03/20/2011] [Accepted: 12/13/2011] [Indexed: 12/31/2022] Open
Abstract
A hallmark of tumor cell survival is the maintenance of elongated telomeres. It is known that antiviral reverse transcriptase inhibitors (RTIs) such as azidothymidine (AZT) and didanosine (ddI) lead to telomere shortening at high, potentially toxic concentrations. We hypothesized that those drugs might have synergistic effects enabling successful therapy with low, nontoxic concentrations. Biologic effects of AZT and ddI were analyzed at concentrations that correspond to minimal plasma levels achieved during human immunodeficiency virus therapy. Long-term coapplication of low-dose AZT and ddI induced a significant shortening of telomeres in the tumor cell lines HCT-116, SkMel-28, MelJuso, and Jurkat. Treatment of cells with both RTI, but not with single RTI, led to a significant accumulation of γH2AX, to p53 phosphorylation, and to cell apoptosis in all cell lines. Oral low-dose dual RTI application but not low-dose single RTI application was associated with a significantly reduced tumor growth of HCT-116 cells in mice. This antiproliferative activity of the combined use of AZT and ddI at low, clinically applicable concentrations warrants clinical testing in human solid cancer.
Collapse
|
29
|
Shapira S, Granot G, Mor-Tzuntz R, Raanani P, Uziel O, Lahav M, Shpilberg O. Second-generation tyrosine kinase inhibitors reduce telomerase activity in K562 cells. Cancer Lett 2012; 323:223-31. [PMID: 22554713 DOI: 10.1016/j.canlet.2012.04.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/19/2012] [Accepted: 04/22/2012] [Indexed: 02/07/2023]
Abstract
In this study we present the effects of nilotinib and dasatinib on telomerase activity and regulation. Nilotinib and dasatinib strongly reduced telomerase activity in BCR-ABL-positive (K562) and BCR-ABL-negative (HL60) cells, demonstrating that their effect on telomerase activity is uncoupled from their effect on BCR-ABL. Nilotinib and dasatinib caused a substantial decrease in hTERT mRNA expression. Phospho-Sp1 regulates hTERT transcription. We detected a considerable decrease in Sp1 nuclear expression and binding to the hTERT promoter following exposure to the drugs. We also detected a reduction in Map kinase, known to phosphorylate Sp1. Telomerase is also activated and translocated to the nucleus when phosphorylated by AKT. We detected a decrease in phospho-AKT and a reduction in the nuclear expression of hTERT following exposure to nilotinib and dasatinib. In conclusion, we provide evidence for transcriptional and post-translational inhibition of telomerase by nilotinib and dasatinib which is not necessarily mediated via known targets of these tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Saar Shapira
- Felsenstein Medical Research Center, Beilinson Hospital, Sackler School of Medicine, Tel Aviv University, Israel
| | | | | | | | | | | | | |
Collapse
|
30
|
Zhang B, Qian D, Ma HH, Jin R, Yang PX, Cai MY, Liu YH, Liao YJ, Deng HX, Mai SJ, Zhang H, Zeng YX, Lin MC, Kung HF, Xie D, Huang JJ. Anthracyclines disrupt telomere maintenance by telomerase through inducing PinX1 ubiquitination and degradation. Oncogene 2011; 31:1-12. [PMID: 21643006 DOI: 10.1038/onc.2011.214] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Telomere maintenance is essential for cancer growth. Induction of telomere dysfunction, for example, by inhibition of telomeric proteins or telomerase, has been shown to strongly enhance cancer cells' sensitivity to chemotherapies. However, it is not clear whether modulations of telomere maintenance constitute cancer cellular responses to chemotherapies. Furthermore, the manner in which anti-cancer drugs affect telomere function remains unknown. In this study, we show that anthracyclines, a class of anti-cancer drugs widely used in clinical cancer treatments, have an active role in triggering telomere dysfunction specifically in telomerase-positive cancer cells. Anthracyclines interrupt telomere maintenance by telomerase through the downregulation of PinX1, a protein factor responsible for targeting telomerase onto telomeres, thereby inhibiting telomerase association with telomeres. We further demonstrate that anthracyclines downregulate PinX1 by inducing this protein degradation through the ubiquitin-proteasome-dependent pathway. Our data not only reveal a novel action for anthracyclines as telomerase functional inhibitors but also provide a clue for the development of novel anti-cancer drugs based on telomerase/telomere targeting, which is actively investigated by many current studies.
Collapse
Affiliation(s)
- B Zhang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Arai A, Chano T, Futami K, Furuichi Y, Ikebuchi K, Inui T, Tameno H, Ochi Y, Shimada T, Hisa Y, Okabe H. RECQL1 and WRN proteins are potential therapeutic targets in head and neck squamous cell carcinoma. Cancer Res 2011; 71:4598-607. [PMID: 21571861 DOI: 10.1158/0008-5472.can-11-0320] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RECQL1 and WRN proteins are RecQ DNA helicases that participate in suppression of DNA hyper-recombination and repair. In this study, we report evidence supporting their candidacy as cancer therapeutic targets. In hypopharyngeal carcinomas, which have the worst prognosis among head and neck squamous cell carcinomas (HNSCC) that are rapidly rising in incidence, we found that RECQL1 and WRN proteins are highly expressed and that siRNA-mediated silencing of either gene suppressed carcinoma cell growth in vitro. Similarly, siRNA administration in a murine xenograft model of hypopharyngeal carcinoma markedly inhibited tumor growth. Moreover, combining either siRNA with cis-platinum (II) diammine dichloride significantly augmented the in vivo anticancer effects of this drug that is used commonly in HNSCC treatment. Notably, we observed no recurrence of some tumors following siRNA treatment in this model. Our findings offer a preclinical proof of concept for RECQL1 and WRN proteins as novel therapeutic targets to treat aggressive HNSCC and perhaps other cancers.
Collapse
Affiliation(s)
- Akihito Arai
- Department of Clinical Laboratory Medicine, Shiga University of Medical Science, Shiga, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|