1
|
Thévenod F, Lee WK. Cadmium transport by mammalian ATP-binding cassette transporters. Biometals 2024; 37:697-719. [PMID: 38319451 PMCID: PMC11101381 DOI: 10.1007/s10534-024-00582-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024]
Abstract
Cellular responses to toxic metals depend on metal accessibility to intracellular targets, reaching interaction sites, and the intracellular metal concentration, which is mainly determined by uptake pathways, binding/sequestration and efflux pathways. ATP-binding cassette (ABC) transporters are ubiquitous in the human body-usually in epithelia-and are responsible for the transfer of indispensable physiological substrates (e.g. lipids and heme), protection against potentially toxic substances, maintenance of fluid composition, and excretion of metabolic waste products. Derailed regulation and gene variants of ABC transporters culminate in a wide array of pathophysiological disease states, such as oncogenic multidrug resistance or cystic fibrosis. Cadmium (Cd) has no known physiological role in mammalians and poses a health risk due to its release into the environment as a result of industrial activities, and eventually passes into the food chain. Epithelial cells, especially within the liver, lungs, gastrointestinal tract and kidneys, are particularly susceptible to the multifaceted effects of Cd because of the plethora of uptake pathways available. Pertinent to their broad substrate spectra, ABC transporters represent a major cellular efflux pathway for Cd and Cd complexes. In this review, we summarize current knowledge concerning transport of Cd and its complexes (mainly Cd bound to glutathione) by the ABC transporters ABCB1 (P-glycoprotein, MDR1), ABCB6, ABCC1 (multidrug resistance related protein 1, MRP1), ABCC7 (cystic fibrosis transmembrane regulator, CFTR), and ABCG2 (breast cancer related protein, BCRP). Potential detoxification strategies underlying ABC transporter-mediated efflux of Cd and Cd complexes are discussed.
Collapse
Affiliation(s)
- Frank Thévenod
- Institute for Physiology, Pathophysiology and Toxicology & ZBAF, Witten/Herdecke University, 58453, Witten, Germany
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Morgenbreede 1, 33615, Bielefeld, Germany
| | - Wing-Kee Lee
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Morgenbreede 1, 33615, Bielefeld, Germany.
| |
Collapse
|
2
|
Choi SH, Lee SS, Lee HY, Kim S, Kim JW, Jin MS. Cryo-EM structure of cadmium-bound human ABCB6. Commun Biol 2024; 7:672. [PMID: 38822018 PMCID: PMC11143254 DOI: 10.1038/s42003-024-06377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/23/2024] [Indexed: 06/02/2024] Open
Abstract
ATP-binding cassette transporter B6 (ABCB6), a protein essential for heme biosynthesis in mitochondria, also functions as a heavy metal efflux pump. Here, we present cryo-electron microscopy structures of human ABCB6 bound to a cadmium Cd(II) ion in the presence of antioxidant thiol peptides glutathione (GSH) and phytochelatin 2 (PC2) at resolutions of 3.2 and 3.1 Å, respectively. The overall folding of the two structures resembles the inward-facing apo state but with less separation between the two halves of the transporter. Two GSH molecules are symmetrically bound to the Cd(II) ion in a bent conformation, with the central cysteine protruding towards the metal. The N-terminal glutamate and C-terminal glycine of GSH do not directly interact with Cd(II) but contribute to neutralizing positive charges of the binding cavity by forming hydrogen bonds and van der Waals interactions with nearby residues. In the presence of PC2, Cd(II) binding to ABCB6 is similar to that observed with GSH, except that two cysteine residues of each PC2 molecule participate in Cd(II) coordination to form a tetrathiolate. Structural comparison of human ABCB6 and its homologous Atm-type transporters indicate that their distinct substrate specificity might be attributed to variations in the capping residues situated at the top of the substrate-binding cavity.
Collapse
Affiliation(s)
- Seung Hun Choi
- School of Life Sciences, GIST, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, Republic of Korea
| | - Sang Soo Lee
- School of Life Sciences, GIST, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, Republic of Korea
| | - Hyeon You Lee
- School of Life Sciences, GIST, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, Republic of Korea
| | - Subin Kim
- School of Life Sciences, GIST, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, Republic of Korea
| | - Ji Won Kim
- Department of Life Sciences, POSTECH, 77 Cheongam-Ro, Nam-gu, Pohang, Republic of Korea
| | - Mi Sun Jin
- School of Life Sciences, GIST, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, Republic of Korea.
| |
Collapse
|
3
|
Ohse VA, Klotz LO, Priebs J. Copper Homeostasis in the Model Organism C. elegans. Cells 2024; 13:727. [PMID: 38727263 PMCID: PMC11083455 DOI: 10.3390/cells13090727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Cellular and organismic copper (Cu) homeostasis is regulated by Cu transporters and Cu chaperones to ensure the controlled uptake, distribution and export of Cu ions. Many of these processes have been extensively investigated in mammalian cell culture, as well as in humans and in mammalian model organisms. Most of the human genes encoding proteins involved in Cu homeostasis have orthologs in the model organism, Caenorhabditis elegans (C. elegans). Starting with a compilation of human Cu proteins and their orthologs, this review presents an overview of Cu homeostasis in C. elegans, comparing it to the human system, thereby establishing the basis for an assessment of the suitability of C. elegans as a model to answer mechanistic questions relating to human Cu homeostasis.
Collapse
Affiliation(s)
| | - Lars-Oliver Klotz
- Nutrigenomics Section, Institute of Nutritional Sciences, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany;
| | - Josephine Priebs
- Nutrigenomics Section, Institute of Nutritional Sciences, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany;
| |
Collapse
|
4
|
Jia R, Zhang Y, Wang Y, Wang Y, Sun G, Jiang Y. Toxic effects on ciliates under nano-/micro-plastics coexist with silver nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133058. [PMID: 38006860 DOI: 10.1016/j.jhazmat.2023.133058] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/08/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Owing to the degradation of plastics, microplastics (MPs) and nanoplastics (NPs) have remained the focus of global attention. Silver nanoparticles (AgNPs) could adversely affect marine organisms due to their broad application. So far, the combined effects of MPs/NPs (strong adsorbents) with AgNPs on marine organisms are scant. Thus, four sizes polystyrene beads (80 nm, 220 nm, 1.07 µm, and 2.14 µm) combined with AgNPs (30 nm) were assessed using ciliated protozoa Uronema marinum. Results showed that MPs/NPs dramatically decrease the abundance, biovolume, and carbon biomass of U. marinum. And, exposure could cause changes of antioxidant enzyme activity and antioxidant content on U. marinum. The combined toxicity of MPs/NPs with AgNPs to ciliates showed an enhanced effect compared to exposure alone. Additionally, the negative effects under exposure of NPs plus AgNPs were more significant than those of MPs plus AgNPs. Transcriptome sequencing showed that co-exposure could affect the energy metabolism and lipid metabolism of ciliates, even cause DNA and protein damage. Our study provided a novel insight and first-hand basic data for the understanding of combined toxicity of MPs /NPs with AgNPs on the basic trophic level ciliated protozoa in marine ecosystems.
Collapse
Affiliation(s)
- Ruiqi Jia
- Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yan Zhang
- Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yaxin Wang
- Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yunlong Wang
- Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Gaojingwen Sun
- Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yong Jiang
- Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; MoE Key Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
5
|
Abstract
Major advances in scientific discovery and insights that stem from the development and use of new techniques and models can bring remarkable progress to conventional toxicology. Although animal testing is still considered as the "gold standard" in traditional toxicity testing, there is a necessity for shift from animal testing to alternative methods regarding the drug safety testing owing to the emerging state-of-art techniques and the proposal of 3Rs (replace, reduce, and refine) towards animal welfare. This review describes some recent research methods in drug discovery toxicology, including in vitro cell and organ-on-a-chip, imaging systems, model organisms (C. elegans, Danio rerio, and Drosophila melanogaster), and toxicogenomics in modern toxicology testing.
Collapse
Affiliation(s)
- Bowen Tang
- PTC Therapeutics Inc, South Plainfield, NJ, USA
| | - Vijay More
- PTC Therapeutics Inc, South Plainfield, NJ, USA
| |
Collapse
|
6
|
Shehzad J, Khan I, Zaheer S, Farooq A, Chaudhari SK, Mustafa G. Insights into heavy metal tolerance mechanisms of Brassica species: physiological, biochemical, and molecular interventions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108448-108476. [PMID: 37924172 DOI: 10.1007/s11356-023-29979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/15/2023] [Indexed: 11/06/2023]
Abstract
Heavy metal (HM) contamination of soil due to anthropogenic activities has led to bioaccumulation and biomagnification, posing toxic effects on plants by interacting with vital cellular biomolecules such as DNA and proteins. Brassica species have developed complex physiological, biochemical, and molecular mechanisms for adaptability, tolerance, and survival under these conditions. This review summarizes the HM tolerance strategies of Brassica species, covering the role of root exudates, microorganisms, cell walls, cell membranes, and organelle-specific proteins. The first line of defence against HM stress in Brassica species is the avoidance strategy, which involves metal ion precipitation, root sorption, and metal exclusion. The use of plant growth-promoting microbes, Pseudomonas, Psychrobacter, and Rhizobium species effectively immobilizes HMs and reduces their uptake by Brassica roots. The roots of Brassica species efficiently detoxify metals, particularly by flavonoid glycoside exudation. The composition of the cell wall and callose deposition also plays a crucial role in enhancing HMs resistance in Brassica species. Furthermore, plasma membrane-associated transporters, BjCET, BjPCR, BjYSL, and BnMTP, reduce HM concentration by stimulating the efflux mechanism. Brassica species also respond to stress by up-regulating existing protein pools or synthesizing novel proteins associated with HM stress tolerance. This review provides new insights into the HM tolerance mechanisms of Brassica species, which are necessary for future development of HM-resistant crops.
Collapse
Affiliation(s)
- Junaid Shehzad
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ilham Khan
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Saira Zaheer
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Atikah Farooq
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Sunbal Khalil Chaudhari
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Sargodha Campus, Sargodha, 42100, Pakistan
| | - Ghazala Mustafa
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
- Lishui Institute of Agriculture and Forestry Sciences, Lishui, 323000, China.
- State Agricultural Ministry Laboratory of Horticultural Crop growth and Development, Ministry of Agri-culture, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Sharma AK, Finney L, Vogt S, Vatamaniuk OK, Kim S. Cadmium alters whole animal ionome and promotes the re-distribution of iron in intestinal cells of Caenorhabditis elegans. Front Physiol 2023; 14:1258540. [PMID: 37822680 PMCID: PMC10562743 DOI: 10.3389/fphys.2023.1258540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
The chronic exposure of humans to the toxic metal cadmium (Cd), either occupational or from food and air, causes various diseases, including neurodegenerative conditions, dysfunction of vital organs, and cancer. While the toxicology of Cd and its effect on the homeostasis of biologically relevant elements is increasingly recognized, the spatial distribution of Cd and other elements in Cd toxicity-caused diseases is still poorly understood. Here, we use Caenorhabditis elegans as a non-mammalian multicellular model system to determine the distribution of Cd at the tissue and cellular resolution and its effect on the internal levels and the distribution of biologically relevant elements. Using inductively coupled plasma-mass spectrophotometry (ICP-MS), we show that exposure of worms to Cd not only led to its internal accumulation but also significantly altered the C. elegans ionome. Specifically, Cd treatment was associated with increased levels of toxic elements such as arsenic (As) and rubidium (Rb) and a decreased accumulation of essential elements such as zinc (Zn), copper (Cu), manganese (Mn), calcium (Ca), cobalt (Co) and, depending on the Cd-concentration used in the assay, iron (Fe). We regarded these changes as an ionomic signature of Cd toxicity in C. elegans. We also show that supplementing nematode growth medium with Zn but not Cu, rescues Cd toxicity and that mutant worms lacking Zn transporters CDF-1 or SUR-7, or both are more sensitive to Cd toxicity. Finally, using synchrotron X-Ray fluorescence Microscopy (XRF), we showed that Cd significantly alters the spatial distribution of mineral elements. The effect of Cd on the distribution of Fe was particularly striking: while Fe was evenly distributed in intestinal cells of worms grown without Cd, in the presence of Cd, Fe, and Cd co-localized in punctum-like structures in the intestinal cells. Together, this study advances our understanding of the effect of Cd on the accumulation and distribution of biologically relevant elements. Considering that C. elegans possesses the principal tissues and cell types as humans, our data may have important implications for future therapeutic developments aiming to alleviate Cd-related pathologies in humans.
Collapse
Affiliation(s)
- Anuj Kumar Sharma
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Lydia Finney
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, United States
| | - Stefan Vogt
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, United States
| | - Olena K. Vatamaniuk
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Sungjin Kim
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- Department of Microbiology & Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
8
|
Transcriptome Analysis of the Marine Nematode Litoditis marina in a Chemically Defined Food Environment with Stearic Acid Supplementation. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10030428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stearic acid represents one of the most abundant fatty acids in the Western diet and profoundly regulates health and diseases of animals and human beings. We previously showed that stearic acid supplementation promoted development of the terrestrial model nematode Caenorhabditis elegans in chemically defined CeMM food environment. However, whether stearic acid regulates development of other nematodes remains unknown. Here, we found that dietary supplementation with stearic acid could promote the development of the marine nematode Litoditis marina, belonging to the same family as C. elegans, indicating the conserved roles of stearic acid in developmental regulation. We further employed transcriptome analysis to analyze genome-wide transcriptional signatures of L. marina with dietary stearic acid supplementation. We found that stearic acid might promote development of L. marina via upregulation of the expression of genes involved in aminoacyl-tRNA biosynthesis, translation initiation and elongation, ribosome biogenesis, and transmembrane transport. In addition, we observed that the expression of neuronal signaling-related genes was decreased. This study provided important insights into how a single fatty acid stearic acid regulates development of marine nematode, and further studies with CRISPR genome editing will facilitate demonstrating the molecular mechanisms underlying how a single metabolite regulates animal development and health.
Collapse
|
9
|
Cadmium hijacks the high zinc response by binding and activating the HIZR-1 nuclear receptor. Proc Natl Acad Sci U S A 2021; 118:2022649118. [PMID: 34649987 DOI: 10.1073/pnas.2022649118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2021] [Indexed: 11/18/2022] Open
Abstract
Cadmium is an environmental pollutant and significant health hazard that is similar to the physiological metal zinc. In Caenorhabditis elegans, high zinc homeostasis is regulated by the high zinc activated nuclear receptor (HIZR-1) transcription factor. To define relationships between the responses to high zinc and cadmium, we analyzed transcription. Many genes were activated by both high zinc and cadmium, and hizr-1 was necessary for activation of a subset of these genes; in addition, many genes activated by cadmium did not require hizr-1, indicating there are at least two mechanisms of cadmium-regulated transcription. Cadmium directly bound HIZR-1, promoted nuclear accumulation of HIZR-1 in intestinal cells, and activated HIZR-1-mediated transcription via the high zinc activation (HZA) enhancer. Thus, cadmium binding promotes HIZR-1 activity, indicating that cadmium acts as a zinc mimetic to hijack the high zinc response. To elucidate the relationships between high zinc and cadmium detoxification, we analyzed genes that function in three pathways: the pcs-1/phytochelatin pathway strongly promoted cadmium resistance but not high zinc resistance, the hizr-1/HZA pathway strongly promoted high zinc resistance but not cadmium resistance, and the mek-1/sek-1/kinase signaling pathway promoted resistance to high zinc and cadmium. These studies identify resistance pathways that are specific for high zinc and cadmium, as well as a shared pathway.
Collapse
|
10
|
Wakabayashi T, Nojiri Y, Takahashi-Watanabe M. Multiple Chemosensory Neurons Mediate Avoidance Behavior to Rare Earth Ions in Caenorhabditis elegans. Biol Trace Elem Res 2021; 199:2764-2769. [PMID: 32914378 DOI: 10.1007/s12011-020-02375-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022]
Abstract
As rare earth (RE) metals are abundantly present in the soil, in spite of their name, it is conceivable that organisms may encounter and interact with RE ions. In the present study, we demonstrated that the soil nematode Caenorhabditis elegans avoids RE ions, such as yttrium and all examined lanthanide ions, which exhibit toxic effects on nematodes. We also demonstrated that the chemosensory system of this animal mediates avoidance behavior toward RE ions similar to heavy metal (HM) ion avoidance. The C. elegans dyf-11(pe554) mutant is unable to respond to chemosensory cues because it lacks all ciliated endings of the chemosensory neurons required for the detection of environmental chemicals. Cell-specific rescue of the dyf-11 mutant and cell-specific genetic ablation studies revealed that the avoidance behavior toward HM and RE ions was mediated by a partially overlapping but distinct subset of chemosensory neurons (ASH, ADL, ASE, ADF, and ASK). With the help of multiple chemosensory neurons, worms may improve the fidelity of avoidance behavior to evade RE ions. Among the chemosensory neurons in C. elegans, ADF and ASK neurons were involved in RE avoidance, but not in HM avoidance. These results suggested that ADF and ASK neurons in C. elegans have RE-selective mechanisms to mediate the avoidance response.
Collapse
Affiliation(s)
- Tokumitsu Wakabayashi
- Department of Chemistry and Biosciences, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, 020-8551, Japan.
| | - Yui Nojiri
- Department of Chemistry and Biosciences, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, 020-8551, Japan
| | - Miwa Takahashi-Watanabe
- Department of Chemistry and Biosciences, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, 020-8551, Japan
| |
Collapse
|
11
|
Tan P, Zeng C, Wan C, Liu Z, Dong X, Peng J, Lin H, Li M, Liu Z, Yan M. Metabolic Profiles of Brassica juncea Roots in Response to Cadmium Stress. Metabolites 2021; 11:383. [PMID: 34199254 PMCID: PMC8232002 DOI: 10.3390/metabo11060383] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Brassica juncea has great application potential in phytoremediation of cadmium (Cd)-contaminated soil because of its excellent Cd accumulating and high biomass. In this study, we compared the effects of Cd under 48 h and 7 d stress in roots of Brassica juncea using metabolite profiling. The results showed that many metabolic pathways and metabolites in Brassica juncea roots were altered significantly in response to Cd stress. We found that significant differences in levels of amino acids, organic acids, carbohydrates, lipids, flavonoids, alkaloids, and indoles were induced by Cd stress at different times, which played a pivotal role in the adaptation of Brassica juncea roots to Cd stress. Meanwhile, Brassica juncea roots could resist 48 h Cd stress by regulating the biosynthesis of amino acids, linoleic acid metabolism, aminoacyl-tRNA biosynthesis, glycerophospholipid metabolism, ABC transporters, arginine biosynthesis, valine, leucine and isoleucine biosynthesis, and alpha-linolenic acid metabolism; however, they regulated alpha-linolenic acid metabolism, glycerophospholipid metabolism, ABC transporters, and linoleic acid metabolism to resist 7 d Cd stress. A metabolomic expedition to the response of Brassica juncea to Cd stress will help to comprehend its tolerance and accumulation mechanisms of Cd.
Collapse
Affiliation(s)
- Piaopiao Tan
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (P.T.); (C.Z.); (C.W.); (Z.L.); (X.D.); (J.P.)
- Hunan Provincial Base for Scientific and Technological Innovation Cooperation on Forest Resource Biotechnology, Changsha 410004, China
| | - Chaozhen Zeng
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (P.T.); (C.Z.); (C.W.); (Z.L.); (X.D.); (J.P.)
- Hunan Provincial Base for Scientific and Technological Innovation Cooperation on Forest Resource Biotechnology, Changsha 410004, China
| | - Chang Wan
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (P.T.); (C.Z.); (C.W.); (Z.L.); (X.D.); (J.P.)
- Hunan Provincial Base for Scientific and Technological Innovation Cooperation on Forest Resource Biotechnology, Changsha 410004, China
| | - Zhe Liu
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (P.T.); (C.Z.); (C.W.); (Z.L.); (X.D.); (J.P.)
- Hunan Provincial Base for Scientific and Technological Innovation Cooperation on Forest Resource Biotechnology, Changsha 410004, China
| | - Xujie Dong
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (P.T.); (C.Z.); (C.W.); (Z.L.); (X.D.); (J.P.)
- Hunan Provincial Base for Scientific and Technological Innovation Cooperation on Forest Resource Biotechnology, Changsha 410004, China
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China;
| | - Jiqing Peng
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (P.T.); (C.Z.); (C.W.); (Z.L.); (X.D.); (J.P.)
- Hunan Provincial Base for Scientific and Technological Innovation Cooperation on Forest Resource Biotechnology, Changsha 410004, China
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China;
| | - Haiyan Lin
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China;
| | - Mei Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
| | - Zhixiang Liu
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (P.T.); (C.Z.); (C.W.); (Z.L.); (X.D.); (J.P.)
- Hunan Provincial Base for Scientific and Technological Innovation Cooperation on Forest Resource Biotechnology, Changsha 410004, China
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China;
| | - Mingli Yan
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
12
|
Hartman JH, Widmayer SJ, Bergemann CM, King DE, Morton KS, Romersi RF, Jameson LE, Leung MCK, Andersen EC, Taubert S, Meyer JN. Xenobiotic metabolism and transport in Caenorhabditis elegans. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2021; 24:51-94. [PMID: 33616007 PMCID: PMC7958427 DOI: 10.1080/10937404.2021.1884921] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Caenorhabditis elegans has emerged as a major model in biomedical and environmental toxicology. Numerous papers on toxicology and pharmacology in C. elegans have been published, and this species has now been adopted by investigators in academic toxicology, pharmacology, and drug discovery labs. C. elegans has also attracted the interest of governmental regulatory agencies charged with evaluating the safety of chemicals. However, a major, fundamental aspect of toxicological science remains underdeveloped in C. elegans: xenobiotic metabolism and transport processes that are critical to understanding toxicokinetics and toxicodynamics, and extrapolation to other species. The aim of this review was to initially briefly describe the history and trajectory of the use of C. elegans in toxicological and pharmacological studies. Subsequently, physical barriers to chemical uptake and the role of the worm microbiome in xenobiotic transformation were described. Then a review of what is and is not known regarding the classic Phase I, Phase II, and Phase III processes was performed. In addition, the following were discussed (1) regulation of xenobiotic metabolism; (2) review of published toxicokinetics for specific chemicals; and (3) genetic diversity of these processes in C. elegans. Finally, worm xenobiotic transport and metabolism was placed in an evolutionary context; key areas for future research highlighted; and implications for extrapolating C. elegans toxicity results to other species discussed.
Collapse
Affiliation(s)
- Jessica H Hartman
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Samuel J Widmayer
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States
| | | | - Dillon E King
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Katherine S Morton
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Riccardo F Romersi
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Laura E Jameson
- School of Mathematical and Natural Sciences, Arizona State University - West Campus, Glendale, Arizona, United States
| | - Maxwell C K Leung
- School of Mathematical and Natural Sciences, Arizona State University - West Campus, Glendale, Arizona, United States
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States
| | - Stefan Taubert
- Dept. Of Medical Genetics, Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, the University of British Colombia, Vancouver, BC, Canada
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| |
Collapse
|
13
|
Rai KK, Pandey N, Meena RP, Rai SP. Biotechnological strategies for enhancing heavy metal tolerance in neglected and underutilized legume crops: A comprehensive review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111750. [PMID: 33396075 DOI: 10.1016/j.ecoenv.2020.111750] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 05/15/2023]
Abstract
Contamination of agricultural land and water by heavy metals due to rapid industrialization and urbanization including various natural processes have become one of the major constraints to crop growth and productivity. Several studies have reported that to counteract heavy metal stress, plants should be able to maneuver various physiological, biochemical and molecular processes to improve their growth and development under heavy metal stress. With the advent of modern biotechnological tools and techniques it is now possible to tailor legume and other plants overexpressing stress-induced genes, transcription factors, proteins, and metabolites that are directly involved in heavy metal stress tolerance. This review provides an in-depth overview of various biotechnological approaches and/or strategies that can be used for enhancing detoxification of the heavy metals by stimulating phytoremediation processes. Synthetic biology tools involved in the engineering of legume and other crop plants against heavy metal stress tolerance are also discussed herewith some pioneering examples where synthetic biology tools that have been used to modify plants for specific traits. Also, CRISPR based genetic engineering of plants, including their role in modulating the expression of several genes/ transcription factors in the improvement of abiotic stress tolerance and phytoremediation ability using knockdown and knockout strategies has also been critically discussed.
Collapse
Affiliation(s)
- Krishna Kumar Rai
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Neha Pandey
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India; Department of Botany, CMP PG College, University of Allahabad, Prayagraj, India
| | - Ram Prasad Meena
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India; Department of Computer Science, IIT, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Shashi Pandey Rai
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
14
|
Tang B, Williams PL, Xue KS, Wang JS, Tang L. Detoxification mechanisms of nickel sulfate in nematode Caenorhabditis elegans. CHEMOSPHERE 2020; 260:127627. [PMID: 32673864 DOI: 10.1016/j.chemosphere.2020.127627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 05/19/2023]
Abstract
Nickel is the most prevailing metal allergen with the highest sensitization rate among the "TOP 25" contact allergens and can affect about 15% of the human population. It is an essential trace metal in plants, animals, and humans. However, the environmental levels of nickel are considerably higher than what is needed for human life. Exposure to high levels of nickel can lead to skin allergies, lung fibrosis, and carcinogenesis. Few existing studies have closely examined the toxicity of nickel, let alone investigated the effective detoxification pathways. Here, we developed a high-throughput screening platform to comprehensively evaluate the nickel toxicity in wild-type C. elegans and explore the underlying detoxification mechanisms in transgenic nematodes. We demonstrated that nickel exerted multiple toxic effects on growth, brood size, feeding, and locomotion in C. elegans. Of which, brood size is the most sensitive endpoint. Nickel was found to first bind to phytochelatin (PC) after entering the worms' body and this PC-Ni complex was further transported by the ABC transporter, CeHMT-1, into the coelomocytes for further detoxification. Our study also demonstrated that the high-throughput screening platform is a promising system for evaluation and investigation of the ecological risks of heavy metals.
Collapse
Affiliation(s)
- Bowen Tang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
| | - Phillip L Williams
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
| | - Kathy S Xue
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
| | - Lili Tang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.
| |
Collapse
|
15
|
|
16
|
Munro CJ, Nguyen MA, Falgons C, Chaudhry S, Olagunjo M, Bode A, Bobé C, Portela ME, Knecht MR, Collins KM. Identification of Toxicity Effects of Cu 2O Materials on C. elegans as a Function of Environmental Ionic Composition. ENVIRONMENTAL SCIENCE. NANO 2020; 7:645-655. [PMID: 32123564 PMCID: PMC7051015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Previous work has shown that spherical CuO nanomaterials show negative effects on cell and animal physiology. The biological effects of Cu2O materials, which posess unique chemical features compared to CuO nanomaterials and can be synthesized in a similarly large variety of shapes and sizes, are comparatively less studied. Here, we synthesized truncated octahedral Cu2O particles and characterized their structure, stability, and physiological effects in the nematode worm animal model, Caenorhabditis elegans. Cu2O particles were found to be generally stable in aqueous media, although the particles did show signs of oxidation and leaching of Cu2+ within hours in worm growth media. The particles were found to be especially sensitive to inorganic phosphate (PO4 3-) found in standard NGM nematode growth medium. Cu2O particles were observed being taken up into the nematode pharynx and detected in the lumen of the gut. Toxicity experiments revealed that treatment with Cu2O particles caused a significant reduction in animal size and lifespan. These toxic effects resembled treatment with Cu2+, but measurements of Cu leaching, worm size, and long-term behavior experiments show the particles are more toxic than expected from Cu ion leaching alone. These results suggest worm ingestion of intact Cu2O particles enhances their toxicity and behavior effects while particle exposure to environmental phosphate precipitates leached Cu2+ into biounavailable phosphate salts. Interestingly, the worms showed an acute avoidance of bacterial food with Cu2O particles, suggesting that animals can detect chemical features of the particles and/or their breakdown products and actively avoid areas with them. These results will help to understand how specific, chemically-defined particles proposed for use in polluted soil and wastewater remediation affect animal toxicity and behaviors in their natural environment.
Collapse
Affiliation(s)
- Catherine J Munro
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA
| | - Michelle A Nguyen
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA
| | - Christian Falgons
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA
| | - Sana Chaudhry
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA
| | - Mary Olagunjo
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA
| | - Addys Bode
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA
| | - Carla Bobé
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA
| | - Manuel E Portela
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA
| | - Marc R Knecht
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA
| | - Kevin M Collins
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA
| |
Collapse
|
17
|
Lin H, Jiang L, Li B, Dong Y, He Y, Qiu Y. Screening and evaluation of heavy metals facilitating antibiotic resistance gene transfer in a sludge bacterial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133862. [PMID: 31425984 DOI: 10.1016/j.scitotenv.2019.133862] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
Recent growing evidence suggests that heavy metals can stimulate the transfer of antibiotic resistance genes (ARGs) between bacteria. However, most previous studies focused on pure strains, the effect of heavy metals on ARG transfer in bacterial communities, especially in activated sludge, has not been clearly explored. In this study, a high-throughput method, combining computerized incubator (Bioscreen C) and flow cytometry, was developed to evaluate different concentrations of heavy metals influencing ARG transfer in sludge bacteria communities. By using Escherichia coli MG1655 as the donor of broad-host range IncP-1 plasmid pKJK5, it was found that 0.5 mmol/L Pb, 0.1 mmol/L As and 0.005 mmol/L Hg could obviously promote ARG transfer in sludge bacteria communities. Furthermore, mating assays on microfluidic chips also proved higher transfer frequencies in attached communities under the above heavy metal stresses. Transconjugants under Pb, As and Hg stresses were isolated and phylogenetically described. For As and Hg, the dominant genus was Pseudomonas, accounting for 88% and 96%, respectively. While under Pb stress, the genera Aeromonas and Enterobacter were the main transconjugants, accounting for 56% and 32% respectively. Moreover, ABC transporters and Amino acid metabolism, which were related to heavy metal transport and cellular metabolism, were dominant in the prediction of microbial metabolic function of transconjugants. This study can be helpful for risk assessment and control of ARG spreading in WWTPs.
Collapse
Affiliation(s)
- Hai Lin
- School of Energy and Environmental Engineering, University of Beijing Science and Technology, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of industrial Pollutants, Beijing 100083, China
| | - Lintian Jiang
- School of Energy and Environmental Engineering, University of Beijing Science and Technology, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of industrial Pollutants, Beijing 100083, China
| | - Bing Li
- School of Energy and Environmental Engineering, University of Beijing Science and Technology, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of industrial Pollutants, Beijing 100083, China.
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Beijing Science and Technology, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of industrial Pollutants, Beijing 100083, China
| | - Yinhai He
- School of Energy and Environmental Engineering, University of Beijing Science and Technology, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of industrial Pollutants, Beijing 100083, China
| | - Yong Qiu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
18
|
Rakvács Z, Kucsma N, Gera M, Igriczi B, Kiss K, Barna J, Kovács D, Vellai T, Bencs L, Reisecker JM, Szoboszlai N, Szakács G. The human ABCB6 protein is the functional homologue of HMT-1 proteins mediating cadmium detoxification. Cell Mol Life Sci 2019; 76:4131-4144. [PMID: 31053883 PMCID: PMC6785578 DOI: 10.1007/s00018-019-03105-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/31/2022]
Abstract
ABCB6 belongs to the family of ATP-binding cassette (ABC) transporters, which transport various molecules across extra- and intra-cellular membranes, bearing significant impact on human disease and pharmacology. Although mutations in the ABCB6 gene have been linked to a variety of pathophysiological conditions ranging from transfusion incompatibility to pigmentation defects, its precise cellular localization and function is not understood. In particular, the intracellular localization of ABCB6 has been a matter of debate, with conflicting reports suggesting mitochondrial or endolysosomal expression. ABCB6 shows significant sequence identity to HMT-1 (heavy metal tolerance factor 1) proteins, whose evolutionarily conserved role is to confer tolerance to heavy metals through the intracellular sequestration of metal complexes. Here, we show that the cadmium-sensitive phenotype of Schizosaccharomyces pombe and Caenorhabditis elegans strains defective for HMT-1 is rescued by the human ABCB6 protein. Overexpression of ABCB6 conferred tolerance to cadmium and As(III) (As2O3), but not to As(V) (Na2HAsO4), Sb(V), Hg(II), or Zn(II). Inactivating mutations of ABCB6 abolished vacuolar sequestration of cadmium, effectively suppressing the cadmium tolerance phenotype. Modulation of ABCB6 expression levels in human glioblastoma cells resulted in a concomitant change in cadmium sensitivity. Our findings reveal ABCB6 as a functional homologue of the HMT-1 proteins, linking endolysosomal ABCB6 to the highly conserved mechanism of intracellular cadmium detoxification.
Collapse
Affiliation(s)
- Zsófia Rakvács
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Nóra Kucsma
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Melinda Gera
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Barbara Igriczi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Katalin Kiss
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - János Barna
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Dániel Kovács
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Tibor Vellai
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - László Bencs
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary
| | - Johannes M Reisecker
- Department of Medicine I, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Norbert Szoboszlai
- Department of Analytical Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Gergely Szakács
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
- Department of Medicine I, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
19
|
Genome-wide identification of ATP-binding cassette transporters and expression profiles in the Asian citrus psyllid, Diaphorina citri, exposed to imidacloprid. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:305-311. [DOI: 10.1016/j.cbd.2019.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 11/21/2022]
|
20
|
Wang C, Bourland WA, Mu W, Pan X. Transcriptome analysis on chlorpyrifos detoxification in Uronema marinum (Ciliophora, Oligohymenophorea). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33402-33414. [PMID: 30264342 DOI: 10.1007/s11356-018-3195-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
Chlorpyrifos (CPF) pollution has drawn widespread concerns in aquatic environments due to its risks to ecologic system, however, the response mechanisms of ciliates to CPF pollution were poorly studied. In our current work, the degradation of CPF by ciliates and the morphological changes of ciliates after CPF exposure were investigated. In addition, the transcriptomic profiles of the ciliate Uronema marinum, with and without exposure with CPF, were detected using digital gene expression technologies. De novo transcriptome assembly 166,829,634 reads produced from three groups (untreated, CPF treatment at 12 h and 24 h) by whole transcriptome sequencing (RNA-Seq). Gene ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways were analyzed in all unigenes and different expression genes to identify their biological functions and processes. Furthermore, the results indicated that genes related to the stress response, cytoskeleton and cell structure proteins, and antioxidant systems might play an important role in the resistance mechanism of ciliates. The enzyme activities of SOD and GST after CPF stress were also analyzed, and the result showed the good antioxidant capacity of SOD and GST in ciliates inferred from the increase of the activities of the two enzymes. The ciliate Uronema marinum showed a resistance response to chlorpyrifos stress at the transcriptomic level in the present work, which indicates that ciliates can be considered as a potential bioremediation agent.
Collapse
Affiliation(s)
- Chongnv Wang
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - William A Bourland
- Department of Biological Sciences, Boise State University, Boise, ID, 83725-1515, USA
| | - Weijie Mu
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.
| | - Xuming Pan
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.
| |
Collapse
|
21
|
Kim S, Sharma AK, Vatamaniuk OK. N-Terminal Extension and C-Terminal Domains Are Required for ABCB6/HMT-1 Protein Interactions, Function in Cadmium Detoxification, and Localization to the Endosomal-Recycling System in Caenorhabditis elegans. Front Physiol 2018; 9:885. [PMID: 30104978 PMCID: PMC6077975 DOI: 10.3389/fphys.2018.00885] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/19/2018] [Indexed: 01/30/2023] Open
Abstract
The chronic exposure of humans to toxic metals such as cadmium from food and air causes dysfunction of vital organs, neurodegenerative conditions, and cancer. In this regard, members of the ABCB sub-family of the ATP-binding cassette (ABC) transporter superfamily, ABCB6/HMT-1, are acutely required for the detoxification of heavy metals and are present in genomes of many organisms including the nematode worm, Caenorhabditis elegans and humans. We showed previously that C. elegans ABCB6/HMT-1 detoxifies cadmium, copper, and arsenic, and is expressed in liver-like cells, the coelomocytes, head neurons and intestinal cells, which are the cell types that are affected by heavy metal poisoning in humans. The subcellular localization of ABCB6/HMT-1 proteins is unclear. ABCB6/HMT-1 proteins have a distinguishing topology: in addition to one transmembrane domain and one nucleotide-binding domain, they possess a hydrophobic N-terminal extension (NTE) domain encompassing five to six transmembrane spans. The role of the NTE domain in the function of ABCB6/HMT-1 in the native organism remains to be investigated. We used a versatile, multicellular model system, C. elegans, to establish the subcellular localization of ABCB6/HMT-1 and refine its structure-function studies in the native organism. We show that ABCB6/HMT-1 localizes mainly to the apical recycling endosomes and, in part, to early and late endosomes of intestinal cells. We also show that ABCB6/HMT-1 lacking the NTE domain is mistargeted to the plasma membrane and is unable to confer cadmium resistance. Although the NTE domain is essential for ABCB6/HMT-1 interaction with itself, the absence of NTE does not fully prevent this interaction. As a result, ABCB6/HMT-1 lacking the NTE domain, and expressed in wild-type worms or co-expressed with the full-length polypeptide, inactivates and mistargets the full-length ABCB6/HMT-1. We also show that the 43 amino acid residue stretch at the COOH-terminus is required for the ABCB6/HMT-1 interaction with itself and cadmium detoxification function. These results suggest that both NTE and COOH-terminus must be present to allow the protein to interact with itself and confer cadmium resistance. Considering that ABCB6/HMT-1 proteins are highly conserved, this study advances our understanding of how these proteins function in cadmium resistance in different species. Furthermore, these studies uncover the role of the endosomal-recycling system in cadmium detoxification.
Collapse
Affiliation(s)
- Sungjin Kim
- Section of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Anuj K. Sharma
- Section of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Olena K. Vatamaniuk
- Section of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
22
|
Pastuhov S, Shimizu T, Hisamoto N. Heavy Metal Stress Assay of Caenorhabditis elegans. Bio Protoc 2017; 7:e2312. [DOI: 10.21769/bioprotoc.2312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/03/2017] [Accepted: 05/02/2017] [Indexed: 11/02/2022] Open
|
23
|
Wong KW, Yap CK, Nulit R, Hamzah MS, Chen SK, Cheng WH, Karami A, Al-Shami SA. Effects of anthropogenic activities on the heavy metal levels in the clams and sediments in a tropical river. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:116-134. [PMID: 27822691 DOI: 10.1007/s11356-016-7951-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 10/20/2016] [Indexed: 06/06/2023]
Abstract
The present study aimed to assess the effects of anthropogenic activities on the heavy metal levels in the Langat River by transplantation of Corbicula javanica. In addition, potential ecological risk indexes (PERI) of heavy metals in the surface sediments of the river were also investigated. The correlation analysis revealed that eight metals (As, Co, Cr, Fe, Mn, Ni, Pb and Zn) in total soft tissue (TST) while five metals (As, Cd, Cr, Fe and Mn) in shell have positively and significantly correlation with respective metal concentration in sediment, indicating the clams is a good biomonitor of the metal levels. Based on clustering patterns, the discharge of dam impoundment, agricultural activities and urban domestic waste were identified as three major contributors of the metals in Pangsun, Semenyih and Dusun Tua, and Kajang, respectively. Various geochemical indexes for a single metal pollutant (geoaccumulation index (I geo), enrichment factors (EF), contamination factor (C f) and ecological risk (Er)) all agreed that Cd, Co, Cr, Cu, Fe, Mn, Ni and Zn are not likely to cause adverse effect to the river ecosystem, but As and Pb could pose a potential ecological risk to the river ecosystem. All indexes (degree of contamination (C d), combined pollution index (CPI) and PERI) showed that overall metal concentrations in the tropical river are still within safe limit. River metal pollution was investigated. Anthropogenic activities were contributors of the metal pollution. Geochemical indexes showed that metals are within the safe limit.
Collapse
Affiliation(s)
- Koe Wei Wong
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Chee Kong Yap
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Rosimah Nulit
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | | | - Soo Kien Chen
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Wan Hee Cheng
- Inti International University, Persiaran Perdana BBN, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Ali Karami
- Laboratory of Aquatic Toxicology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Salman Abdo Al-Shami
- Biology Department, University College of Taymma, Taymma, P.O.Box 714, Tabuk, Saudi Arabia
| |
Collapse
|
24
|
Winter SA, Dölling R, Knopf B, Mendelski MN, Schäfers C, Paul RJ. Detoxification and sensing mechanisms are of similar importance for Cd resistance in Caenorhabditis elegans. Heliyon 2016; 2:e00183. [PMID: 27822562 PMCID: PMC5090194 DOI: 10.1016/j.heliyon.2016.e00183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/30/2016] [Accepted: 10/18/2016] [Indexed: 11/26/2022] Open
Abstract
The present study employed mass spectrometry (ICP-MS) to measure the internal cadmium concentrations (Cdint) in Caenorhabditis elegans to determine Cd uptake from a Cd-containing environment as well as Cd release under Cd-free conditions. To analyze the functional role of several ATP binding cassette (ABC) transporters (e.g., HMT-1 and MRP-1) and phytochelatin synthase (PCS), we compared wild-type (WT) and different mutant strains of C. elegans. As a pre-test on selected mutant strains, several time-resolved experiments were performed to determine the survival rate and avoidance behavior of C. elegans under Cd stress, which confirmed the already known Cd sensitivity of the deletion mutants mrp-1Δ, pcs-1Δ, and hmt-1Δ. In addition, these experiments revealed flight reactions under Cd stress to be almost completely absent in mrp-1Δ mutants. The ICP-MS studies showed Cd uptake to be significantly higher in mrp-1Δ and WT than in hmt-1Δ. As Cd is ingested with food, food refusal due to very early Cd stress and its perception was likely the reason for the reduced Cd uptake of hmt-1Δ. Cd release (detoxification) was found to be maximal in mrp-1Δ, minimal in hmt-1Δ, and intermediate in WT. High mortality under Cd stress, food refusal, and minimal Cd release in the case of hmt-1Δ suggest a vital importance of the HMT-1/PCS-1 detoxification system for the survival of C. elegans under Cd stress. High mortality under Cd stress, absence of an avoidance behavior, missing food refusal, and maximal Cd release in the case of mrp-1Δ indicate that MRP-1 is less important for Cd detoxification under severe stress, but is probably important for Cd perception. Accordingly, our results suggest that the survival of WT under Cd stress (or possibly other forms of metal stress) primarily depends on the function of the HMT-1/PCS-1 detoxification system and the presence of a sensing mechanism to control the uptake of Cd (or other metals), which keeps internal Cd (or metal) concentrations under control, to some extent, for the timely mobilization of protection and repair systems.
Collapse
Affiliation(s)
- Sarah A. Winter
- Institute of Zoophysiology, University of Münster (WWU), Münster 48143, Germany
| | - Ramona Dölling
- Institute of Zoophysiology, University of Münster (WWU), Münster 48143, Germany
| | - Burkhard Knopf
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Schmallenberg 57392, Germany
| | - Martha N. Mendelski
- Institute of Zoophysiology, University of Münster (WWU), Münster 48143, Germany
| | - Christoph Schäfers
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Schmallenberg 57392, Germany
| | - Rüdiger J. Paul
- Institute of Zoophysiology, University of Münster (WWU), Münster 48143, Germany
- Corresponding author at: Institute of Zoophysiology, University of Münster, Schlossplatz 8, Münster 48143, Germany.Institute of ZoophysiologyUniversity of Münster (WWU)Münster48143Germany
| |
Collapse
|
25
|
Gravato-Nobre MJ, Vaz F, Filipe S, Chalmers R, Hodgkin J. The Invertebrate Lysozyme Effector ILYS-3 Is Systemically Activated in Response to Danger Signals and Confers Antimicrobial Protection in C. elegans. PLoS Pathog 2016; 12:e1005826. [PMID: 27525822 PMCID: PMC4985157 DOI: 10.1371/journal.ppat.1005826] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/25/2016] [Indexed: 12/17/2022] Open
Abstract
Little is known about the relative contributions and importance of antibacterial effectors in the nematode C. elegans, despite extensive work on the innate immune responses in this organism. We report an investigation of the expression, function and regulation of the six ilys (invertebrate-type lysozyme) genes of C. elegans. These genes exhibited a surprising variety of tissue-specific expression patterns and responses to starvation or bacterial infection. The most strongly expressed, ilys-3, was investigated in detail. ILYS-3 protein was expressed constitutively in the pharynx and coelomocytes, and dynamically in the intestine. Analysis of mutants showed that ILYS-3 was required for pharyngeal grinding (disruption of bacterial cells) during normal growth and consequently it contributes to longevity, as well as being protective against bacterial pathogens. Both starvation and challenge with Gram-positive pathogens resulted in ERK-MAPK-dependent up-regulation of ilys-3 in the intestine. The intestinal induction by pathogens, but not starvation, was found to be dependent on MPK-1 activity in the pharynx rather than in the intestine, demonstrating unexpected communication between these two tissues. The coelomocyte expression appeared to contribute little to normal growth or immunity. Recombinant ILYS-3 protein was found to exhibit appropriate lytic activity against Gram-positive cell wall material. Innate immune defenses against bacterial pathogenesis depend on the activation of antibacterial factors. We examined the expression and relative importance of a gene family encoding six invertebrate-type lysozymes in the much-studied nematode C. elegans. The ilys genes exhibit distinct patterns of tissue-specific expression and response to pathogenic challenge and/or starvation. The most abundantly expressed, ilys-3, exhibits constitutive pharyngeal expression, which we show is essential for efficient disruption of bacteria under non-pathogenic growth conditions, and consequently it contributes to normal longevity. ilys-3 is also strongly up-regulated in intestinal cells after starvation or exposure to Gram-positive pathogens such as Microbacterium nematophilum and acts as a ‘slow-effector’ in limiting pathogenic damage from intestinal infections. We show that this induction by pathogens depends on the action of an ERK-MAPK cascade, which acts in pharyngeal rather than intestinal cells; this implies communication between pharynx and intestine. Tagged ILYS-3 protein was detected mainly in recycling endosomes of intestinal cells and in the intestinal lumen after starvation. ILYS-3 was also expressed in coelomocytes (scavenger cells) but we found that these cells make little or no contribution to defense. We examined the enzymatic properties of recombinant ILYS-3 protein, finding that it has lytic activity against M. nematophilum cell-walls.
Collapse
Affiliation(s)
| | - Filipa Vaz
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Sergio Filipe
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Ronald Chalmers
- Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia Química e Biológica and Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Jonathan Hodgkin
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
26
|
Dietrich N, Tan CH, Cubillas C, Earley BJ, Kornfeld K. Insights into zinc and cadmium biology in the nematode Caenorhabditis elegans. Arch Biochem Biophys 2016; 611:120-133. [PMID: 27261336 DOI: 10.1016/j.abb.2016.05.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/18/2016] [Accepted: 05/28/2016] [Indexed: 10/21/2022]
Abstract
Zinc is an essential metal that is involved in a wide range of biological processes, and aberrant zinc homeostasis is implicated in multiple human diseases. Cadmium is chemically similar to zinc, but it is a nonessential environmental pollutant. Because zinc deficiency and excess are deleterious, animals require homeostatic mechanisms to maintain zinc levels in response to dietary fluctuations. The nematode Caenorhabditis elegans is emerging as a powerful model system to investigate zinc trafficking and homeostasis as well as cadmium toxicity. Here we review genetic and molecular studies that have combined to generate a picture of zinc homeostasis based on the transcriptional control of zinc transporters in intestinal cells. Furthermore, we summarize studies of cadmium toxicity that reveal intriguing parallels with zinc biology.
Collapse
Affiliation(s)
- Nicholas Dietrich
- Department of Developmental Biology, Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, United States.
| | - Chieh-Hsiang Tan
- Department of Developmental Biology, Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Ciro Cubillas
- Department of Developmental Biology, Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Brian James Earley
- Department of Developmental Biology, Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| |
Collapse
|
27
|
Essig YJ, Webb SM, Stürzenbaum SR. Deletion of Phytochelatin Synthase Modulates the Metal Accumulation Pattern of Cadmium Exposed C. elegans. Int J Mol Sci 2016; 17:257. [PMID: 26907254 PMCID: PMC4783986 DOI: 10.3390/ijms17020257] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/04/2016] [Accepted: 02/14/2016] [Indexed: 01/28/2023] Open
Abstract
Environmental metal pollution is a growing health risk to flora and fauna. It is therefore important to fully elucidate metal detoxification pathways. Phytochelatin synthase (PCS), an enzyme involved in the biosynthesis of phytochelatins (PCs), plays an important role in cadmium detoxification. The PCS and PCs are however not restricted to plants, but are also present in some lower metazoans. The model nematode Caenorhabditis elegans, for example, contains a fully functional phytochelatin synthase and phytochelatin pathway. By means of a transgenic nematode strain expressing a pcs-1 promoter-tagged GFP (pcs-1::GFP) and a pcs-1 specific qPCR assay, further evidence is presented that the expression of the C. elegans phytochelatin synthase gene (pcs-1) is transcriptionally non-responsive to a chronic (48 h) insult of high levels of zinc (500 μM) or acute (3 h) exposures to high levels of cadmium (300 μM). However, the accumulation of cadmium, but not zinc, is dependent on the pcs-1 status of the nematode. Synchrotron based X-ray fluorescence imaging uncovered that the cadmium body burden increased significantly in the pcs-1(tm1748) knockout allele. Taken together, this suggests that whilst the transcription of pcs-1 may not be mediated by an exposure zinc or cadmium, it is nevertheless an integral part of the cadmium detoxification pathway in C. elegans.
Collapse
Affiliation(s)
- Yona J Essig
- Analytical and Environmental Sciences Division, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK.
- Medical Research Council-Public Health England (MRC-PHE) Centre for Environment & Health, King's College London, London SE1 9NH, UK.
| | - Samuel M Webb
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.
| | - Stephen R Stürzenbaum
- Analytical and Environmental Sciences Division, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK.
- Medical Research Council-Public Health England (MRC-PHE) Centre for Environment & Health, King's College London, London SE1 9NH, UK.
| |
Collapse
|
28
|
Kühnlenz T, Westphal L, Schmidt H, Scheel D, Clemens S. Expression of Caenorhabditis elegans PCS in the AtPCS1-deficient Arabidopsis thaliana cad1-3 mutant separates the metal tolerance and non-host resistance functions of phytochelatin synthases. PLANT, CELL & ENVIRONMENT 2015; 38:2239-47. [PMID: 25764348 DOI: 10.1111/pce.12534] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/19/2015] [Accepted: 03/06/2015] [Indexed: 05/22/2023]
Abstract
Phytochelatin synthases (PCS) play key roles in plant metal tolerance. They synthesize small metal-binding peptides, phytochelatins, under conditions of metal excess. Respective mutants are strongly cadmium and arsenic hypersensitive. However, their ubiquitous presence and constitutive expression had long suggested a more general function of PCS besides metal detoxification. Indeed, phytochelatin synthase1 from Arabidopsis thaliana (AtPCS1) was later implicated in non-host resistance. The two different physiological functions may be attributable to the two distinct catalytic activities demonstrated for AtPCS1, that is the dipeptidyl transfer onto an acceptor molecule in phytochelatin synthesis, and the proteolytic deglycylation of glutathione conjugates. In order to test this hypothesis and to possibly separate the two biological roles, we expressed a phylogenetically distant PCS from Caenorhabditis elegans in an AtPCS1 mutant. We confirmed the involvement of AtPCS1 in non-host resistance by showing that plants lacking the functional gene develop a strong cell death phenotype when inoculated with the potato pathogen Phytophthora infestans. Furthermore, we found that the C. elegans gene rescues phytochelatin synthesis and cadmium tolerance, but not the defect in non-host resistance. This strongly suggests that the second enzymatic function of AtPCS1, which remains to be defined in detail, is underlying the plant immunity function.
Collapse
Affiliation(s)
- Tanja Kühnlenz
- Department of Plant Physiology, University of Bayreuth, Universitätsstrasse 30, Bayreuth, 95440, Germany
| | - Lore Westphal
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle, 06120, Germany
| | - Holger Schmidt
- Department of Plant Physiology, University of Bayreuth, Universitätsstrasse 30, Bayreuth, 95440, Germany
| | - Dierk Scheel
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle, 06120, Germany
| | - Stephan Clemens
- Department of Plant Physiology, University of Bayreuth, Universitätsstrasse 30, Bayreuth, 95440, Germany
| |
Collapse
|
29
|
Kumar R, Pradhan A, Khan FA, Lindström P, Ragnvaldsson D, Ivarsson P, Olsson PE, Jass J. Comparative Analysis of Stress Induced Gene Expression in Caenorhabditis elegans following Exposure to Environmental and Lab Reconstituted Complex Metal Mixture. PLoS One 2015; 10:e0132896. [PMID: 26168046 PMCID: PMC4500601 DOI: 10.1371/journal.pone.0132896] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 06/22/2015] [Indexed: 02/04/2023] Open
Abstract
Metals are essential for many physiological processes and are ubiquitously present in the environment. However, high metal concentrations can be harmful to organisms and lead to physiological stress and diseases. The accumulation of transition metals in the environment due to either natural processes or anthropogenic activities such as mining results in the contamination of water and soil environments. The present study used Caenorhabditis elegans to evaluate gene expression as an indicator of physiological response, following exposure to water collected from three different locations downstream of a Swedish mining site and a lab reconstituted metal mixture. Our results indicated that the reconstituted metal mixture exerted a direct stress response in C. elegans whereas the environmental waters elicited either a diminished or abrogated response. This suggests that it is not sufficient to use the biological effects observed from laboratory mixtures to extrapolate the effects observed in complex aquatic environments and apply this to risk assessment and intervention.
Collapse
Affiliation(s)
- Ranjeet Kumar
- School of Science and Technology, The Life Science Center-Biology, Örebro University, Örebro, Sweden
| | - Ajay Pradhan
- School of Science and Technology, The Life Science Center-Biology, Örebro University, Örebro, Sweden
| | - Faisal Ahmad Khan
- School of Science and Technology, The Life Science Center-Biology, Örebro University, Örebro, Sweden
| | | | | | | | - Per-Erik Olsson
- School of Science and Technology, The Life Science Center-Biology, Örebro University, Örebro, Sweden
| | - Jana Jass
- School of Science and Technology, The Life Science Center-Biology, Örebro University, Örebro, Sweden
| |
Collapse
|
30
|
Bundy JG, Kille P. Metabolites and metals in Metazoa--what role do phytochelatins play in animals? Metallomics 2015; 6:1576-82. [PMID: 24926533 DOI: 10.1039/c4mt00078a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Phytochelatins are sulfur-rich metal-binding peptides, and phytochelatin synthesis is one of the key mechanisms by which plants protect themselves against toxic soft metal ions such as cadmium. It has been known for a while now that some invertebrates also possess functional phytochelatin synthase (PCS) enzymes, and that at least one species, the nematode Caenorhabditis elegans, produces phytochelatins to help detoxify cadmium, and probably also other metal and metalloid ions including arsenic, zinc, selenium, silver, and copper. Here, we review recent studies on the occurrence, utilization, and regulation of phytochelatin synthesis in invertebrates. The phytochelatin synthase gene has a wide phylogenetic distribution, and can be found in species that cover almost all of the animal tree of life. The evidence to date, though, suggests that the occurrence is patchy, and even though some members of particular taxonomic groups may contain PCS genes, there are also many species without these genes. For animal species that do possess PCS genes, some of them (e.g. earthworms) do synthesize phytochelatins in response to potentially toxic elements, whereas others (e.g. Schistosoma mansoni, a parasitic helminth) do not appear to do so. Just how (and if) phytochelatins in invertebrates complement the function of metallothioneins remains to be elucidated, and the temporal, spatial, and metal specificity of the two systems is still unknown.
Collapse
Affiliation(s)
- J G Bundy
- Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK.
| | | |
Collapse
|
31
|
Moulis JM, Bourguignon J, Catty P. Cadmium. BINDING, TRANSPORT AND STORAGE OF METAL IONS IN BIOLOGICAL CELLS 2014. [DOI: 10.1039/9781849739979-00695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cadmium is not an essential element for life. It is geologically marginal but anthropogenic activities have contributed significantly to its dispersion in the environment and to cadmium exposure of living species. The natural speciation of the divalent cation Cd2+ is dominated by its high propensity to bind to sulfur ligands, but Cd2+ may also occupy sites providing imidazole and carboxylate ligands. It binds to cell walls by passive adsorption (bio-sorption) and it may interact with surface receptors. Cellular uptake can occur by ion mimicry through a variety of transporters of essential divalent cations, but not always. Once inside cells, Cd2+ preferentially binds to thiol-rich molecules. It can accumulate in intracellular vesicles. It may also be transported over long distances within multicellular organisms and be trapped in locations devoid of efficient excretion systems. These locations include the renal cortex of animals and the leaves of hyper-accumulating plants. No specific regulatory mechanism monitors Cd2+ cellular concentrations. Thiol recruitment by cadmium is a major interference mechanism with many signalling pathways that rely on thiolate-disulfide equilibria and other redox-related processes. Cadmium thus compromises the antioxidant intracellular response that relies heavily on molecules with reactive thiolates. These biochemical features dominate cadmium toxicity, which is complex because of the diversity of the biological targets and the consequent pleiotropic effects. This chapter compares the cadmium-handling systems known throughout phylogeny and highlights the basic principles underlying the impact of cadmium in biology.
Collapse
Affiliation(s)
- Jean-Marc Moulis
- CEA, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire Chimie et Biologie des Métaux 17 rue des Martyrs F-38054 Grenoble France
- CNRS UMR5249 F-38054 Grenoble France
- Université Joseph Fourier-Grenoble I UMR5249 F-38041 Grenoble France
| | - Jacques Bourguignon
- CEA, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire Physiologie Cellulaire et Végétale F-38054 Grenoble France
- CNRS UMR5168 F-38054 Grenoble France
- Université Joseph Fourier-Grenoble I UMR5168 F-38041 Grenoble France
- INRA USC1359 F-38054 Grenoble France
| | - Patrice Catty
- CEA, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire Chimie et Biologie des Métaux 17 rue des Martyrs F-38054 Grenoble France
- CNRS UMR5249 F-38054 Grenoble France
- Université Joseph Fourier-Grenoble I UMR5249 F-38041 Grenoble France
| |
Collapse
|
32
|
Franchi N, Piccinni E, Ferro D, Basso G, Spolaore B, Santovito G, Ballarin L. Characterization and transcription studies of a phytochelatin synthase gene from the solitary tunicate Ciona intestinalis exposed to cadmium. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 152:47-56. [PMID: 24727215 DOI: 10.1016/j.aquatox.2014.03.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 03/18/2014] [Accepted: 03/21/2014] [Indexed: 05/22/2023]
Abstract
The major thiol-containing molecules involved in controlling the level of intracellular ROS in eukaryotes, acting as a nonenzymatic detoxification system, are metallothioneins (MTs), glutathione (GSH) and phytochelatins (PCs). Both MTs and GSH are well-known in the animal kingdom. PC was considered a prerogative of the plant kingdom but, in 2001, a phytochelatin synthase (PCS) gene was described in the nematode Caenorhabditis elegans; additional genes encoding this enzyme were later described in the earthworm Eisenia fetida and in the parasitic nematode Schistosoma mansoni but scanty data are available, up to now, for Deuterostomes. Here, we describe the molecular characteristics and transcription pattern, in the presence of Cd, of a PCS gene from the invertebrate chordate Ciona intestinalis, a ubiquitous solitary tunicate and demonstrate the presence of PCs in tissue extracts. We also studied mRNA localization by in situ hybridization. In addition, we analyzed the behavior of hemocytes and tunic cells consequent to Cd exposure as well as the transcription pattern of the Ciona orthologous for proliferating cell nuclear antigen (PCNA), usually considered a proliferation marker, and observed that cell proliferation occurs after 96h of Cd treatment. This matches the hypothesis of Cd-induced cell proliferation, as already suggested by previous data on the expression of a metallothionein gene in the same animal.
Collapse
Affiliation(s)
- Nicola Franchi
- Department of Biology, University of Padova, Padova, Italy; Department of Biological, Chemical, Pharmaceutical Science and Technology, University of Palermo, Palermo, Italy
| | - Ester Piccinni
- Department of Biology, University of Padova, Padova, Italy
| | - Diana Ferro
- Department of Biology, University of Padova, Padova, Italy; Institute for Evolution and Biodiversity, Westfälische Wilhelms-Universität, Münster, Germany
| | - Giuseppe Basso
- Department of Woman and Child Health, University of Padova, Padova, Italy
| | - Barbara Spolaore
- CRIBI Biotechnology Centre, University of Padova, Padova, Italy; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | | |
Collapse
|
33
|
Polak N, Read DS, Jurkschat K, Matzke M, Kelly FJ, Spurgeon DJ, Stürzenbaum SR. Metalloproteins and phytochelatin synthase may confer protection against zinc oxide nanoparticle induced toxicity in Caenorhabditis elegans. Comp Biochem Physiol C Toxicol Pharmacol 2014; 160:75-85. [PMID: 24333255 DOI: 10.1016/j.cbpc.2013.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 12/28/2022]
Abstract
Zinc oxide nanoparticles (ZnONPs) are used in large quantities by the cosmetic, food and textile industries. Here we exposed Caenorhabditis elegans wild-type and a metal sensitive triple knockout mutant (mtl-1;mtl-2;pcs-1) to ZnONPs (0-50mg/L) to study strain and exposure specific effects on transcription, reactive oxygen species generation, the biomolecular phenotype (measured by Raman microspectroscopy) and key endpoints of the nematode life cycle (growth, reproduction and lifespan). A significant dissolution effect was observed, where dissolved ZnO constituted over 50% of total Zn within a two day exposure to the test medium, suggesting that the nominal exposure to pure ZnONPs represents in vivo, at best, a mixture exposure of ionic zinc and nanoparticles. Nevertheless, the analyses provided evidence that the metallothioneins (mtl-1 and mtl-2), the phytochelatin synthase (pcs-1) and an apoptotic marker (cep-1) were transcriptionally activated. In addition, the DCFH-DA assay provided in vitro evidence of the oxidative potential of ZnONPs in the metal exposure sensitive triple mutant. Raman spectroscopy highlighted that the biomolecular phenotype changes significantly in the mtl-1;mtl-2;pcs-1 triple knockout worm upon ZnONP exposure, suggesting that these metalloproteins are instrumental in the protection against cytotoxic damage. Finally, ZnONP exposure was shown to decrease growth and development, reproductive capacity and lifespan, effects which were amplified in the triple knockout. By combining diverse toxicological strategies, we identified that individuals (genotypes) housing mutations in key metalloproteins and phytochelatin synthase are more susceptible to ZnONP exposure, which underlines their importance to minimize ZnONP induced toxicity.
Collapse
Affiliation(s)
- Natasa Polak
- MRC-HPA Centre for Environment & Health, School of Biomedical Sciences, King's College London, London, UK
| | - Daniel S Read
- Centre for Ecology and Hydrology, Maclean Building, Wallingford, Oxfordshire OX10 8BB, UK
| | - Kerstin Jurkschat
- Department of Materials, Hirsch Building, University of Oxford, Kidlington OX5 1PF, UK
| | - Marianne Matzke
- Centre for Ecology and Hydrology, Maclean Building, Wallingford, Oxfordshire OX10 8BB, UK
| | - Frank J Kelly
- MRC-HPA Centre for Environment & Health, School of Biomedical Sciences, King's College London, London, UK
| | - David J Spurgeon
- Centre for Ecology and Hydrology, Maclean Building, Wallingford, Oxfordshire OX10 8BB, UK
| | - Stephen R Stürzenbaum
- MRC-HPA Centre for Environment & Health, School of Biomedical Sciences, King's College London, London, UK.
| |
Collapse
|
34
|
Rahman S, Kim KH, Saha SK, Swaraz AM, Paul DK. Review of remediation techniques for arsenic (As) contamination: a novel approach utilizing bio-organisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2014; 134:175-85. [PMID: 24509286 DOI: 10.1016/j.jenvman.2013.12.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/24/2013] [Accepted: 12/27/2013] [Indexed: 05/09/2023]
Abstract
Arsenic (As) contamination has recently become a worldwide problem, as it is found to be widespread not only in drinking water but also in various foodstuffs. Because of the high toxicity, As contamination poses a serious risk to human health and ecological system. To cope with this problem, a great deal of effort have been made to account for the mechanisms of As mineral formation and accumulation by some plants and aquatic organisms exposed to the high level of As. Hence, bio-remediation is now considered an effective and potent approach to breakdown As contamination. In this review, we provide up-to-date knowledge on how biological tools (such as plants for phytoremediation and to some extent microorganisms) can be used to help resolve the effects of As problems on the Earth's environment.
Collapse
Affiliation(s)
- Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jessore University of Science and Technology, Jessore 7408, Bangladesh
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 133-791, Republic of Korea.
| | - Subbroto Kumar Saha
- Department of Animal Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - A M Swaraz
- Department of Genetic Engineering and Biotechnology, Jessore University of Science and Technology, Jessore 7408, Bangladesh
| | - Dipak Kumar Paul
- Department of Applied Nutrition and Food Technology, Islamic University, Kushtia 7003, Bangladesh
| |
Collapse
|
35
|
Ardelli BF. Transport proteins of the ABC systems superfamily and their role in drug action and resistance in nematodes. Parasitol Int 2013; 62:639-46. [DOI: 10.1016/j.parint.2013.02.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 11/28/2022]
|
36
|
Srinivasan J, Dillman AR, Macchietto MG, Heikkinen L, Lakso M, Fracchia KM, Antoshechkin I, Mortazavi A, Wong G, Sternberg PW. The draft genome and transcriptome of Panagrellus redivivus are shaped by the harsh demands of a free-living lifestyle. Genetics 2013; 193:1279-95. [PMID: 23410827 PMCID: PMC3606103 DOI: 10.1534/genetics.112.148809] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 01/08/2013] [Indexed: 01/01/2023] Open
Abstract
Nematodes compose an abundant and diverse invertebrate phylum with members inhabiting nearly every ecological niche. Panagrellus redivivus (the "microworm") is a free-living nematode frequently used to understand the evolution of developmental and behavioral processes given its phylogenetic distance to Caenorhabditis elegans. Here we report the de novo sequencing of the genome, transcriptome, and small RNAs of P. redivivus. Using a combination of automated gene finders and RNA-seq data, we predict 24,249 genes and 32,676 transcripts. Small RNA analysis revealed 248 microRNA (miRNA) hairpins, of which 63 had orthologs in other species. Fourteen miRNA clusters containing 42 miRNA precursors were found. The RNA interference, dauer development, and programmed cell death pathways are largely conserved. Analysis of protein family domain abundance revealed that P. redivivus has experienced a striking expansion of BTB domain-containing proteins and an unprecedented expansion of the cullin scaffold family of proteins involved in multi-subunit ubiquitin ligases, suggesting proteolytic plasticity and/or tighter regulation of protein turnover. The eukaryotic release factor protein family has also been dramatically expanded and suggests an ongoing evolutionary arms race with viruses and transposons. The P. redivivus genome provides a resource to advance our understanding of nematode evolution and biology and to further elucidate the genomic architecture leading to free-living lineages, taking advantage of the many fascinating features of this worm revealed by comparative studies.
Collapse
Affiliation(s)
- Jagan Srinivasan
- Division of Biology, California Institute of Technology, Pasadena, California 91125
- Howard Hughes Medical Institute, Pasadena, California 91125
| | - Adler R. Dillman
- Division of Biology, California Institute of Technology, Pasadena, California 91125
- Howard Hughes Medical Institute, Pasadena, California 91125
| | - Marissa G. Macchietto
- Developmental and Cell Biology, University of California, Irvine, California 92697
- Center for Complex Biological Systems, University of California, Irvine, California 92697
| | - Liisa Heikkinen
- Department of Neurobiology, A. I. Virtanen Institute, University of Eastern Finland, Kuopio 70211, Finland
| | - Merja Lakso
- Department of Neurobiology, A. I. Virtanen Institute, University of Eastern Finland, Kuopio 70211, Finland
| | - Kelley M. Fracchia
- Developmental and Cell Biology, University of California, Irvine, California 92697
| | - Igor Antoshechkin
- Division of Biology, California Institute of Technology, Pasadena, California 91125
| | - Ali Mortazavi
- Developmental and Cell Biology, University of California, Irvine, California 92697
- Center for Complex Biological Systems, University of California, Irvine, California 92697
| | - Garry Wong
- Department of Neurobiology, A. I. Virtanen Institute, University of Eastern Finland, Kuopio 70211, Finland
| | - Paul W. Sternberg
- Division of Biology, California Institute of Technology, Pasadena, California 91125
- Howard Hughes Medical Institute, Pasadena, California 91125
| |
Collapse
|
37
|
Rigouin C, Nylin E, Cogswell AA, Schaumlöffel D, Dobritzsch D, Williams DL. Towards an understanding of the function of the phytochelatin synthase of Schistosoma mansoni. PLoS Negl Trop Dis 2013; 7:e2037. [PMID: 23383357 PMCID: PMC3561135 DOI: 10.1371/journal.pntd.0002037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/13/2012] [Indexed: 11/19/2022] Open
Abstract
Phytochelatin synthase (PCS) is a protease-like enzyme that catalyzes the production of metal chelating peptides, the phytochelatins, from glutathione (GSH). In plants, algae, and fungi phytochelatin production is important for metal tolerance and detoxification. PCS proteins also function in xenobiotic metabolism by processing GSH S-conjugates. The aim of the present study is to elucidate the role of PCS in the parasitic worm Schistosoma mansoni. Recombinant S. mansoni PCS proteins expressed in bacteria could both synthesize phytochelatins and hydrolyze various GSH S-conjugates. We found that both the N-truncated protein and the N- and C-terminal truncated form of the enzyme (corresponding to only the catalytic domain) work through a thiol-dependant and, notably, metal-independent mechanism for both transpeptidase (phytochelatin synthesis) and peptidase (hydrolysis of GSH S-conjugates) activities. PCS transcript abundance was increased by metals and xenobiotics in cultured adult worms. In addition, these treatments were found to increase transcript abundance of other enzymes involved in GSH metabolism. Highest levels of PCS transcripts were identified in the esophageal gland of adult worms. Taken together, these results suggest that S. mansoni PCS participates in both metal homoeostasis and xenobiotic metabolism rather than metal detoxification as previously suggested and that the enzyme may be part of a global stress response in the worm. Because humans do not have PCS, this enzyme is of particular interest as a drug target for schistosomiasis. Schistosomiasis is a chronic, debilitating disease that affects hundreds of millions of people. The treatment of schistosomiasis relies solely on monotherapy with praziquantel and there is concern that drug-resistant parasites will evolve. Therefore, it is imperative to identify new drugs for schistosomiasis treatment. In this study our goal was to characterize the function of the phytochelatin synthase of Schistosoma mansoni, previously suggested as a candidate for drug targeting to control schistosomiasis. Phytochelatin synthase catalyzes the production of metal chelating peptides, the phytochelatins, from glutathione (GSH). In plants, algae, and fungi phytochelatin production is important for metal tolerance and detoxification. PCS proteins also function in the elimination of xenobiotics by processing GSH S-conjugates. We found that SmPCS expressed in bacteria could both synthesize phytochelatins and hydrolyze various GSH S-conjugates. We found the enzyme works through a thiol-dependant and, notably, metal-independent mechanism for both transpeptidase (phytochelatin synthesis) and peptidase (hydrolysis of GSH S-conjugates) activities. The expression of the PCS gene in adult schistosome worms was increased by exposure to a number of metals and xenobiotics. In addition, these treatments were found to increase the expression of other enzymes involved in GSH metabolism. Highest levels of PCS transcripts were localized in the esophageal gland of adult worms. Taken together, these results suggest that S. mansoni PCS participates in both metal homoeostasis and xenobiotic metabolism rather than metal detoxification as previously suggested and that it may be part of a global stress response in the worm.
Collapse
Affiliation(s)
- Coraline Rigouin
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Elyse Nylin
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Alexis A. Cogswell
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Dirk Schaumlöffel
- Université de Pau et des Pays de l'Adour/CNRS UMR 5254, Laboratoire de Chimie Analytique Bio-Inorganique et Environnement/IPREM, Hélioparc, Pau, France
| | - Dirk Dobritzsch
- Martin-Luther-Universität Halle-Wittenberg, Institut für Biochemie und Biotechnologie, Abteilung Pflanzenbiochemie, Halle, Saale, Germany
| | - David L. Williams
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
38
|
Broehan G, Kroeger T, Lorenzen M, Merzendorfer H. Functional analysis of the ATP-binding cassette (ABC) transporter gene family of Tribolium castaneum. BMC Genomics 2013; 14:6. [PMID: 23324493 PMCID: PMC3560195 DOI: 10.1186/1471-2164-14-6] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 01/02/2013] [Indexed: 11/24/2022] Open
Abstract
Background The ATP-binding cassette (ABC) transporters belong to a large superfamily of proteins that have important physiological functions in all living organisms. Most are integral membrane proteins that transport a broad spectrum of substrates across lipid membranes. In insects, ABC transporters are of special interest because of their role in insecticide resistance. Results We have identified 73 ABC transporter genes in the genome of T. castaneum, which group into eight subfamilies (ABCA-H). This coleopteran ABC family is significantly larger than those reported for insects in other taxonomic groups. Phylogenetic analysis revealed that this increase is due to gene expansion within a single clade of subfamily ABCC. We performed an RNA interference (RNAi) screen to study the function of ABC transporters during development. In ten cases, injection of double-stranded RNA (dsRNA) into larvae caused developmental phenotypes, which included growth arrest and localized melanization, eye pigmentation defects, abnormal cuticle formation, egg-laying and egg-hatching defects, and mortality due to abortive molting and desiccation. Some of the ABC transporters we studied in closer detail to examine their role in lipid, ecdysteroid and eye pigment transport. Conclusions The results from our study provide new insights into the physiological function of ABC transporters in T. castaneum, and may help to establish new target sites for insect control.
Collapse
Affiliation(s)
- Gunnar Broehan
- Department of Biology/Chemistry, Animal Physiology, University of Osnabrück, Osnabrück 49069, Germany
| | | | | | | |
Collapse
|
39
|
LeBlanc MS, McKinney EC, Meagher RB, Smith AP. Hijacking membrane transporters for arsenic phytoextraction. J Biotechnol 2012; 163:1-9. [PMID: 23108027 DOI: 10.1016/j.jbiotec.2012.10.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 10/16/2012] [Accepted: 10/18/2012] [Indexed: 12/22/2022]
Abstract
Arsenic is a toxic metalloid and recognized carcinogen. Arsenate and arsenite are the most common arsenic species available for uptake by plants. As an inorganic phosphate (Pi) analog, arsenate is acquired by plant roots through endogenous Pi transport systems. Inside the cell, arsenate is reduced to the thiol-reactive form arsenite. Glutathione (GSH)-conjugates of arsenite may be extruded from the cell or sequestered in vacuoles by members of the ATP-binding cassette (ABC) family of transporters. In the present study we sought to enhance both plant arsenic uptake through Pi transporter overexpression, and plant arsenic tolerance through ABC transporter overexpression. We demonstrate that Arabidopsis thaliana plants overexpressing the high-affinity Pi transporter family members, AtPht1;1 or AtPht1;7, are hypersensitive to arsenate due to increased arsenate uptake. These plants do not exhibit increased sensitivity to arsenite. Co-overexpression of the yeast ABC transporter YCF1 in combination with AtPht1;1 or AtPht1;7 suppresses the arsenate-sensitive phenotype while further enhancing arsenic uptake. Taken together, our results support an arsenic transport mechanism in which arsenate uptake is increased through Pi transporter overexpression, and arsenic tolerance is enhanced through YCF1-mediated vacuolar sequestration. This work substantiates the viability of coupling enhanced uptake and vacuolar sequestration as a means for developing a prototypical engineered arsenic hyperaccumulator.
Collapse
|
40
|
C. elegans germ cells show temperature and age-dependent expression of Cer1, a Gypsy/Ty3-related retrotransposon. PLoS Pathog 2012; 8:e1002591. [PMID: 22479180 PMCID: PMC3315495 DOI: 10.1371/journal.ppat.1002591] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/30/2012] [Indexed: 11/19/2022] Open
Abstract
Virus-like particles (VLPs) have not been observed in Caenorhabditis germ cells, although nematode genomes contain low numbers of retrotransposon and retroviral sequences. We used electron microscopy to search for VLPs in various wild strains of Caenorhabditis, and observed very rare candidate VLPs in some strains, including the standard laboratory strain of C. elegans, N2. We identified the N2 VLPs as capsids produced by Cer1, a retrotransposon in the Gypsy/Ty3 family of retroviruses/retrotransposons. Cer1 expression is age and temperature dependent, with abundant expression at 15°C and no detectable expression at 25°C, explaining how VLPs escaped detection in previous studies. Similar age and temperature-dependent expression of Cer1 retrotransposons was observed for several other wild strains, indicating that these properties are common, if not integral, features of this retroelement. Retrotransposons, in contrast to DNA transposons, have a cytoplasmic stage in replication, and those that infect non-dividing cells must pass their genomic material through nuclear pores. In most C. elegans germ cells, nuclear pores are largely covered by germline-specific organelles called P granules. Our results suggest that Cer1 capsids target meiotic germ cells exiting pachytene, when free nuclear pores are added to the nuclear envelope and existing P granules begin to be removed. In pachytene germ cells, Cer1 capsids concentrate away from nuclei on a subset of microtubules that are exceptionally resistant to microtubule inhibitors; the capsids can aggregate these stable microtubules in older adults, which exhibit a temperature-dependent decrease in egg viability. When germ cells exit pachytene, the stable microtubules disappear and capsids redistribute close to nuclei that have P granule-free nuclear pores. This redistribution is microtubule dependent, suggesting that capsids that are released from stable microtubules transfer onto new, dynamic microtubules to track toward nuclei. These studies introduce C. elegans as a model to study the interplay between retroelements and germ cell biology. Retrotransposons and retroviruses pose enormous threats to animal and plants because of their ability to insert into host genes. Retroelements that replicate in germ cells can, if left unchecked, expand exponentially in the host genome. C. elegans has proven to be an exceptional model system for studying many facets of cell and molecular biology, and the genome contains both retrotransposon and retroviral sequences. However, no virus-like particles have been observed in C. elegans germ cells. We show here that Cer1, an endogenous Gypsy/Ty3 class retrotransposon, is expressed at very high levels in C. elegans germ cells, but escaped detection in previous studies because its expression is both temperature and age dependent. These studies reveal new aspects of microtubule regulation in C. elegans that the retroelement appears to exploit to navigate the germ cell cytoplasm, and demonstrate the power of C. elegans for studying host/pathogen interactions in germ cell biology.
Collapse
|
41
|
Maciaszczyk-Dziubinska E, Wawrzycka D, Wysocki R. Arsenic and antimony transporters in eukaryotes. Int J Mol Sci 2012; 13:3527-3548. [PMID: 22489166 PMCID: PMC3317726 DOI: 10.3390/ijms13033527] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 02/29/2012] [Accepted: 03/07/2012] [Indexed: 12/27/2022] Open
Abstract
Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters.
Collapse
Affiliation(s)
- Ewa Maciaszczyk-Dziubinska
- Department of Genetics and Cell Physiology, Institute of Plant Biology, University of Wroclaw, Kanonia 6/8, 50-328 Wroclaw, Poland; E-Mail:
| | - Donata Wawrzycka
- Department of Genetics and Cell Physiology, Institute of Plant Biology, University of Wroclaw, Kanonia 6/8, 50-328 Wroclaw, Poland; E-Mail:
| | - Robert Wysocki
- Department of Genetics and Cell Physiology, Institute of Plant Biology, University of Wroclaw, Kanonia 6/8, 50-328 Wroclaw, Poland; E-Mail:
| |
Collapse
|
42
|
Martinez-Finley EJ, Chakraborty S, Caito S, Fretham S, Aschner M. C. elegans and Neurodegeneration In Caenorhabditis Elegans: Anatomy, Life Cycles and Biological Functions. ADVANCES IN MEDICINE AND BIOLOGY 2012; 44:1-46. [PMID: 32346495 PMCID: PMC7188451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Ebany J. Martinez-Finley
- Division of Clinical Pharmacology and Pediatric Toxicology, Vanderbilt University Medical Center, Nashville, TN
| | - Sudipta Chakraborty
- Division of Clinical Pharmacology and Pediatric Toxicology, Vanderbilt University Medical Center, Nashville, TN
| | - Sam Caito
- Division of Clinical Pharmacology and Pediatric Toxicology, Vanderbilt University Medical Center, Nashville, TN
| | - Stephanie Fretham
- Division of Clinical Pharmacology and Pediatric Toxicology, Vanderbilt University Medical Center, Nashville, TN
| | - Michael Aschner
- Division of Clinical Pharmacology and Pediatric Toxicology, Vanderbilt University Medical Center, Nashville, TN
- Center in Molecular Toxicology, Vanderbilt University Medical Center, Nashville, TN
- Center for Molecular Neuroscience, Vanderbilt University Medical Center, Nashville, TN
- The Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
43
|
Revelations from the Nematode Caenorhabditis elegans on the Complex Interplay of Metal Toxicological Mechanisms. J Toxicol 2011; 2011:895236. [PMID: 21876692 PMCID: PMC3157827 DOI: 10.1155/2011/895236] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/08/2011] [Indexed: 12/22/2022] Open
Abstract
Metals have been definitively linked to a number of disease states. Due to the widespread existence of metals in our environment from both natural and anthropogenic sources, understanding the mechanisms of their cellular detoxification is of upmost importance. Organisms have evolved cellular detoxification systems including glutathione, metallothioneins, pumps and transporters, and heat shock proteins to regulate intracellular metal levels. The model organism, Caenorhabditis elegans (C. elegans), contains these systems and provides several advantages for deciphering the mechanisms of metal detoxification. This review provides a brief summary of contemporary literature on the various mechanisms involved in the cellular detoxification of metals, specifically, antimony, arsenic, cadmium, copper, manganese, mercury, and depleted uranium using the C. elegans model system for investigation and analysis.
Collapse
|
44
|
Environmental Heavy Metals and Mental Disorders of Children in Developing Countries. ENVIRONMENTAL HEAVY METAL POLLUTION AND EFFECTS ON CHILD MENTAL DEVELOPMENT 2011. [DOI: 10.1007/978-94-007-0253-0_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Mendoza-Cózatl DG, Zhai Z, Jobe TO, Akmakjian GZ, Song WY, Limbo O, Russell MR, Kozlovskyy VI, Martinoia E, Vatamaniuk OK, Russell P, Schroeder JI. Tonoplast-localized Abc2 transporter mediates phytochelatin accumulation in vacuoles and confers cadmium tolerance. J Biol Chem 2010; 285:40416-26. [PMID: 20937798 PMCID: PMC3003340 DOI: 10.1074/jbc.m110.155408] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 09/20/2010] [Indexed: 11/06/2022] Open
Abstract
Phytochelatins mediate tolerance to heavy metals in plants and some fungi by sequestering phytochelatin-metal complexes into vacuoles. To date, only Schizosaccharomyces pombe Hmt1 has been described as a phytochelatin transporter and attempts to identify orthologous phytochelatin transporters in plants and other organisms have failed. Furthermore, recent data indicate that the hmt1 mutant accumulates significant phytochelatin levels in vacuoles, suggesting that unidentified phytochelatin transporters exist in fungi. Here, we show that deletion of all vacuolar ABC transporters abolishes phytochelatin accumulation in S. pombe vacuoles and abrogates (35)S-PC(2) uptake into S. pombe microsomal vesicles. Systematic analysis of the entire S. pombe ABC transporter family identified Abc2 as a full-size ABC transporter (ABCC-type) that mediates phytochelatin transport into vacuoles. The S. pombe abc1 abc2 abc3 abc4 hmt1 quintuple and abc2 hmt1 double mutant show no detectable phytochelatins in vacuoles. Abc2 expression restores phytochelatin accumulation into vacuoles and suppresses the cadmium sensitivity of the abc quintuple mutant. A novel, unexpected, function of Hmt1 in GS-conjugate transport is also shown. In contrast to Hmt1, Abc2 orthologs are widely distributed among kingdoms and are proposed as the long-sought vacuolar phytochelatin transporters in plants and other organisms.
Collapse
Affiliation(s)
- David G. Mendoza-Cózatl
- From the Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, California 92093
| | - Zhiyang Zhai
- the Department of Crop and Soil Sciences, Cornell University, Ithaca, New York 14853
| | - Timothy O. Jobe
- From the Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, California 92093
| | - Garo Z. Akmakjian
- From the Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, California 92093
| | - Won-Yong Song
- the Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland, and
| | - Oliver Limbo
- the Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Matthew R. Russell
- the Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| | | | - Enrico Martinoia
- the Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland, and
| | - Olena K. Vatamaniuk
- the Department of Crop and Soil Sciences, Cornell University, Ithaca, New York 14853
| | - Paul Russell
- the Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Julian I. Schroeder
- From the Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
46
|
Kim S, Selote DS, Vatamaniuk OK. The N-terminal extension domain of the C. elegans half-molecule ABC transporter, HMT-1, is required for protein-protein interactions and function. PLoS One 2010; 5:e12938. [PMID: 20886084 PMCID: PMC2944878 DOI: 10.1371/journal.pone.0012938] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 08/31/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Members of the HMT-1 (heavy metal tolerance factor 1) subfamily of the ATP-binding cassette (ABC) transporter superfamily detoxify heavy metals and have unique topology: they are half-molecule ABC transporters that, in addition to a single transmembrane domain (TMD1) and a single nucleotide-binding domain (NBD1), possess a hydrophobic NH2-terminal extension (NTE). These structural features distinguish HMTs from other ABC transporters in different species including Drosophila and humans. Functional ABC transporters, however, are comprised of at least four-domains (two TMDs and two NDBs) formed from either a single polypeptide or by the association of two or four separate subunits. Whether HMTs act as oligomers and what role the NTE domain plays in their function have not been determined. METHODOLOGY/PRINCIPAL FINDINGS In this study, we examined the oligomeric status of Caenorhabditis elegans HMT-1 and the functional significance of its NTE using gel-filtration chromatography in combination with the mating-based split-ubiquitin yeast two-hybrid system (mbSUS) and functional in vivo assays. We found that HMT-1 exists in a protein complex in C. elegans. Studies in S. cerevisiae showed that HMT-1 at a minimum homodimerizes and that oligomerization is essential for HMT-1 to confer cadmium tolerance. We also established that the NTE domain plays an important structural and functional role: it is essential for HMT-1 oligomerization and Cd-detoxification function. However, the NTE itself was not sufficient for oligomerization suggesting that multiple structural features of HMT-1 must associate to form a functional transporter. CONCLUSIONS The prominence of heavy metals as environmental toxins and the remarkable conservation of HMT-1 structural architecture and function in different species reinforce the value of continued studies of HMT-1 in model systems for identifying functional domains in HMT1 of humans.
Collapse
Affiliation(s)
- Sungjin Kim
- Department of Crop and Soil Sciences, Cornell University, Ithaca, New York, United States of America
| | - Devarshi S. Selote
- Department of Crop and Soil Sciences, Cornell University, Ithaca, New York, United States of America
| | - Olena K. Vatamaniuk
- Department of Crop and Soil Sciences, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
47
|
Tian C, Sen D, Shi H, Foehr ML, Plavskin Y, Vatamaniuk OK, Liu J. The RGM protein DRAG-1 positively regulates a BMP-like signaling pathway in Caenorhabditis elegans. Development 2010; 137:2375-84. [PMID: 20534671 DOI: 10.1242/dev.051615] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The bone morphogenetic protein (BMP) signaling pathway regulates multiple developmental and homeostatic processes. Mutations in the pathway can cause a variety of somatic and hereditary disorders in humans. Multiple levels of regulation, including extracellular regulation, ensure proper spatiotemporal control of BMP signaling in the right cellular context. We have identified a modulator of the BMP-like Sma/Mab pathway in C. elegans called DRAG-1. DRAG-1 is the sole member of the repulsive guidance molecule (RGM) family of proteins in C. elegans, and is crucial in regulating body size and mesoderm development. Using a combination of molecular genetic and biochemical analyses, we demonstrate that DRAG-1 is a membrane-associated protein that functions at the ligand-receptor level to modulate the Sma/Mab pathway in a cell-type-specific manner. We further show that DRAG-1 positively modulates this BMP-like pathway by using a novel Sma/Mab-responsive reporter. Our work provides a direct link between RGM proteins and BMP signaling in vivo and a simple and genetically tractable system for mechanistic studies of RGM protein regulation of BMP pathways.
Collapse
Affiliation(s)
- Chenxi Tian
- Department of Molecular Biology and Genetics, 439 Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Amin NM, Shi H, Liu J. The FoxF/FoxC factor LET-381 directly regulates both cell fate specification and cell differentiation in C. elegans mesoderm development. Development 2010; 137:1451-60. [PMID: 20335356 DOI: 10.1242/dev.048496] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Forkhead transcription factors play crucial and diverse roles in mesoderm development. In particular, FoxF and FoxC genes are, respectively, involved in the development of visceral/splanchnic mesoderm and non-visceral mesoderm in coelomate animals. Here, we show at single-cell resolution that, in the pseudocoelomate nematode C. elegans, the single FoxF/FoxC transcription factor LET-381 functions in a feed-forward mechanism in the specification and differentiation of the non-muscle mesodermal cells, the coelomocytes (CCs). LET-381/FoxF directly activates the CC specification factor, the Six2 homeodomain protein CEH-34, and functions cooperatively with CEH-34/Six2 to directly activate genes required for CC differentiation. Our results unify a diverse set of studies on the functions of FoxF/FoxC factors and provide a model for how FoxF/FoxC factors function during mesoderm development.
Collapse
Affiliation(s)
- Nirav M Amin
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|