1
|
Magalon A. History of Maturation of Prokaryotic Molybdoenzymes-A Personal View. Molecules 2023; 28:7195. [PMID: 37894674 PMCID: PMC10609526 DOI: 10.3390/molecules28207195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
In prokaryotes, the role of Mo/W enzymes in physiology and bioenergetics is widely recognized. It is worth noting that the most diverse family of Mo/W enzymes is exclusive to prokaryotes, with the probable existence of several of them from the earliest forms of life on Earth. The structural organization of these enzymes, which often include additional redox centers, is as diverse as ever, as is their cellular localization. The most notable observation is the involvement of dedicated chaperones assisting with the assembly and acquisition of the metal centers, including Mo/W-bisPGD, one of the largest organic cofactors in nature. This review seeks to provide a new understanding and a unified model of Mo/W enzyme maturation.
Collapse
Affiliation(s)
- Axel Magalon
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13402 Marseille, France
| |
Collapse
|
2
|
Halte M, Wörmann ME, Bogisch M, Erhardt M, Tschowri N. BldD-based bimolecular fluorescence complementation for in vivo detection of the second messenger cyclic di-GMP. Mol Microbiol 2021; 117:705-713. [PMID: 34961989 DOI: 10.1111/mmi.14876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/27/2022]
Abstract
The widespread bacterial second messenger bis-(3'-5')-cyclic diguanosine monophosphate (c-di-GMP) is an important regulator of biofilm formation, virulence and cell differentiation. C-di-GMP-specific biosensors that allow detection and visualization of c-di-GMP levels in living cells are key to our understanding of how c-di-GMP fluctuations drive cellular responses. Here, we describe a novel c-di-GMP biosensor, CensYBL, that is based on c-di-GMP-induced dimerization of the effector protein BldD from Streptomyces resulting in bimolecular fluorescence complementation of split-YPet fusion proteins. As a proof-of-principle, we demonstrate that CensYBL is functional in detecting fluctuations in intracellular c-di-GMP levels in the Gram-negative model bacteria Escherichia coli and Salmonella enterica serovar Typhimurium. Using deletion mutants of c-di-GMP diguanylate cyclases and phosphodiesterases, we show that c-di-GMP dependent dimerization of CBldD-YPet results in fluorescence complementation reflecting intracellular c-di-GMP levels. Overall, we demonstrate that the CensYBL biosensor is a user-friendly and versatile tool that allows to investigate c-di-GMP variations using single-cell and population-wide experimental set-ups.
Collapse
Affiliation(s)
- Manuel Halte
- Institute for Biology / Bacterial Physiology, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Mirka E Wörmann
- Institute for Biology / Microbiology, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Maxim Bogisch
- Institute for Biology / Microbiology, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Marc Erhardt
- Institute for Biology / Bacterial Physiology, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.,Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | - Natalia Tschowri
- Institute of Microbiology, Leibniz Universität Hannover, 30419, Hannover, Germany
| |
Collapse
|
3
|
Uğurlu Ö, Evran S. Bimolecular fluorescence complementation assay to explore protein-protein interactions of the Yersinia virulence factor YopM. Biochem Biophys Res Commun 2021; 582:43-48. [PMID: 34689104 DOI: 10.1016/j.bbrc.2021.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022]
Abstract
Yersinia outer protein M (YopM) is one of the effector proteins and essential for virulence. YopM is delivered by the Yersinia type III secretion system (T3SS) into the host cell, where it shows immunosuppressive effect through interaction with host proteins. Therefore, protein-protein interactions of YopM is significant to understand its molecular mechanism. In this study, we aimed to explore protein-protein interactions of YopM with the two components of T3SS, namely LcrV and LcrG. We used bimolecular fluorescence complementation (BiFC) assay and monitored the reassembly of green fluorescence protein in Escherichia coli. As an indicator of the protein-protein interaction, we monitored the in vivo reconstitution of fluorescence by measuring fluorescence intensity and imaging the cells under fluorescence microscope. We showed, for the first time, that YopM interacts with LcrG, but not with LcrV. Here, we propose BiFC assay as a simple method to screen novel interaction partners of YopM.
Collapse
Affiliation(s)
- Özge Uğurlu
- Ege University, Faculty of Science, Department of Biochemistry, 35100, Bornova-Izmir, Turkey; Department of Medical Services and Techniques, Hatay Vocational School of Health Services, Hatay Mustafa Kemal University, Tayfur Sökmen Campus, 31060, Alahan-Antakya/ Hatay, Turkey
| | - Serap Evran
- Ege University, Faculty of Science, Department of Biochemistry, 35100, Bornova-Izmir, Turkey.
| |
Collapse
|
4
|
Rojano-Nisimura AM, Haning K, Janovsky J, Vasquez KA, Thompson JP, Contreras LM. Codon Selection Affects Recruitment of Ribosome-Associating Factors during Translation. ACS Synth Biol 2020; 9:329-342. [PMID: 31769967 DOI: 10.1021/acssynbio.9b00344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An intriguing aspect of protein synthesis is how cotranslational events are managed inside the cell. In this study, we developed an in vivo bimolecular fluorescence complementation assay coupled to SecM stalling (BiFC-SecM) to study how codon usage influences the interactions of ribosome-associating factors that occur cotranslationally. We profiled ribosomal associations of a number of proteins, and observed differential association of chaperone proteins TF, DnaK, GroEL, and translocation factor Ffh as a result of introducing synonymous codon substitutions that change the affinity of the translating sequence to the ribosomal anti-Shine-Dalgarno (aSD) sequence. The use of pausing sequences within proteins regulates their transit within the translating ribosome. Our results indicate that the dynamics between cellular factors and the new polypeptide chain are affected by how codon composition is designed. Furthermore, associating factors may play a role in processes including protein quality control (folding and degradation) and cellular respiration.
Collapse
Affiliation(s)
- Alejandra M. Rojano-Nisimura
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Stop A4800, Austin, Texas 78712, United States
| | - Katie Haning
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| | - Justin Janovsky
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Stop A4800, Austin, Texas 78712, United States
| | - Kevin A. Vasquez
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| | - Jeffrey P. Thompson
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| | - Lydia M. Contreras
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Leistra AN, Mihailovic MK, Contreras LM. Fluorescence-Based Methods for Characterizing RNA Interactions In Vivo. Methods Mol Biol 2018; 1737:129-164. [PMID: 29484592 DOI: 10.1007/978-1-4939-7634-8_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fluorescence-based tools that measure RNA-RNA and RNA-protein interactions in vivo offer useful experimental approaches to probe the complex and dynamic physiological behavior of bacterial RNAs. Here we document the step-by-step design and application of two fluorescence-based methods for studying the regulatory interactions RNAs perform in vivo: (i) the in vivo RNA Structural Sensing System (iRS3) for measuring RNA accessibility and (ii) the trifluorescence complementation (TriFC) assay for measuring RNA-protein interactions.
Collapse
Affiliation(s)
- Abigail N Leistra
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Mia K Mihailovic
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
6
|
Connelly KRS, Stevenson C, Kneuper H, Sargent F. Biosynthesis of selenate reductase in Salmonella enterica: critical roles for the signal peptide and DmsD. MICROBIOLOGY-SGM 2016; 162:2136-2146. [PMID: 27902441 PMCID: PMC5203670 DOI: 10.1099/mic.0.000381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Salmonella enterica serovar Typhimurium is a Gram-negative bacterium with a flexible respiratory capability. Under anaerobic conditions, S. enterica can utilize a range of terminal electron acceptors, including selenate, to sustain respiratory electron transport. The S. enterica selenate reductase is a membrane-bound enzyme encoded by the ynfEFGH-dmsD operon. The active enzyme is predicted to comprise at least three subunits where YnfE is a molybdenum-containing catalytic subunit. The YnfE protein is synthesized with an N-terminal twin-arginine signal peptide and biosynthesis of the enzyme is coordinated by a signal peptide binding chaperone called DmsD. In this work, the interaction between S. enterica DmsD and the YnfE signal peptide has been studied by chemical crosslinking. These experiments were complemented by genetic approaches, which identified the DmsD binding epitope within the YnfE signal peptide. YnfE signal peptide residues L24 and A28 were shown to be important for assembly of an active selenate reductase. Conversely, a random genetic screen identified the DmsD V16 residue as being important for signal peptide recognition and selenate reductase assembly.
Collapse
Affiliation(s)
| | - Calum Stevenson
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Holger Kneuper
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Frank Sargent
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|
7
|
Kuzniatsova L, Winstone TML, Turner RJ. Identification of protein-protein interactions between the TatB and TatC subunits of the twin-arginine translocase system and respiratory enzyme specific chaperones. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:767-75. [PMID: 26826271 DOI: 10.1016/j.bbamem.2016.01.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 01/24/2016] [Accepted: 01/26/2016] [Indexed: 10/24/2022]
Abstract
The Twin-arginine translocation (Tat) pathway serves for translocation of fully folded proteins across the cytoplasmic membrane in bacterial and chloroplast thylakoid membranes. The Escherichia coli Tat system consists of three core components: TatA, TatB, and TatC. The TatB and TatC subunits form the receptor complex for Tat dependent proteins. The TatB protein is composed of a single transmembrane helix and cytoplasmic domain. The structure of TatC revealed six transmembrane helices. Redox Enzyme Maturation Proteins (REMPs) are system specific chaperones, which play roles in the maturation of Tat dependent respiratory enzymes. Here we applied the in vivo bacterial two-hybrid technique to investigate interaction of REMPs with the TatBC proteins, finding that all but the formate dehydrogenase REMP dock to TatB or TatC. We focused on the NarJ subfamily, where DmsD--the REMP for dimethyl sulfoxide reductase in E. coli--was previously shown to interact with TatB and TatC. We found that these REMPs interact with TatC cytoplasmic loops 1, 2 and 4, with the exception of NarJ, that only interacts with 1 and 4. An in vitro isothermal titration calorimetry study was applied to confirm the evidence of interactions between TatC fragments and DmsD chaperone. Using a peptide overlapping array, it was shown that the different NarJ subfamily REMPs interact with different regions of the TatB cytoplasmic domains. The results demonstrate a role of REMP chaperones in targeting respiratory enzymes to the Tat system. The data suggests that the different REMPs may have different mechanisms for this task.
Collapse
Affiliation(s)
- Lalita Kuzniatsova
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Tara M L Winstone
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Raymond J Turner
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
8
|
Chan CS, Turner RJ. Biogenesis of Escherichia coli DMSO Reductase: A Network of Participants for Protein Folding and Complex Enzyme Maturation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 883:215-34. [PMID: 26621470 DOI: 10.1007/978-3-319-23603-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Protein folding and structure have been of interest since the dawn of protein chemistry. Following translation from the ribosome, a protein must go through various steps to become a functional member of the cellular society. Every protein has a unique function in the cell and is classified on this basis. Proteins that are involved in cellular respiration are the bioenergetic workhorses of the cell. Bacteria are resilient organisms that can survive in diverse environments by fine tuning these workhorses. One class of proteins that allow survival under anoxic conditions are anaerobic respiratory oxidoreductases, which utilize many different compounds other than oxygen as its final electron acceptor. Dimethyl sulfoxide (DMSO) is one such compound. Respiration using DMSO as a final electron acceptor is performed by DMSO reductase, converting it to dimethyl sulfide in the process. Microbial respiration using DMSO is reviewed in detail by McCrindle et al. (Adv Microb Physiol 50:147-198, 2005). In this chapter, we discuss the biogenesis of DMSO reductase as an example of the participant network for complex iron-sulfur molybdoenzyme maturation pathways.
Collapse
Affiliation(s)
- Catherine S Chan
- Department of Biological Sciences, University of Calgary, BI156 Biological Sciences Bldg, 2500 University Dr NW, Calgary, AB, T2N 1N4, Canada.
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary, BI156 Biological Sciences Bldg, 2500 University Dr NW, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
9
|
Abstract
The transition element molybdenum (Mo) is of primordial importance for biological systems, because it is required by enzymes catalyzing key reactions in the global carbon, sulfur, and nitrogen metabolism. To gain biological activity, Mo has to be complexed by a special cofactor. With the exception of bacterial nitrogenase, all Mo-dependent enzymes contain a unique pyranopterin-based cofactor coordinating a Mo atom at their catalytic site. Various types of reactions are catalyzed by Mo-enzymes in prokaryotes including oxygen atom transfer, sulfur or proton transfer, hydroxylation, or even nonredox reactions. Mo-enzymes are widespread in prokaryotes and many of them were likely present in the Last Universal Common Ancestor. To date, more than 50--mostly bacterial--Mo-enzymes are described in nature. In a few eubacteria and in many archaea, Mo is replaced by tungsten bound to the same unique pyranopterin. How Mo-cofactor is synthesized in bacteria is reviewed as well as the way until its insertion into apo-Mo-enzymes.
Collapse
|
10
|
‘Come into the fold’: A comparative analysis of bacterial redox enzyme maturation protein members of the NarJ subfamily. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2971-2984. [DOI: 10.1016/j.bbamem.2014.08.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/24/2014] [Accepted: 08/15/2014] [Indexed: 11/19/2022]
|
11
|
Chen H, Luo Q, Yin J, Gao T, Gao H. Evidence for the requirement of CydX in function but not assembly of the cytochrome bd oxidase in Shewanella oneidensis. Biochim Biophys Acta Gen Subj 2014; 1850:318-28. [PMID: 25316290 DOI: 10.1016/j.bbagen.2014.10.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/25/2014] [Accepted: 10/06/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND Cytochrome bd oxidase, existing widely in bacteria, produces a proton motive force by the vectorial charge transfer of protons and more importantly, endows bacteria with a number of vitally important physiological functions, such as enhancing tolerance to various stresses. Although extensively studied as a CydA-CydB two-subunit complex for decades, the complex in certain groups of bacteria is recently found to in fact consist of an additional subunit, which is functionally essential. METHODS We investigated the assembly of the CydA-CydB complex using BiFC. We investigated the function of CydX using mutational analysis. RESULTS CydX, a 38-amino-acid inner-membrane protein, is associated with the CydA-CydB complex in Shewanella oneidensis, a facultative anaerobe renowned for its respiratory versatility. It is clear that CydX is neither required for the in vivo assembly of the CydA-CydB complex nor relies on the complex for its translocation and integration into the membrane. The N-terminal segment (1-25 amino acid residues) and short periplasmic overhang of CydX, with respect to functionality, are important whereas the remaining C-terminal segment is rather flexible. CONCLUSION Based on these findings, we postulate that CydX may function by positioning and stabilizing the prosthetic hemes, especially heme d in the CydA-CydB complex although a role of participating in catalytic reaction is not excluded. GENERAL SIGNIFICANCE The work provides novel insights into our understanding of the small subunit of the cytochrome bd oxidase.
Collapse
Affiliation(s)
- Haijiang Chen
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qixia Luo
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jianhua Yin
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Tong Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Haichun Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
12
|
Gelderman G, Sivakumar A, Lipp S, Contreras L. Adaptation of Tri-molecular fluorescence complementation allows assaying of regulatory Csr RNA-protein interactions in bacteria. Biotechnol Bioeng 2014; 112:365-75. [PMID: 25080893 DOI: 10.1002/bit.25351] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 07/15/2014] [Accepted: 07/18/2014] [Indexed: 12/18/2022]
Abstract
sRNAs play a significant role in controlling and regulating cellular metabolism. One of the more interesting aspects of certain sRNAs is their ability to make global changes in the cell by interacting with regulatory proteins. In this work, we demonstrate the use of an in vivo Tri-molecular Fluorescence Complementation assay to detect and visualize the central regulatory sRNA-protein interaction of the Carbon Storage Regulatory system in E. coli. The Carbon Storage Regulator consists primarily of an RNA binding protein, CsrA, that alters the activity of mRNA targets and of an sRNA, CsrB, that modulates the activity of CsrA. We describe the construction of a fluorescence complementation system that detects the interactions between CsrB and CsrA. Additionally, we demonstrate that the intensity of the fluorescence of this system is able to detect changes in the affinity of the CsrB-CsrA interaction, as caused by mutations in the protein sequence of CsrA. While previous methods have adopted this technique to study mRNA or RNA localization, this is the first attempt to use this technique to study the sRNA-protein interaction directly in bacteria. This method presents a potentially powerful tool to study complex bacterial RNA protein interactions in vivo.
Collapse
Affiliation(s)
- Grant Gelderman
- The University of Texas at Austin, McKetta Department of Chemical Engineering 200 E. Dean Keeton St. Stop C0400 Austin, Texas, USA 78712
| | | | | | | |
Collapse
|
13
|
Nayak CR, Brown AI, Rutenberg AD. Protein translocation without specific quality control in a computational model of the Tat system. Phys Biol 2014; 11:056005. [PMID: 25154305 DOI: 10.1088/1478-3975/11/5/056005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The twin-arginine translocation (Tat) system transports folded proteins of various sizes across both bacterial and plant thylakoid membranes. The membrane-associated TatA protein is an essential component of the Tat translocon, and a broad distribution of different sized TatA-clusters is observed in bacterial membranes. We assume that the size dynamics of TatA clusters are affected by substrate binding, unbinding, and translocation to associated TatBC clusters, where clusters with bound translocation substrates favour growth and those without associated substrates favour shrinkage. With a stochastic model of substrate binding and cluster dynamics, we numerically determine the TatA cluster size distribution. We include a proportion of targeted but non-translocatable (NT) substrates, with the simplifying hypothesis that the substrate translocatability does not directly affect cluster dynamical rate constants or substrate binding or unbinding rates. This amounts to a translocation model without specific quality control. Nevertheless, NT substrates will remain associated with TatA clusters until unbound and so will affect cluster sizes and translocation rates. We find that the number of larger TatA clusters depends on the NT fraction f. The translocation rate can be optimized by tuning the rate of spontaneous substrate unbinding, [Formula: see text]. We present an analytically solvable three-state model of substrate translocation without cluster size dynamics that follows our computed translocation rates, and that is consistent with in vitro Tat-translocation data in the presence of NT substrates.
Collapse
Affiliation(s)
- Chitra R Nayak
- Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada
| | | | | |
Collapse
|
14
|
Bozue J, Cote CK, Chance T, Kugelman J, Kern SJ, Kijek TK, Jenkins A, Mou S, Moody K, Fritz D, Robinson CG, Bell T, Worsham P. A Yersinia pestis tat mutant is attenuated in bubonic and small-aerosol pneumonic challenge models of infection but not as attenuated by intranasal challenge. PLoS One 2014; 9:e104524. [PMID: 25101850 PMCID: PMC4125294 DOI: 10.1371/journal.pone.0104524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 07/11/2014] [Indexed: 01/01/2023] Open
Abstract
Bacterial proteins destined for the Tat pathway are folded before crossing the inner membrane and are typically identified by an N-terminal signal peptide containing a twin arginine motif. Translocation by the Tat pathway is dependent on the products of genes which encode proteins possessing the binding site of the signal peptide and mediating the actual translocation event. In the fully virulent CO92 strain of Yersinia pestis, the tatA gene was deleted. The mutant was assayed for loss of virulence through various in vitro and in vivo assays. Deletion of the tatA gene resulted in several consequences for the mutant as compared to wild-type. Cell morphology of the mutant bacteria was altered and demonstrated a more elongated form. In addition, while cultures of the mutant strain were able to produce a biofilm, we observed a loss of adhesion of the mutant biofilm structure compared to the biofilm produced by the wild-type strain. Immuno-electron microscopy revealed a partial disruption of the F1 antigen on the surface of the mutant. The virulence of the ΔtatA mutant was assessed in various murine models of plague. The mutant was severely attenuated in the bubonic model with full virulence restored by complementation with the native gene. After small-particle aerosol challenge in a pneumonic model of infection, the mutant was also shown to be attenuated. In contrast, when mice were challenged intranasally with the mutant, very little difference in the LD50 was observed between wild-type and mutant strains. However, an increased time-to-death and delay in bacterial dissemination was observed in mice infected with the ΔtatA mutant as compared to the parent strain. Collectively, these findings demonstrate an essential role for the Tat pathway in the virulence of Y. pestis in bubonic and small-aerosol pneumonic infection but less important role for intranasal challenge.
Collapse
Affiliation(s)
- Joel Bozue
- Bacteriology Division, The United States Army of Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
- * E-mail:
| | - Christopher K. Cote
- Bacteriology Division, The United States Army of Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Taylor Chance
- Pathology Division, The United States Army of Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Jeffrey Kugelman
- Center for Genome Sciences, The United States Army of Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Steven J. Kern
- Office of Research Support, The United States Army of Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Todd K. Kijek
- Bacteriology Division, The United States Army of Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Amy Jenkins
- Bacteriology Division, The United States Army of Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Sherry Mou
- Bacteriology Division, The United States Army of Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Krishna Moody
- Bacteriology Division, The United States Army of Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - David Fritz
- Bacteriology Division, The United States Army of Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Camenzind G. Robinson
- Pathology Division, The United States Army of Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Todd Bell
- Pathology Division, The United States Army of Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Patricia Worsham
- Bacteriology Division, The United States Army of Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| |
Collapse
|
15
|
Campbell-Valois FX, Sansonetti PJ. Tracking bacterial pathogens with genetically-encoded reporters. FEBS Lett 2014; 588:2428-36. [PMID: 24859085 DOI: 10.1016/j.febslet.2014.05.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 05/12/2014] [Indexed: 11/15/2022]
Abstract
During the infectious process, bacterial pathogens are subject to changes in environmental conditions such as nutrient availability, immune response challenges, bacterial density and physical contacts with targeted host cells. These conditions occur in the colonized organs, in diverse regions within infected tissues or even at the subcellular level for intracellular pathogens. Integration of environmental cues leads to measurable biological responses in the bacterium required for adaptation. Recent progress in technology enabled the study of bacterial adaptation in situ using genetically encoded reporters that allow single cell analysis or whole body imaging based on fluorescent proteins, alternative fluorescent assays or luciferases. This review presents a historical perspective and technical details on the methods used to develop transcriptional reporters, protein-protein interaction assays and secretion detection assays to study pathogenic bacteria adaptation in situ. Finally, studies published in the last 5 years on gram positive and gram negative bacterial adaptation to the host during infection are discussed. However, the methods described here could easily be extended to study complex microbial communities within host tissue and in the environment.
Collapse
Affiliation(s)
- F-X Campbell-Valois
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 25-28 rue du Docteur-Roux, 75724 Paris, France; INSERM, U786, 75015 Paris, France
| | - Philippe J Sansonetti
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 25-28 rue du Docteur-Roux, 75724 Paris, France; INSERM, U786, 75015 Paris, France; Collège de France, Chaire de Microbiologie et Maladies infectieuses, 11 Place Marcelin Berthelot, 75005 Paris, France.
| |
Collapse
|
16
|
Bioluminescence resonance energy transfer system for measuring dynamic protein-protein interactions in bacteria. mBio 2014; 5:e01050-14. [PMID: 24846380 PMCID: PMC4030481 DOI: 10.1128/mbio.01050-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Protein-protein interactions are important for virtually every biological process, and a number of elegant approaches have been designed to detect and evaluate such interactions. However, few of these methods allow the detection of dynamic and real-time protein-protein interactions in bacteria. Here we describe a bioluminescence resonance energy transfer (BRET) system based on the bacterial luciferase LuxAB. We found that enhanced yellow fluorescent protein (eYFP) accepts the emission from LuxAB and emits yellow fluorescence. Importantly, BRET occurred when LuxAB and eYFP were fused, respectively, to the interacting protein pair FlgM and FliA. Furthermore, we observed sirolimus (i.e., rapamycin)-inducible interactions between FRB and FKBP12 and a dose-dependent abolishment of such interactions by FK506, the ligand of FKBP12. Using this system, we showed that osmotic stress or low pH efficiently induced multimerization of the regulatory protein OmpR and that the multimerization induced by low pH can be reversed by a neutralizing agent, further indicating the usefulness of this system in the measurement of dynamic interactions. This method can be adapted to analyze dynamic protein-protein interactions and the importance of such interactions in bacterial processes such as development and pathogenicity. Real-time measurement of protein-protein interactions in prokaryotes is highly desirable for determining the roles of protein complex in the development or virulence of bacteria, but methods that allow such measurement are not available. Here we describe the development of a bioluminescence resonance energy transfer (BRET) technology that meets this need. The use of endogenous excitation light in this strategy circumvents the requirement for the sophisticated instrument demanded by standard fluorescence resonance energy transfer (FRET). Furthermore, because the LuxAB substrate decanal is membrane permeable, the assay can be performed without lysing the bacterial cells, thus allowing the detection of protein-protein interactions in live bacterial cells. This BRET system added another useful tool to address important questions in microbiological studies.
Collapse
|
17
|
An infrared reporter to detect spatiotemporal dynamics of protein-protein interactions. Nat Methods 2014; 11:641-4. [PMID: 24747815 DOI: 10.1038/nmeth.2934] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 02/15/2014] [Indexed: 01/03/2023]
Abstract
We report a protein-fragment complementation assay (PCA) based on the engineered Deinococcus radiodurans infrared fluorescent protein IFP1.4. Unlike previous fluorescent protein PCAs, the IFP PCA is reversible, allowing analysis of spatiotemporal dynamics of hormone-induced signaling complexes in living yeast and mammalian cells at nanometer resolution. The inherently low background of infrared fluorescence permitted detection of subcellular reorganization of a signaling complex expressed at low abundance.
Collapse
|
18
|
Rivardo F, Leach TGH, Chan CS, Winstone TML, Ladner CL, Sarfo KJ, Turner RJ. Unique Photobleaching Phenomena of the Twin-Arginine Translocase Respiratory Enzyme Chaperone DmsD. Open Biochem J 2014; 8:1-11. [PMID: 24497893 PMCID: PMC3912628 DOI: 10.2174/1874091x01408010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 11/27/2013] [Accepted: 12/01/2013] [Indexed: 11/22/2022] Open
Abstract
DmsD is a chaperone of the redox enzyme maturation protein family specifically required for biogenesis of DMSO reductase in Escherichia coli. It exists in multiple folding forms, all of which are capable of binding its known substrate, the twin-arginine leader sequence of the DmsA catalytic subunit. It is important for maturation of the reductase and targeting to the cytoplasmic membrane for translocation. Here, we demonstrate that DmsD exhibits an irreversible photobleaching phenomenon upon 280 nm excitation irradiation. The phenomenon is due to quenching of the tryptophan residues in DmsD and is dependent on its folding and conformation. We also show that a tryptophan residue involved in DmsA signal peptide binding (W87) is important for photobleaching of DmsD. Mutation of W87, or binding of the DmsA twin-arginine signal peptide to DmsD in the pocket that includes W72, W80, and W91 significantly affects the degree of photobleaching. This study highlights the advantage of a photobleaching phenomenon to study protein folding and conformation changes within a protein that was once considered unusable in fluorescence spectroscopy.
Collapse
Affiliation(s)
- Fabrizio Rivardo
- BI 156, Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, Alberta, Canada T2N 1N4
| | - Thorin G H Leach
- BI 156, Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, Alberta, Canada T2N 1N4
| | - Catherine S Chan
- BI 156, Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, Alberta, Canada T2N 1N4
| | - Tara M L Winstone
- BI 156, Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, Alberta, Canada T2N 1N4
| | - Carol L Ladner
- BI 156, Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, Alberta, Canada T2N 1N4
| | - Kwabena J Sarfo
- BI 156, Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, Alberta, Canada T2N 1N4
| | - Raymond J Turner
- BI 156, Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
19
|
Rose P, Fröbel J, Graumann PL, Müller M. Substrate-dependent assembly of the Tat translocase as observed in live Escherichia coli cells. PLoS One 2013; 8:e69488. [PMID: 23936332 PMCID: PMC3732296 DOI: 10.1371/journal.pone.0069488] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 06/11/2013] [Indexed: 11/19/2022] Open
Abstract
The twin-arginine translocation (Tat) pathway guides fully folded proteins across membranes of bacteria, archaea and plant chloroplasts. In Escherichia coli, Tat-specific transport is executed in a still largely unknown manner by three functionally diverse membrane proteins, termed TatA, TatB, and TatC. In order to follow the intracellular distribution of the TatABC proteins in live E. coli cells, we have individually expressed fluorophore-tagged versions of each Tat protein in addition to a set of chromosomally encoded TatABC proteins. In this way, a Tat translocase could form from the native TatABC proteins and be visualized via the association of a fluorescent Tat variant. A functionally active TatA-green fluorescent protein fusion was found to re-locate from a uniform distribution in the membrane into a few clusters preferentially located at the cell poles. Clustering was absolutely dependent on the co-expression of functional Tat substrates, the proton-motive force, and the cognate TatBC subunits. Likewise, polar cluster formation of a functional TatB-mCherry fusion required TatA and TatC and that of a functional TatC-mCherry fusion a functional Tat substrate. Furthermore we directly demonstrate the co-localization of TatA and TatB in the same fluorescent clusters. Our collective results are consistent with distinct Tat translocation sites dynamically forming in vivo in response to newly synthesized Tat substrates.
Collapse
Affiliation(s)
- Patrick Rose
- Institute of Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Zellforschung, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Julia Fröbel
- Institute of Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Zellforschung, University of Freiburg, Freiburg, Germany
| | - Peter L. Graumann
- LOEWE Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, University of Marburg, Marburg, Germany
| | - Matthias Müller
- Institute of Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Zellforschung, University of Freiburg, Freiburg, Germany
| |
Collapse
|
20
|
Kudva R, Denks K, Kuhn P, Vogt A, Müller M, Koch HG. Protein translocation across the inner membrane of Gram-negative bacteria: the Sec and Tat dependent protein transport pathways. Res Microbiol 2013; 164:505-34. [DOI: 10.1016/j.resmic.2013.03.016] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/11/2013] [Indexed: 11/28/2022]
|
21
|
Tombline G, Schwingel JM, Lapek JD, Friedman AE, Darrah T, Maguire M, Van Alst NE, Filiatrault MJ, Iglewski BH. Pseudomonas aeruginosa PA1006 is a persulfide-modified protein that is critical for molybdenum homeostasis. PLoS One 2013; 8:e55593. [PMID: 23409003 PMCID: PMC3568144 DOI: 10.1371/journal.pone.0055593] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 12/27/2012] [Indexed: 12/17/2022] Open
Abstract
A companion manuscript revealed that deletion of the Pseudomonas aeruginosa (Pae) PA1006 gene caused pleiotropic defects in metabolism including a loss of all nitrate reductase activities, biofilm maturation, and virulence. Herein, several complementary approaches indicate that PA1006 protein serves as a persulfide-modified protein that is critical for molybdenum homeostasis in Pae. Mutation of a highly conserved Cys22 to Ala or Ser resulted in a loss of PA1006 activity. Yeast-two-hybrid and a green-fluorescent protein fragment complementation assay (GFP-PFCA) in Pae itself revealed that PA1006 interacts with Pae PA3667/CsdA and PA3814/IscS Cys desulfurase enzymes. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) “top-down” analysis of PA1006 purified from Pae revealed that conserved Cys22 is post-translationally modified in vivo in the form a persulfide. Inductively-coupled-plasma (ICP)-MS analysis of ΔPA1006 mutant extracts revealed that the mutant cells contain significantly reduced levels of molybdenum compared to wild-type. GFP-PFCA also revealed that PA1006 interacts with several molybdenum cofactor (MoCo) biosynthesis proteins as well as nitrate reductase maturation factor NarJ and component NarH. These data indicate that a loss of PA1006 protein’s persulfide sulfur and a reduced availability of molybdenum contribute to the phenotype of a ΔPA1006 mutant.
Collapse
Affiliation(s)
- Gregory Tombline
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Velasco-García R, Vargas-Martínez R. The study of protein–protein interactions in bacteria. Can J Microbiol 2012; 58:1241-57. [DOI: 10.1139/w2012-104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many of the functions fulfilled by proteins in the cell require specific protein–protein interactions (PPI). During the last decade, the use of high-throughput experimental technologies, primarily based on the yeast 2-hybrid system, generated extensive data currently located in public databases. This information has been used to build interaction networks for different species. Unfortunately, due to the nature of the yeast 2-hybrid system, these databases contain many false positives and negatives, thus they require purging. A method for confirming these PPI is to test them using a technique that operates in vivo and detects binary PPI. This article comprises an overview of the study of PPI and describes the main techniques that have been used to identify bacterial PPI, prioritizing those that can be used for their verification, and it also mentions a number of PPI that have been identified or confirmed using these methods.
Collapse
Affiliation(s)
- Roberto Velasco-García
- Laboratorio de Osmorregulación, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, 54090
| | - Rocío Vargas-Martínez
- Laboratorio de Osmorregulación, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, 54090
| |
Collapse
|
23
|
Lausberg F, Fleckenstein S, Kreutzenbeck P, Fröbel J, Rose P, Müller M, Freudl R. Genetic evidence for a tight cooperation of TatB and TatC during productive recognition of twin-arginine (Tat) signal peptides in Escherichia coli. PLoS One 2012; 7:e39867. [PMID: 22761916 PMCID: PMC3383694 DOI: 10.1371/journal.pone.0039867] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/28/2012] [Indexed: 12/03/2022] Open
Abstract
The twin arginine translocation (Tat) pathway transports folded proteins across the cytoplasmic membrane of bacteria. Tat signal peptides contain a consensus motif (S/T-R-R-X-F-L-K) that is thought to play a crucial role in substrate recognition by the Tat translocase. Replacement of the phenylalanine at the +2 consensus position in the signal peptide of a Tat-specific reporter protein (TorA-MalE) by aspartate blocked export of the corresponding TorA(D+2)-MalE precursor, indicating that this mutation prevents a productive binding of the TorA(D+2) signal peptide to the Tat translocase. Mutations were identified in the extreme amino-terminal regions of TatB and TatC that synergistically suppressed the export defect of TorA(D+2)-MalE when present in pairwise or triple combinations. The observed synergistic suppression activities were even more pronounced in the restoration of membrane translocation of another export-defective precursor, TorA(KQ)-MalE, in which the conserved twin arginine residues had been replaced by lysine-glutamine. Collectively, these findings indicate that the extreme amino-terminal regions of TatB and TatC cooperate tightly during recognition and productive binding of Tat-dependent precursor proteins and, furthermore, that TatB and TatC are both involved in the formation of a specific signal peptide binding site that reaches out as far as the end of the TatB transmembrane segment.
Collapse
Affiliation(s)
- Frank Lausberg
- Institut für Bio- und Geowissenschaften 1, Biotechnologie, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Stefan Fleckenstein
- Institut für Bio- und Geowissenschaften 1, Biotechnologie, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Peter Kreutzenbeck
- Institut für Bio- und Geowissenschaften 1, Biotechnologie, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Julia Fröbel
- Institute of Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Zellforschung, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Patrick Rose
- Institute of Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Zellforschung, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Matthias Müller
- Institute of Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Zellforschung, University of Freiburg, Freiburg, Germany
| | - Roland Freudl
- Institut für Bio- und Geowissenschaften 1, Biotechnologie, Forschungszentrum Jülich GmbH, Jülich, Germany
- * E-mail:
| |
Collapse
|
24
|
Palmer T, Berks BC. The twin-arginine translocation (Tat) protein export pathway. Nat Rev Microbiol 2012; 10:483-96. [PMID: 22683878 DOI: 10.1038/nrmicro2814] [Citation(s) in RCA: 373] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The twin-arginine translocation (Tat) protein export system is present in the cytoplasmic membranes of most bacteria and archaea and has the highly unusual property of transporting fully folded proteins. The system must therefore provide a transmembrane pathway that is large enough to allow the passage of structured macromolecular substrates of different sizes but that maintains the impermeability of the membrane to ions. In the Gram-negative bacterium Escherichia coli, this complex task can be achieved by using only three small membrane proteins: TatA, TatB and TatC. In this Review, we summarize recent advances in our understanding of how this remarkable machine operates.
Collapse
Affiliation(s)
- Tracy Palmer
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| | | |
Collapse
|
25
|
Fritsch MJ, Krehenbrink M, Tarry MJ, Berks BC, Palmer T. Processing by rhomboid protease is required for Providencia stuartii TatA to interact with TatC and to form functional homo-oligomeric complexes. Mol Microbiol 2012; 84:1108-23. [PMID: 22591141 PMCID: PMC3712462 DOI: 10.1111/j.1365-2958.2012.08080.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The twin arginine transport (Tat) system transports folded proteins across the prokaryotic cytoplasmic membrane and the plant thylakoid membrane. In Escherichia coli three membrane proteins, TatA, TatB and TatC, are essential components of the machinery. TatA from Providencia stuartii is homologous to E. coli TatA but is synthesized as an inactive pre-protein with an N-terminal extension of eight amino acids. Removal of this extension by the rhomboid protease AarA is required to activate P. stuartii TatA. Here we show that P. stuartii TatA can functionally substitute for E. coli TatA provided that the E. coli homologue of AarA, GlpG, is present. The oligomerization state of the P. stuartii TatA pro-protein was compared with that of the proteolytically activated protein and with E. coli TatA. The pro-protein still formed small homo-oligomers but cannot form large TatBC-dependent assemblies. In the absence of TatB, E. coli TatA or the processed form of P. stuartii TatA form a complex with TatC. However, this complex is not observed with the pro-form of P. stuartii TatA. Taken together our results suggest that the P. stuartii TatA pro-protein is inactive because it is unable to interact with TatC and cannot form the large TatA complexes required for transport.
Collapse
Affiliation(s)
- Maximilian J Fritsch
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | | |
Collapse
|
26
|
Fröbel J, Rose P, Müller M. Twin-arginine-dependent translocation of folded proteins. Philos Trans R Soc Lond B Biol Sci 2012; 367:1029-46. [PMID: 22411976 PMCID: PMC3297433 DOI: 10.1098/rstb.2011.0202] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Twin-arginine translocation (Tat) denotes a protein transport pathway in bacteria, archaea and plant chloroplasts, which is specific for precursor proteins harbouring a characteristic twin-arginine pair in their signal sequences. Many Tat substrates receive cofactors and fold prior to translocation. For a subset of them, proofreading chaperones coordinate maturation and membrane-targeting. Tat translocases comprise two kinds of membrane proteins, a hexahelical TatC-type protein and one or two members of the single-spanning TatA protein family, called TatA and TatB. TatC- and TatA-type proteins form homo- and hetero-oligomeric complexes. The subunits of TatABC translocases are predominantly recovered from two separate complexes, a TatBC complex that might contain some TatA, and a homomeric TatA complex. TatB and TatC coordinately recognize twin-arginine signal peptides and accommodate them in membrane-embedded binding pockets. Advanced binding of the signal sequence to the Tat translocase requires the proton-motive force (PMF) across the membranes and might involve a first recruitment of TatA. When targeted in this manner, folded twin-arginine precursors induce homo-oligomerization of TatB and TatA. Ultimately, this leads to the formation of a transmembrane protein conduit that possibly consists of a pore-like TatA structure. The translocation step again is dependent on the PMF.
Collapse
Affiliation(s)
- Julia Fröbel
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Stefan-Meier-Strasse 17, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzle-Strasse 1, 79104 Freiburg, Germany
| | - Patrick Rose
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Stefan-Meier-Strasse 17, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzle-Strasse 1, 79104 Freiburg, Germany
| | - Matthias Müller
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Stefan-Meier-Strasse 17, 79104 Freiburg, Germany
| |
Collapse
|
27
|
Zoufaly S, Fröbel J, Rose P, Flecken T, Maurer C, Moser M, Müller M. Mapping precursor-binding site on TatC subunit of twin arginine-specific protein translocase by site-specific photo cross-linking. J Biol Chem 2012; 287:13430-41. [PMID: 22362773 DOI: 10.1074/jbc.m112.343798] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A number of secreted precursor proteins of bacteria, archaea, and plant chloroplasts stand out by a conserved twin arginine-containing sequence motif in their signal peptides. Many of these precursor proteins are secreted in a completely folded conformation by specific twin arginine translocation (Tat) machineries. Tat machineries are high molecular mass complexes consisting of two types of membrane proteins, a hexahelical TatC protein, and usually one or two single-spanning membrane proteins, called TatA and TatB. TatC has previously been shown to be involved in the recognition of twin arginine signal peptides. We have performed an extensive site-specific cross-linking analysis of the Escherichia coli TatC protein under resting and translocating conditions. This strategy allowed us to map the recognition site for twin arginine signal peptides to the cytosolic N-terminal region and first cytosolic loop of TatC. In addition, discrete contact sites between TatC, TatB, and TatA were revealed. We discuss a tentative model of how a twin arginine signal sequence might be accommodated in the Tat translocase.
Collapse
Affiliation(s)
- Stefan Zoufaly
- Institute of Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), University of Freiburg, 79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Immunogenic proteins of Brucella abortus to minimize cross reactions in brucellosis diagnosis. Vet Microbiol 2011; 156:374-80. [PMID: 22192360 DOI: 10.1016/j.vetmic.2011.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 10/14/2011] [Accepted: 11/15/2011] [Indexed: 11/24/2022]
Abstract
To overcome the limitations of serological diagnosis, including false positive reactions caused by other pathogens, specific antigens for diagnosis of brucellosis other than LPS have been required. The present study was conducted to separate and identify immuno-dominant insoluble proteins of Brucella abortus against the antisera of cattle infected with B. abortus, or/and Yersinia enterocolitica, or the sera of non-infected cattle. After separating insoluble proteins of B. abortus by two dimensional electrophoresis (2-DE), their immuno-reactivity was determined by western blotting. A portion of the immunogenic spots against the positive antisera of B. abortus that have the potential for use as specific antigens were identified by MS/MS analysis. Overall, 18 immunogenic insoluble proteins of B. abortus 1119-3 showed immuno-reactivity against only the positive antisera of B. abortus, but failed to have immunogenicity toward both the positive sera of Y. enterocolitica and the negative sera of B. abortus. Identification of these proteins revealed the following: F0F1 ATP synthase subunit β, solute-binding family 5 protein, 28 kDa OMP, Leu/Ile/Val-binding family protein, Histidinol dehyddrogenase, Hypothetical protein, Twin-arginine translocation pathway signal sequence domain-containing protein, Dihydroorotase, Serine protease family protein, β-hydroxyacyl-(acyl-carrier-protein) dehydratase FabA, Short-chain dehydrogenase-/reductase carbonic anhydrase, Orinithine carbamoyltransferase, Leucyl aminopeptidase, Cold shock DNA-binding domain-containing protein, Cu/Zn superoxide dismutase, and Methionine aminopeptidase. The 18 immunogenic proteins separated in the present study can be considered candidate antigens to minimize cross reaction in the diagnosis of brucellosis and useful sources for Brucella vaccine development.
Collapse
|
29
|
Fröbel J, Rose P, Müller M. Early contacts between substrate proteins and TatA translocase component in twin-arginine translocation. J Biol Chem 2011; 286:43679-43689. [PMID: 22041896 DOI: 10.1074/jbc.m111.292565] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Twin-arginine translocation (Tat) is a unique protein transport pathway in bacteria, archaea, and plastids. It mediates the transmembrane transport of fully folded proteins, which harbor a consensus twin-arginine motif in their signal sequences. In Gram-negative bacteria and plant chloroplasts, three membrane proteins, named TatA, TatB, and TatC, are required to enable Tat translocation. Available data suggest that TatA assembles into oligomeric pore-like structures that might function as the protein conduit across the lipid bilayer. Using site-specific photo-cross-linking, we have investigated the molecular environment of TatA under resting and translocating conditions. We find that monomeric TatA is an early interacting partner of functionally targeted Tat substrates. This interaction with TatA likely precedes translocation of Tat substrates and is influenced by the proton-motive force. It strictly depends on the presence of TatB and TatC, the latter of which is shown to make contacts with the transmembrane helix of TatA.
Collapse
Affiliation(s)
- Julia Fröbel
- Institute of Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Patrick Rose
- Institute of Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Matthias Müller
- Institute of Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
30
|
Magalon A, Fedor JG, Walburger A, Weiner JH. Molybdenum enzymes in bacteria and their maturation. Coord Chem Rev 2011. [DOI: 10.1016/j.ccr.2010.12.031] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
31
|
Ciapina LP, Picchi SC, Lacroix JM, Lemos EGDM, Ödberg-Ferragut C. A putative twin-arginine translocation system in the phytopathogenic bacterium Xylella fastidiosa. Can J Microbiol 2011; 57:149-54. [PMID: 21326357 DOI: 10.1139/w10-111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The twin-arginine translocation (Tat) pathway of the xylem-limited phytopathogenic bacterium Xylella fastidiosa strain 9a5c, responsible for citrus variegated chlorosis, was explored. The presence of tatA, tatB, and tatC in the X. fastidiosa genome together with a list of proteins harboring 2 consecutive arginines in their signal peptides suggested the presence of a Tat pathway. The functional Tat dependence of X. fastidiosa OpgD was examined. Native or mutated signal peptides were fused to the β-lactamase. Expression of fusion with intact signal peptides mediated high resistance to ampicillin in Escherichia coli tat+ but not in the E. coli tat null mutant. The replacement of the 2 arginines by 2 lysines prevented the export of β-lactamase in E. coli tat+, demonstrating that X. fastidiosa OpgD carries a signal peptide capable of engaging the E. coli Tat machinery. RT-PCR analysis revealed that the tat genes are transcribed as a single operon. tatA, tatB, and tatC genes were cloned. Complementation assays in E. coli devoid of all Tat or TatC components were unsuccessful, whereas X. fastidiosa Tat components led to a functional Tat translocase in E. coli TatB-deficient strain. Additional experiments implicated that X. fastidiosa TatB component could form a functional heterologous complex with the E. coli TatC component.
Collapse
Affiliation(s)
- Luciane Prioli Ciapina
- Unité de glycobiologie structurale et fonctionnelle, UMR USTL-CNRS 8576, IFR147, Université des sciences et technologies de Lille, Bâtiment C9, 59655 Villeneuve d'Ascq Cedex, France
| | | | | | | | | |
Collapse
|
32
|
Production of secretory and extracellular N-linked glycoproteins in Escherichia coli. Appl Environ Microbiol 2010; 77:871-81. [PMID: 21131519 DOI: 10.1128/aem.01901-10] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Campylobacter jejuni pgl gene cluster encodes a complete N-linked protein glycosylation pathway that can be functionally transferred into Escherichia coli. In this system, we analyzed the interplay between N-linked glycosylation, membrane translocation and folding of acceptor proteins in bacteria. We developed a recombinant N-glycan acceptor peptide tag that permits N-linked glycosylation of diverse recombinant proteins expressed in the periplasm of glycosylation-competent E. coli cells. With this "glycosylation tag," a clear difference was observed in the glycosylation patterns found on periplasmic proteins depending on their mode of inner membrane translocation (i.e., Sec, signal recognition particle [SRP], or twin-arginine translocation [Tat] export), indicating that the mode of protein export can influence N-glycosylation efficiency. We also established that engineered substrate proteins targeted to environments beyond the periplasm, such as the outer membrane, the membrane vesicles, and the extracellular medium, could serve as substrates for N-linked glycosylation. Taken together, our results demonstrate that the C. jejuni N-glycosylation machinery is compatible with distinct secretory mechanisms in E. coli, effectively expanding the N-linked glycome of recombinant E. coli. Moreover, this simple glycosylation tag strategy expands the glycoengineering toolbox and opens the door to bacterial synthesis of a wide array of recombinant glycoprotein conjugates.
Collapse
|
33
|
Chan CS, Chang L, Winstone TM, Turner RJ. Comparing system-specific chaperone interactions with their Tat dependent redox enzyme substrates. FEBS Lett 2010; 584:4553-8. [PMID: 20974141 PMCID: PMC3285697 DOI: 10.1016/j.febslet.2010.10.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 09/16/2010] [Accepted: 10/17/2010] [Indexed: 12/01/2022]
Abstract
Redox enzyme substrates of the twin-arginine translocation (Tat) system contain a RR-motif in their leader peptide and require the assistance of chaperones, redox enzyme maturation proteins (REMPs). Here various regions of the RR-containing oxidoreductase subunit (leader peptide, full preprotein with and without a leader cleavage site, mature protein) were assayed for interaction with their REMPs. All REMPs bound their preprotein substrates independent of the cleavage site. Some showed binding to either the leader or mature region, whereas in one case only the preprotein bound its REMP. The absence of Tat also influenced the amount of chaperone-substrate interaction.
Collapse
Affiliation(s)
| | | | | | - Raymond J. Turner
- Corresponding author. Address: Department of Biological Sciences, Faculty of Science, University of Calgary, 2500 University Dr. NW, Calgary, AB, Canada T2N 1N4. Fax: +1 403 298 9311. (R.J. Turner)
| |
Collapse
|
34
|
Abstract
Proteins that reside partially or completely outside the bacterial cytoplasm require specialized pathways to facilitate their localization. Globular proteins that function in the periplasm must be translocated across the hydrophobic barrier of the inner membrane. While the Sec pathway transports proteins in a predominantly unfolded conformation, the Tat pathway exports folded protein substrates. Protein transport by the Tat machinery is powered solely by the transmembrane proton gradient, and there is no requirement for nucleotide triphosphate hydrolysis. Proteins are targeted to the Tat machinery by N-terminal signal peptides that contain a consensus twin arginine motif. In Escherichia coli and Salmonella there are approximately thirty proteins with twin arginine signal peptides that are transported by the Tat pathway. The majority of these bind complex redox cofactors such as iron sulfur clusters or the molybdopterin cofactor. Here we describe what is known about Tat substrates in E. coli and Salmonella, the function and mechanism of Tat protein export, and how the cofactor insertion step is coordinated to ensure that only correctly assembled substrates are targeted to the Tat machinery.
Collapse
|
35
|
Li H, Chang L, Howell JM, Turner RJ. DmsD, a Tat system specific chaperone, interacts with other general chaperones and proteins involved in the molybdenum cofactor biosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1804:1301-9. [PMID: 20153451 PMCID: PMC3288112 DOI: 10.1016/j.bbapap.2010.01.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 12/23/2009] [Accepted: 01/28/2010] [Indexed: 10/19/2022]
Abstract
Many bacterial oxidoreductases depend on the Tat translocase for correct cell localization. Substrates for the Tat translocase possess twin-arginine leaders. System specific chaperones or redox enzyme maturation proteins (REMPs) are a group of proteins implicated in oxidoreductase maturation. DmsD is a REMP discovered in Escherichia coli, which interacts with the twin-arginine leader sequence of DmsA, the catalytic subunit of DMSO reductase. In this study, we identified several potential interacting partners of DmsD by using several in vitro protein-protein interaction screening approaches, including affinity chromatography, co-precipitation, and cross-linking. Candidate hits from these in vitro findings were analyzed by in vivo methods of bacterial two-hybrid (BACTH) and bimolecular fluorescence complementation (BiFC). From these data, DmsD was confirmed to interact with the general molecular chaperones DnaK, DnaJ, GrpE, GroEL, Tig and Ef-Tu. In addition, DmsD was also found to interact with proteins involved in the molybdenum cofactor biosynthesis pathway. Our data suggests that DmsD may play a role as a "node" in escorting its substrate through a cascade of chaperone assisted protein-folding maturation events.
Collapse
Affiliation(s)
- Haiming Li
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Limei Chang
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Jenika M. Howell
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Raymond J. Turner
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|