1
|
Xinliang Z, Achkasov EE, Gavrikov LK, Yuchen L, Zhang C, Dudnik EN, Rumyantseva O, Beeraka NM, Glazachev OS. Assessing the importance and safety of hypoxia conditioning for patients with occupational pulmonary diseases: A recent clinical perspective. Biomed Pharmacother 2024; 178:117275. [PMID: 39126774 DOI: 10.1016/j.biopha.2024.117275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
Occupational pulmonary diseases (OPDs) pose a significant global health challenge, contributing to high mortality rates. This review delves into the pathophysiology of hypoxia and the safety of intermittent hypoxic conditioning (IHC) in OPD patients. By examining sources such as PubMed, Relemed, NLM, Scopus, and Google Scholar, the review evaluates the efficacy of IHC in clinical outcomes for OPD patients. It highlights the complexities of cardiovascular and respiratory regulation dysfunctions in OPDs, focusing on respiratory control abnormalities and the impact of intermittent hypoxic exposures. Key areas include the physiological effects of hypoxia, the role of hypoxia-inducible factor-1 alpha (HIF-1α) in occupational lung diseases, and the links between brain ischemia, stroke, and OPDs. The review also explores the interaction between intermittent hypoxic exposures, mitochondrial energetics, and lung physiology. The potential of IHE to improve clinical manifestations and underlying pathophysiology in OPD patients is thoroughly examined. This comprehensive analysis aims to benefit molecular pathologists, pulmonologists, clinicians, and physicians by enhancing understanding of IHE's clinical benefits, from research to patient care, and improving clinical outcomes for OPD patients.
Collapse
Affiliation(s)
- Zhang Xinliang
- Chair of Sports Medicine and Rehabilitation, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia; Co-Chair of Normal Physiology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| | - Eugeny E Achkasov
- Chair of Sports Medicine and Rehabilitation, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| | - Leonid K Gavrikov
- Volgograd State Medical University, 1, Pavshikh Bortsov Sq., Volgograd 400131, Russia.
| | - Li Yuchen
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| | - Chen Zhang
- Chair of Epidemiology and Modern Technologies of Vaccination, Institute of Professional Education, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia
| | - Elena N Dudnik
- Co-Chair of Normal Physiology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| | - Olga Rumyantseva
- Izmerov Research Institute of Occupational Health, 31 Budeynniy Avenye, Moscow 105275, Russia.
| | - Narasimha M Beeraka
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN 46202, USA; Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia; Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Chiyyedu, Anantapuramu, Andhra Pradesh 515721, India.
| | - Oleg S Glazachev
- Co-Chair of Normal Physiology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| |
Collapse
|
2
|
Yuan X, Zhu X, Chen Y, Liu W, Qian W, Xu Y, Zhu Y. Cardiac energetics alteration in a chronic hypoxia rat model: A non-invasive in vivo31P magnetic resonance spectroscopy study. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2022; 30:165-175. [PMID: 34744047 DOI: 10.3233/xst-210985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND Energetics alteration plays a crucial role in the myocardial injury process in chronic hypoxia diseases (CHD). 31P magnetic resonance spectroscopy (MRS) can investigate alterations in cardiac energetics in vivo. OBJECTIVE To characterize the potential value of 31P MRS in evaluating cardiac energetics alteration of chronic hypoxic rats (CHRs). METHODS Twenty-four CHRs were induced by SU5416 combined with hypoxia and divided into four groups according to the modeling time of one, two, three and five weeks, respectively. Control group also contains six rats. 31P MRS was performed weekly and the ratio of concentrations of phosphocreatine (PCr) to adenosine triphosphate (ATP) (PCr/ATP) was obtained. In addition, the cardiac structure index and systolic function parameters, including the right ventricular ejection fraction (RVEF), right ventricular end-diastolic volume index (RVEDVi), right ventricular end-systolic volume index (RVESVi), and the left ventricular function parameters, were measured. RESULTS Decreased resting cardiac PCr/ATP ratio in CHRs was observed at the first week, compared to the control group (2.90±0.35 vs. 3.31±0.45, p = 0.045), while the RVEF, RVEDVi, and RVESVi decreased at the second week (p < 0.05). The PCr/ATP ratio displayed a significant correlation with RVEF (r = 0.605, p = 0.001), RVEDVi, and RVESVi (r = -0.661, r = -0.703; p < 0.001). CONCLUSIONS 31P MRS can easily detect the cardiac energetics alteration in a CHR model before the onset of ventricular dysfunction. The decreased PCr/ATP ratio likely reveales myocardial injury and cardiac dysfunction.
Collapse
Affiliation(s)
- Xiaohan Yuan
- Department of Ultrasuond, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaomei Zhu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Chen
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wangyan Liu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wen Qian
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yinsu Zhu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Diolez P, Deschodt-Arsac V, Calmettes G, Gouspillou G, Arsac L, Jais P, Haissaguerre M, Dos Santos P. Integrative Methods for Studying Cardiac Energetics. Methods Mol Biol 2021; 2277:405-421. [PMID: 34080165 DOI: 10.1007/978-1-0716-1270-5_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The more recent studies of human pathologies have essentially revealed the complexity of the interactions involved at the different levels of integration in organ physiology. Integrated organ thus reveals functional properties not predictable by underlying molecular events. It is therefore obvious that current fine molecular analyses of pathologies should be fruitfully combined with integrative approaches of whole organ function. It follows that an important issue in the comprehension of the link between molecular events in pathologies and whole organ function/dysfunction is the development of new experimental strategies aimed at the study of the integrated organ physiology. Cardiovascular diseases are a good example as heart submitted to ischemic conditions has to cope both with a decreased supply of nutrients and oxygen, and the necessary increased activity required to sustain whole body-including the heart itself-oxygenation.By combining the principles of control analysis with noninvasive 31P NMR measurement of the energetic intermediates and simultaneous measurement of heart contractile activity, we developed MoCA (for Modular Control and regulation Analysis), an integrative approach designed to study in situ control and regulation of cardiac energetics during contraction in intact beating perfused isolated heart (Diolez et al., Am J Physiol Regul Integr Comp Physiol 293(1):R13-R19, 2007). Because it gives real access to integrated organ function, MoCA brings out a new type of information-the "elasticities," referring to integrated internal responses to metabolic changes-that may be a key to the understanding of the processes involved in pathologies. MoCA can potentially be used not only to detect the origin of the defects associated with the pathology, but also to provide the quantitative description of the routes by which these defects-or also drugs-modulate global heart function, therefore opening therapeutic perspectives. This review presents selected examples of the applications to isolated intact beating heart that evidence different modes of energetic regulation of cardiac contraction. We also discuss the clinical application by using noninvasive 31P cardiac energetics examination under clinical conditions for detection of heart pathologies.
Collapse
Affiliation(s)
- Philippe Diolez
- INSERM U1045-Centre de Recherche Cardio-Thoracique de Bordeaux & LIRYC-Institut de Rythmologie et Modélisation Cardiaque, Université de Bordeaux, France, CHU de Bordeaux, France.
| | - Véronique Deschodt-Arsac
- INSERM U1045-Centre de Recherche Cardio-Thoracique de Bordeaux & LIRYC-Institut de Rythmologie et Modélisation Cardiaque, Université de Bordeaux, France, CHU de Bordeaux, France
| | - Guillaume Calmettes
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Gilles Gouspillou
- Département de Kinanthropologie, Université du Québec à Montréal, Montréal, QC, Canada
| | - Laurent Arsac
- INSERM U1045-Centre de Recherche Cardio-Thoracique de Bordeaux & LIRYC-Institut de Rythmologie et Modélisation Cardiaque, Université de Bordeaux, France, CHU de Bordeaux, France
| | - Pierre Jais
- INSERM U1045-Centre de Recherche Cardio-Thoracique de Bordeaux & LIRYC-Institut de Rythmologie et Modélisation Cardiaque, Université de Bordeaux, France, CHU de Bordeaux, France
| | - Michel Haissaguerre
- INSERM U1045-Centre de Recherche Cardio-Thoracique de Bordeaux & LIRYC-Institut de Rythmologie et Modélisation Cardiaque, Université de Bordeaux, France, CHU de Bordeaux, France
| | - Pierre Dos Santos
- INSERM U1045-Centre de Recherche Cardio-Thoracique de Bordeaux & LIRYC-Institut de Rythmologie et Modélisation Cardiaque, Université de Bordeaux, France, CHU de Bordeaux, France
| |
Collapse
|
4
|
Su Z, Liu Y, Zhang H. Adaptive Cardiac Metabolism Under Chronic Hypoxia: Mechanism and Clinical Implications. Front Cell Dev Biol 2021; 9:625524. [PMID: 33604337 PMCID: PMC7884626 DOI: 10.3389/fcell.2021.625524] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/11/2021] [Indexed: 11/29/2022] Open
Abstract
Chronic hypoxia is an essential component in many cardiac diseases. The heart consumes a substantial amount of energy and it is important to maintain the balance of energy supply and demand when oxygen is limited. Previous studies showed that the heart switches from fatty acid to glucose to maintain metabolic efficiency in the adaptation to chronic hypoxia. However, the underlying mechanism of this adaptive cardiac metabolism remains to be fully characterized. Moreover, how the altered cardiac metabolism affects the heart function in patients with chronic hypoxia has not been discussed in the current literature. In this review, we summarized new findings from animal and human studies to illustrate the mechanism underlying the adaptive cardiac metabolism under chronic hypoxia. Clinical focus is given to certain patients that are subject to the impact of chronic hypoxia, and potential treatment strategies that modulate cardiac metabolism and may improve the heart function in these patients are also summarized.
Collapse
Affiliation(s)
- Zhanhao Su
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiwei Liu
- Heart center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hao Zhang
- Heart center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Sousa Fialho MDL, Abd Jamil AH, Stannard GA, Heather LC. Hypoxia-inducible factor 1 signalling, metabolism and its therapeutic potential in cardiovascular disease. Biochim Biophys Acta Mol Basis Dis 2019; 1865:831-843. [DOI: 10.1016/j.bbadis.2018.09.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/24/2018] [Accepted: 09/18/2018] [Indexed: 12/20/2022]
|
6
|
Diolez P, Deschodt-Arsac V, Calmettes G, Gouspillou G, Arsac L, Dos Santos P, Jais P, Haissaguerre M. Integrative methods for studying cardiac energetics. Methods Mol Biol 2015; 1264:289-303. [PMID: 25631023 DOI: 10.1007/978-1-4939-2257-4_26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The more recent studies of human pathologies have essentially revealed the complexity of the interactions involved at the different levels of integration in organ physiology. Integrated organ thus reveals functional properties not predictable by underlying molecular events. It is therefore obvious that current fine molecular analyses of pathologies should be fruitfully combined with integrative approaches of whole organ function. It follows an important issue in the comprehension of the link between molecular events in pathologies, and whole organ function/dysfunction is the development of new experimental strategies aimed at the study of the integrated organ physiology. Cardiovascular diseases are a good example as heart submitted to ischemic conditions has to cope both with a decreased supply of nutrients and oxygen, and the necessary increased activity required to sustain whole body-including the heart itself-oxygenation.By combining the principles of control analysis with noninvasive (31)P NMR measurement of the energetic intermediates and simultaneous measurement of heart contractile activity, we developed MoCA (for Modular Control and Regulation Analysis), an integrative approach designed to study in situ control and regulation of cardiac energetics during contraction in intact beating perfused isolated heart (Diolez et al., Am J Physiol Regul Integr Comp Physiol 293(1):R13-R19, 2007). Because it gives real access to integrated organ function, MoCA brings out a new type of information-the "elasticities," referring to internal responses to metabolic changes-that may be a key to the understanding of the processes involved in pathologies. MoCA can potentially be used not only to detect the origin of the defects associated with the pathology, but also to provide the quantitative description of the routes by which these defects-or also drugs-modulate global heart function, therefore opening therapeutic perspectives. This review presents selected examples of the applications to isolated intact beating heart and a wider application to cardiac energetics under clinical conditions with the direct study of heart pathologies.
Collapse
Affiliation(s)
- Philippe Diolez
- INSERM U1045, Centre de Recherche Cardio-Thoracique, Université Bordeaux, Segalen, Bordeaux, France,
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Culcasi M, Thétiot-Laurent S, Atteia A, Pietri S. Mitochondrial, acidic, and cytosolic pHs determination by ³¹P NMR spectroscopy: design of new sensitive targeted pH probes. Methods Mol Biol 2015; 1265:135-147. [PMID: 25634273 DOI: 10.1007/978-1-4939-2288-8_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
(31)P nuclear magnetic resonance (NMR) is a unique technique to monitor noninvasively the energetics of living systems at real time through the detection of a variety of phosphorylated metabolites. Using adequately designed α-aminophosphonates as external probes, we have shown earlier that (31)P NMR can also give access simultaneously to the accurate pH of cytosolic and acidic compartments in normal and stressed cultured cells or isolated perfused organs, a feature that was not possible using endogenous inorganic phosphate as the probe. More recently, we obtained a series of derivatives of these new pH probes that incorporate a triphenylphosphonium cation as a specific vector to the mitochondrion. Here, we describe the synthesis, (31)P NMR pH titrating properties in buffers, and application in cultures of the green alga Chlamydomonas reinhardtii of two of these mitochondria-targeted pH probes in comparison with one nonvectorized, yet still informative α-aminophosphonate.
Collapse
Affiliation(s)
- Marcel Culcasi
- UMR 7273, CNRS, Equipe Sondes Moléculaires en Biologie et Stress Oxydant, Centre scientifique de Saint-Jérôme, Institut de Chimie Radicalaire, Aix-Marseille Université, Service 522, Avenue Escadrille Normandie-Niemen, Marseille Cedex 20, 13397, France
| | | | | | | |
Collapse
|
8
|
Poels EM, Bitsch N, Slenter JM, Kooi ME, de Theije CC, de Windt LJ, van Empel VPM, da Costa Martins PA. Supplementing exposure to hypoxia with a copper depleted diet does not exacerbate right ventricular remodeling in mice. PLoS One 2014; 9:e92983. [PMID: 24736644 PMCID: PMC3988035 DOI: 10.1371/journal.pone.0092983] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/27/2014] [Indexed: 11/19/2022] Open
Abstract
Background Pulmonary hypertension and subsequent right ventricular (RV) failure are associated with high morbidity and mortality. Prognosis is determined by occurrence of RV failure. Currently, adequate treatment for RV failure is lacking. Further research into the molecular basis for the development of RV failure as well as the development of better murine models of RV failure are therefore imperative. We hypothesize that adding a low-copper diet to chronic hypoxia in mice reinforces their individual effect and that the combination of mild pulmonary vascular remodeling and capillary rarefaction, induces RV failure. Methods Six week old mice were subjected to normoxia (N; 21% O2) or hypoxia (H; 10% O2) during a period of 8 weeks and received either a normal diet (Cu+) or a copper depleted diet (Cu-). Cardiac function was assessed by echocardiography and MRI analysis. Results and Conclusion Here, we characterized a mouse model of chronic hypoxia combined with a copper depleted diet and demonstrate that eight weeks of chronic hypoxia (10%) is sufficient to induce RV hypertrophy and subsequent RV failure. Addition of a low copper diet to hypoxia did not have any further deleterious effects on right ventricular remodeling.
Collapse
Affiliation(s)
- Ella M. Poels
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Nicole Bitsch
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Jos M. Slenter
- Department of Radiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - M. Eline Kooi
- Department of Radiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Chiel C. de Theije
- Department of Respiratory Medicine, NUTRIM School Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Leon J. de Windt
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Vanessa P. M. van Empel
- Department of Cardiology, Heart Vessel Center, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Paula A. da Costa Martins
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- * E-mail:
| |
Collapse
|
9
|
Gouspillou G, Bourdel-Marchasson I, Rouland R, Calmettes G, Biran M, Deschodt-Arsac V, Miraux S, Thiaudiere E, Pasdois P, Detaille D, Franconi JM, Babot M, Trézéguet V, Arsac L, Diolez P. Mitochondrial energetics is impaired in vivo in aged skeletal muscle. Aging Cell 2014; 13:39-48. [PMID: 23919652 PMCID: PMC4326861 DOI: 10.1111/acel.12147] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2013] [Indexed: 12/25/2022] Open
Abstract
With aging, most skeletal muscles undergo a progressive loss of mass and strength, a process termed sarcopenia. Aging-related defects in mitochondrial energetics have been proposed to be causally involved in sarcopenia. However, changes in muscle mitochondrial oxidative phosphorylation with aging remain a highly controversial issue, creating a pressing need for integrative approaches to determine whether mitochondrial bioenergetics are impaired in aged skeletal muscle. To address this issue, mitochondrial bioenergetics was first investigated in vivo in the gastrocnemius muscle of adult (6 months) and aged (21 months) male Wistar rats by combining a modular control analysis approach with 31P magnetic resonance spectroscopy measurements of energetic metabolites. Using this innovative approach, we revealed that the in vivo responsiveness (‘elasticity’) of mitochondrial oxidative phosphorylation to contraction-induced increase in ATP demand is significantly reduced in aged skeletal muscle, a reduction especially pronounced under low contractile activities. In line with this in vivo aging-related defect in mitochondrial energetics, we found that the mitochondrial affinity for ADP is significantly decreased in mitochondria isolated from aged skeletal muscle. Collectively, the results of this study demonstrate that mitochondrial bioenergetics are effectively altered in vivo in aged skeletal muscle and provide a novel cellular basis for this phenomenon.
Collapse
Affiliation(s)
- Gilles Gouspillou
- Résonance Magnétique des Systèmes Biologiques; UMR 5536 CNRS - Bordeaux Segalen University; Bordeaux France
- Département de Kinanthropologie; Université du Québec à Montréal; Montreal Quebec Canada
| | - Isabelle Bourdel-Marchasson
- Résonance Magnétique des Systèmes Biologiques; UMR 5536 CNRS - Bordeaux Segalen University; Bordeaux France
- CHU de Bordeaux; Pôle de gérontologie clinique; Bordeaux France
| | - Richard Rouland
- Résonance Magnétique des Systèmes Biologiques; UMR 5536 CNRS - Bordeaux Segalen University; Bordeaux France
| | - Guillaume Calmettes
- Résonance Magnétique des Systèmes Biologiques; UMR 5536 CNRS - Bordeaux Segalen University; Bordeaux France
- Department of Medicine (Cardiology); David Geffen School of Medicine; University of California; Los Angeles CA USA
| | - Marc Biran
- Résonance Magnétique des Systèmes Biologiques; UMR 5536 CNRS - Bordeaux Segalen University; Bordeaux France
| | - Véronique Deschodt-Arsac
- INSERM U1045 - Cardio-Thoracic Research Centre - and Rhythmology and Heart Modeling Institute (LIRYC); Bordeaux University; Bordeaux France
| | - Sylvain Miraux
- Résonance Magnétique des Systèmes Biologiques; UMR 5536 CNRS - Bordeaux Segalen University; Bordeaux France
| | - Eric Thiaudiere
- Résonance Magnétique des Systèmes Biologiques; UMR 5536 CNRS - Bordeaux Segalen University; Bordeaux France
| | - Philippe Pasdois
- INSERM U1045 - Cardio-Thoracic Research Centre - and Rhythmology and Heart Modeling Institute (LIRYC); Bordeaux University; Bordeaux France
| | - Dominique Detaille
- INSERM U1045 - Cardio-Thoracic Research Centre - and Rhythmology and Heart Modeling Institute (LIRYC); Bordeaux University; Bordeaux France
| | - Jean-Michel Franconi
- Résonance Magnétique des Systèmes Biologiques; UMR 5536 CNRS - Bordeaux Segalen University; Bordeaux France
| | - Marion Babot
- Laboratoire de Physiologie Moléculaire et Cellulaire; Institut de Biochimie et Génétique Cellulaires; UMR 5095; CNRS-Université Bordeaux 2; Bordeaux Cedex France
| | - Véronique Trézéguet
- Laboratoire de Physiologie Moléculaire et Cellulaire; Institut de Biochimie et Génétique Cellulaires; UMR 5095; CNRS-Université Bordeaux 2; Bordeaux Cedex France
| | - Laurent Arsac
- Résonance Magnétique des Systèmes Biologiques; UMR 5536 CNRS - Bordeaux Segalen University; Bordeaux France
| | - Philippe Diolez
- INSERM U1045 - Cardio-Thoracic Research Centre - and Rhythmology and Heart Modeling Institute (LIRYC); Bordeaux University; Bordeaux France
| |
Collapse
|
10
|
Liu CL, Li X, Hu GL, Li RJ, He YY, Zhong W, Li S, He KL, Wang LL. Salubrinal protects against tunicamycin and hypoxia induced cardiomyocyte apoptosis via the PERK-eIF2α signaling pathway. J Geriatr Cardiol 2012; 9:258-68. [PMID: 23097656 PMCID: PMC3470025 DOI: 10.3724/sp.j.1263.2012.02292] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/18/2012] [Accepted: 07/25/2012] [Indexed: 11/30/2022] Open
Abstract
Objectives This study examined the protective effect of salubrinal and the mechanism underlying this protection against tunicamycin (TM)- and hypoxia-induced apoptosis in rat cardiomyocytes. Methods Neonatal rat cardiomyocytes were cultured from the ventricles of 1-day-old Wistar rats. Cells were exposed to different concentrations of salubrinal (10, 20, and 40 µmol/L) for 30 min followed by TM treatment or hypoxia for 36 h. Apoptosis was measured by a multiparameter HCS (high content screening) apoptosis assay, TUNEL assay and flow cytometry. The phosphorylation of eukaryotic translation initiation factor 2 subunit alpha (eIF2α) and the expression of cleaved caspase-12 were determined by Western blotting. C/EBP homologous protein (CHOP) was detected by immunocytochemistry. Results HCS, TUNEL assays and flow cytometry showed that salubrinal protected cardiomyocytes against apoptosis induced by TM or hypoxia. Western blotting showed that salubrinal protected cardiomyocytes against apoptosis by inducing eIF2α phosphorylation and down-regulating the expression of the endoplasmic reticulum stress-mediated apoptotic proteins, CHOP and cleaved caspase-12. Conclusions Our study suggests that salubrinal protects rat cardiomyocytes against TM- or hypoxia-associated apoptosis via a mechanism involving the inhibition of ER stress-mediated apoptosis.
Collapse
Affiliation(s)
- Chun-Lei Liu
- Department of Cardiology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China ; Medical School of Nankai University, 74 Weijin Road, Tianjin 300074, China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ultrastructural modifications in the mitochondria of hypoxia-adapted Drosophila melanogaster. PLoS One 2012; 7:e45344. [PMID: 23028948 PMCID: PMC3446896 DOI: 10.1371/journal.pone.0045344] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 08/21/2012] [Indexed: 01/05/2023] Open
Abstract
Chronic hypoxia (CH) occurs under certain physiological or pathological conditions, including in people who reside at high altitude or suffer chronic cardiovascular or pulmonary diseases. As mitochondria are the predominant oxygen-consuming organelles to generate ATP through oxidative phosphorylation in cells, their responses, through structural or molecular modifications, to limited oxygen supply play an important role in the overall functional adaptation to hypoxia. Here, we report the adaptive mitochondrial ultrastructural modifications and the functional impacts in a recently generated hypoxia-adapted Drosophila melanogaster strain that survives severe, otherwise lethal, hypoxic conditions. Using electron tomography, we discovered increased mitochondrial volume density and cristae abundance, yet also cristae fragmentation and a unique honeycomb-like structure in the mitochondria of hypoxia-adapted flies. The homeostatic levels of adenylate and energy charge were similar between hypoxia-adapted and naïve control flies and the hypoxia-adapted flies remained active under severe hypoxia as quantified by negative geotaxis behavior. The equilibrium ATP level was lower in hypoxia-adapted flies than those of the naïve controls tested under severe hypoxia that inhibited the motion of control flies. Our results suggest that the structural rearrangement in the mitochondria of hypoxia-adapted flies may be an important adaptive mechanism that plays a critical role in preserving adenylate homeostasis and metabolism as well as muscle function under chronic hypoxic conditions.
Collapse
|
12
|
Aon MA, Cortassa S. Mitochondrial network energetics in the heart. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2012; 4:599-613. [PMID: 22899654 DOI: 10.1002/wsbm.1188] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
At the core of eukaryotic aerobic life, mitochondrial function like 'hubs' in the web of energetic and redox processes in cells. In the heart, these networks-extending beyond the complex connectivity of biochemical circuit diagrams and apparent morphology-exhibit collective dynamics spanning several spatiotemporal levels of organization, from the cell, to the tissue, and the organ. The network function of mitochondria, i.e., mitochondrial network energetics, represents an advantageous behavior. Its coordinated action, under normal physiology, provides robustness despite failure in a few nodes, and improves energy supply toward a swiftly changing demand. Extensive diffuse loops, encompassing mitochondrial-cytoplasmic reaction/transport networks, control and regulate energy supply and demand in the heart. Under severe energy crises, the network behavior of mitochondria and associated glycolytic and other metabolic networks collapse, thereby triggering fatal arrhythmias.
Collapse
Affiliation(s)
- Miguel A Aon
- Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA.
| | | |
Collapse
|
13
|
Deschodt-Arsac V, Calmettes G, Gouspillou G, Chapolard M, Raffard G, Rouland R, Jais P, Haissaguerre M, Dos Santos P, Diolez P. Non-invasive integrative analysis of contraction energetics in intact beating heart. Int J Biochem Cell Biol 2012; 45:4-10. [PMID: 22789933 DOI: 10.1016/j.biocel.2012.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 06/28/2012] [Accepted: 07/01/2012] [Indexed: 11/17/2022]
Abstract
The comprehensive study of human pathologies has revealed the complexity of the interactions involved in cardiovascular physiology. The recent validation of system's biology approaches - like our Modular Control and Regulation Analysis (MoCA) - motivates the current interest for new integrative and non-invasive analyses that could be used for medical study of human heart contraction energetics. By considering heart energetics as a supply-demand system, MoCA gives access to integrated organ function and brings out a new type of information, the "elasticities", which describe in situ the regulation of both energy demand and supply by cellular energetic status. These regulations determine the internal control of contraction energetics and may therefore be a key to the understanding of the links between molecular events in pathologies and whole organ function/dysfunction. A wider application to the effects of cardiac drugs in conjunction with the direct study of heart pathologies may be considered in the near future. MoCA can potentially be used not only to detect the origin of the defects associated with the pathology (elasticity analyses), but also to provide a quantitative description of how these defects influence global heart function (regulation analysis) and therefore open new therapeutic perspectives. Several key examples of current applications to intact isolated beating heart are presented in this paper. The future application to human pathologies will require the use of non-invasive NMR techniques for the simultaneous measurement of energy status ((31)P NMR) and heart contractile activity (3D MRI). This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaptation and therapy.
Collapse
Affiliation(s)
- Véronique Deschodt-Arsac
- Cardio-Thoracic Research Centre, INSERM U1045 and Rhythmology and Heart Modeling Institute (LIRYC), Bordeaux University, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Based on a wealth of mechanistic evidence supported by the fact that ouabain mimics the spleen-liver effect in this article, the hypothesis is established that the endogenous hormone ouabain not only mimics the effects of ischemic preconditioning but also may be an ideal drug for the prevention of ischemic diseases. Moreover, it is argued that the spleen-liver effect may represent a general protective mechanism for the protection of organisms against oxygen deficiency. Investigating the spleen-liver mechanism offers a new approach to decipher the secrets of ischemic conditioning. Preconditioning represents a basic mechanism to protect a wide variety of cells against stressful stimuli such as ischemia. The ability to undergo preconditioning is almost ubiquitous in tissues and is highly conserved across species. Reinvestigation of the "spleen-liver mechanism" will allow the study of metabolic inhibitors and hormone mimics that all could help to transform ischemic preconditioning into a cure of the epidemic ischemic heart disease. Ouabain mimics the effects of the spleen factor. Cardioprotection induced by ouabain is due to the activation of pathways that are also activated in ischemic preconditioning. Just like ischemic preconditioning, ouabain activates the reperfusion injury salvage kinase pathway. Activation of nuclear factor kappa B and other transcription factors contribute to the long lasting effects of ouabain. The endogenous hormone ouabain just like preconditioning offers multiorgan protection based on innate mechanisms, which warrants clinical investigation. Clinical studies with ouabain that correspond to current standards are warranted.
Collapse
|
15
|
Acute and chronic effects of bupivacaine on muscle energetics during contraction in vivo: a modular metabolic control analysis. Biochem J 2012; 444:315-21. [DOI: 10.1042/bj20112011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bupivacaine is a widely used anaesthetic injected locally in clinical practice for short-term neurotransmission blockade. However, persistent side effects on mitochondrial integrity have been demonstrated in muscle parts surrounding the injection site. We use the precise language of metabolic control analysis in the present study to describe in vivo consequences of bupivacaine injection on muscle energetics during contraction. We define a model system of muscle energy metabolism in rats with a sciatic nerve catheter that consists of two modules of reactions, ATP/PCr (phosphocreatine) supply and ATP/PCr demand, linked by the common intermediate PCr detected in vivo by 31P-MRS (magnetic resonance spectroscopy). Measured system variables were [PCr] (intermediate) and contraction (flux). We first applied regulation analysis to quantify acute effects of bupivacaine. After bupivacaine injection, contraction decreased by 15.7% and, concomitantly, [PCr] increased by 11.2%. The regulation analysis quantified that demand was in fact directly inhibited by bupivacaine (−21.3%), causing an increase in PCr. This increase in PCr indirectly reduced mitochondrial activity (−22.4%). Globally, the decrease in contractions was almost fully explained by inhibition of demand (−17.0%) without significant effect through energy supply. Finally we applied elasticity analysis to quantify chronic effects of bupivacaine iterative injections. The absence of a difference in elasticities obtained in treated rats when compared with healthy control rats clearly shows the absence of dysfunction in energetic control of muscle contraction energetics. The present study constitutes the first and direct evidence that bupivacaine myotoxicity is compromised by other factors during contraction in vivo, and illustrates the interest of modular approaches to appreciate simple rules governing bioenergetic systems when affected by drugs.
Collapse
|
16
|
Jian Z, Li JB, Ma RY, Chen L, Wang XF, Xiao YB. Pivotal role of activating transcription factor 6α in myocardial adaptation to chronic hypoxia. Int J Biochem Cell Biol 2012; 44:972-9. [PMID: 22465121 DOI: 10.1016/j.biocel.2012.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/19/2012] [Accepted: 03/06/2012] [Indexed: 10/28/2022]
Abstract
Hypoxic states are generally associated with cardiovascular disease. Adaptation to chronic hypoxia is one well-defined means of improving cardiac tolerance to certain kinds of stresses. However, the details of the mechanisms underlying myocardial adaptation to chronic hypoxia are still poorly understood. Hypoxia stresses the endoplasmic reticulum and activates unfolded protein response. However, the behavior of individual signaling pathways can vary markedly over time. By examining myocardial samples from patients with cyanotic congenital cardiac defects, we detected endoplasmic reticulum stress and found that, out of all the components of the unfolded protein response, only activating transcription factor 6α limb was activated in cyanotic patients. The activation of activating transcription factor 6α and expression of glucose regulated protein 78 were notably induced in cardiac myocytes cultured for prolonged hypoxia (1% O(2) for 48 h). When the activation of activating transcription factor 6α under prolonged hypoxia was blocked by chemical inhibitor Brefeldin A, the rate of apoptosis among cardiac myocytes increased and levels of cleaved caspase 3 and cleaved poly ADP ribose polymerase also increased significantly. After the expression of activating transcription factor 6α was knocked down, the activity of cardiac myocytes under prolonged hypoxia decreased and the phosphorylation of c-Jun NH2-terminal kinases increased during the re-oxygenation process (after 72 h of hypoxia). Together, these results indicate that activating transcription factor 6α plays a pivotal role in myocardial adaptation to chronic hypoxia and that the activation of activating transcription factor 6α is one possible mechanism of myocardial preconditioning.
Collapse
Affiliation(s)
- Zhao Jian
- Institute of Cardiovascular Surgery, Second Affiliated Hospital of Third Military, Medical University, 183 Xinqiao Street, Chongqing 400037, PR China
| | | | | | | | | | | |
Collapse
|
17
|
Xue X, You S, Zhang Q, Wu Y, Zou GZ, Wang PC, Zhao YL, Xu Y, Jia L, Zhang X, Liang XJ. Mitaplatin increases sensitivity of tumor cells to cisplatin by inducing mitochondrial dysfunction. Mol Pharm 2012; 9:634-44. [PMID: 22289032 DOI: 10.1021/mp200571k] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tumor resistance to chemotherapy is the major obstacle to employ cisplatin, one of the broadly used chemotherapeutic drugs, for effective treatment of various tumors in the clinic. Most acknowledged mechanisms of cancer resistance to cisplatin focus on increased nuclear DNA repair or detoxicity of cisplatin. We previously demonstrated that there was a unique metabolic profile in cisplatin-resistant (CP-r) human epidermoid adenocarcinoma KB-CP 20 and hepatoma BEL 7404-CP 20 cancer cells. In this study, we further defined hyperpolarized mitochondrial membrane potentials (Δψ(m)) in CP-r KB-CP 20 and BEL 7404-CP 20 cells compared to the cisplatin-sensitive (CP-s) KB-3-1 and BEL 7404 cells. Based on the mitochondrial dysfunction, mitaplatin was designed with two mitochondrial-targeting moieties [dichloroacetate (DCA) units] to the axial positions of a six-coordinate Pt(IV) center to sensitize cisplatin resistance. It was found that mitaplatin induced more apoptosis in CP-r KB-CP 20 and BEL 7404-CP 20 cells than that of cisplatin, DCA and cisplatin/DCA compared on an equal molar basis. There was more platinum accumulation in mitaplatin-treated CP-r cells due to enhanced transmembrane permeability of lipophilicity, and mitaplatin also showed special targeting to mitochondria. Moreover, in the case of treatment with mitaplatin, the dramatic collapse of Δψ(m) was shown in a dose-dependent manner, which was confirmed by FACS and confocal microscopic measurements. Reduced glucose utilization of CP-r cells was detected with specifically inhibited phosphorylation of pyruvate dehydrogenase (PDH) at Ser-232, Ser-293, and Ser-300 of the E1α subunit when treated with mitaplatin, which was indicated to modulate the abnormal glycolysis of resistant cells. The present study suggested novel mitochondrial mechanism of mitaplatin circumventing cisplatin resistance toward CP-r cells as a carrier across membrane to produce CP-like cytotoxicity and DCA-like mitochondria-dependent apoptosis. Therefore, mitochondria targeting compounds would be more vulnerable and selective to overcome cisplatin resistance due to the unique metabolic properties of CP-r cancer cells.
Collapse
Affiliation(s)
- Xue Xue
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
System analysis of the effect of various drugs on cardiac contraction energetics. Biochem Soc Trans 2011; 38:1319-21. [PMID: 20863306 DOI: 10.1042/bst0381319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We used MoCA (Modular Control and Regulation Analysis) to demonstrate in intact beating rat heart that physiological activation of contraction by adrenaline involves the almost perfect parallel activation of both mitochondria and myofibrils by intracellular Ca(2+). This explains the perfect homoeostasis of the energetic intermediate PCr (phosphocreatine) in heart. When using drugs specifically stimulating either supply or demand activities, MoCA helped reveal the very specific mode of regulation of heart contraction energetics. Only activation of myofibrils activity (demand), either by increasing intracellular Ca(2+) concentration or myofibrils sensitivity to Ca(2+), triggers activation of contractile activity. In contrast, the activation of mitochondrial activity (supply) has strictly no effect on contraction, either directly or through PCr changes (intermediate).
Collapse
|
19
|
Deschodt-Arsac V, Calmettes G, Raffard G, Massot P, Franconi JM, Pollesello P, Diolez P. Absence of mitochondrial activation during levosimendan inotropic action in perfused paced guinea pig hearts as demonstrated by modular control analysis. Am J Physiol Regul Integr Comp Physiol 2010; 299:R786-92. [PMID: 20592177 DOI: 10.1152/ajpregu.00184.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Levosimendan is a calcium sensitizer developed for the treatment of heart failure. It increases contractile force by enhancing the sensitivity of myofilaments to calcium. Besides this sensitizing effect, the drug has also been reported to show some inhibitory action on phosphodiesterase 3 (PDE3). The inotropic effects of levosimendan have been studied on guinea pig paced perfused hearts by using modular control analysis (MoCA) (Diolez P, Deschodt-Arsac V, Raffard G, Simon C, Santos PD, Thiaudiere E, Arsac L, Franconi JM. Am J Physiol Regul Integr Comp Physiol 293: R13-R19, 2007.), an integrative approach of heart energetics using noninvasive (31)P NMR. The aim was to evaluate quantitatively the respective effects of this drug on energy supply and demand modules. Under our experimental conditions, 0.7 muM levosimendan induced a 45% increase in paced heart output associated with a 7% decrease in phosphocreatine and a negligible increase in oxygen consumption. Because MoCA allows in situ study of the internal regulations in intact beating heart energetics, it was applied to describe quantitatively by which routes levosimendan exerts its inotropic action. MoCA demonstrated the absence of any significant effect of the drug on the supply module, which is responsible for the lower increase in oxygen consumption, compared with epinephrine, which increases the ratio between myocardial oxygen consumption and cardiac contraction. This result evidences that, under our conditions, a possible effect of levosimendan on PDE3 activity and/or intracellular calcium remains very low on mitochondrial activity and insignificant on integrated cardiac energetics. Thus, levosimendan inotropic effect on guinea pig heart depends almost entirely on the calcium-sensitizing properties leading to myofilament activation and the concomitant activation of energy supply by the decrease in PCr, therefore improving energetic efficiency of contraction.
Collapse
Affiliation(s)
- Véronique Deschodt-Arsac
- Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Université Victor Segalen Bordeaux 2, 146 rue Léo-Saignat, 33076 Bordeaux cedex, France
| | | | | | | | | | | | | |
Collapse
|