1
|
Lai QC, Zheng J, Mou J, Cui CY, Wu QC, M Musa Rizvi S, Zhang Y, Li TM, Ren YB, Liu Q, Li Q, Zhang C. Identification of hub genes in calcific aortic valve disease. Comput Biol Med 2024; 172:108214. [PMID: 38508057 DOI: 10.1016/j.compbiomed.2024.108214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Accepted: 02/25/2024] [Indexed: 03/22/2024]
Abstract
Calcific aortic valve disease (CAVD) is a heart valve disorder characterized primarily by calcification of the aortic valve, resulting in stiffness and dysfunction of the valve. CAVD is prevalent among aging populations and is linked to factors such as hypertension, dyslipidemia, tobacco use, and genetic predisposition, and can result in becoming a growing economic and health burden. Once aortic valve calcification occurs, it will inevitably progress to aortic stenosis. At present, there are no medications available that have demonstrated effectiveness in managing or delaying the progression of the disease. In this study, we mined four publicly available microarray datasets (GSE12644 GSE51472, GSE77287, GSE233819) associated with CAVD from the GEO database with the aim of identifying hub genes associated with the occurrence of CAVD and searching for possible biological targets for the early prevention and diagnosis of CAVD. This study provides preliminary evidence for therapeutic and preventive targets for CAVD and may provide a solid foundation for subsequent biological studies.
Collapse
Affiliation(s)
- Qian-Cheng Lai
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Sichuan Provincial People's Hospital, Chengdu, 610000, Sichuan, China
| | - Jie Zheng
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jian Mou
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China; Department of Pain, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chun-Yan Cui
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China; Department of Pain, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Qing-Chen Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Syed M Musa Rizvi
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Zhang
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Tian-Mei Li
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ying-Bo Ren
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Qing Liu
- Department of Pain, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China; Hejiang Traditional Chinese Medicine Hospital, Luzhou, 646000, Sichuan, China.
| | - Qun Li
- Department of Pain, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Cheng Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Heimli M, Flåm ST, Hjorthaug HS, Trinh D, Frisk M, Dumont KA, Ribarska T, Tekpli X, Saare M, Lie BA. Multimodal human thymic profiling reveals trajectories and cellular milieu for T agonist selection. Front Immunol 2023; 13:1092028. [PMID: 36741401 PMCID: PMC9895842 DOI: 10.3389/fimmu.2022.1092028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/22/2022] [Indexed: 01/22/2023] Open
Abstract
To prevent autoimmunity, thymocytes expressing self-reactive T cell receptors (TCRs) are negatively selected, however, divergence into tolerogenic, agonist selected lineages represent an alternative fate. As thymocyte development, selection, and lineage choices are dependent on spatial context and cell-to-cell interactions, we have performed Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-seq) and spatial transcriptomics on paediatric human thymus. Thymocytes expressing markers of strong TCR signalling diverged from the conventional developmental trajectory prior to CD4+ or CD8+ lineage commitment, while markers of different agonist selected T cell populations (CD8αα(I), CD8αα(II), T(agonist), Treg(diff), and Treg) exhibited variable timing of induction. Expression profiles of chemokines and co-stimulatory molecules, together with spatial localisation, supported that dendritic cells, B cells, and stromal cells contribute to agonist selection, with different subsets influencing thymocytes at specific developmental stages within distinct spatial niches. Understanding factors influencing agonist T cells is needed to benefit from their immunoregulatory effects in clinical use.
Collapse
Affiliation(s)
- Marte Heimli
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Siri Tennebø Flåm
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | | | - Don Trinh
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Michael Frisk
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Karl-Andreas Dumont
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | - Teodora Ribarska
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Xavier Tekpli
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Mario Saare
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Benedicte Alexandra Lie
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway,*Correspondence: Benedicte Alexandra Lie,
| |
Collapse
|
3
|
Ojima K, Kigaki M, Ichimura E, Suzuki T, Kobayashi K, Muroya S, Nishimura T. Endogenous slow and fast myosin dynamics in myofibers isolated from mice expressing GFP-Myh7 and Kusabira Orange-Myh1. Am J Physiol Cell Physiol 2022; 323:C520-C535. [PMID: 35759444 DOI: 10.1152/ajpcell.00415.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscle consists of slow and fast myofibers in which different myosin isoforms are expressed. Approximately 300 myosins form a single thick filament in the myofibrils, where myosin is continuously exchanged. However, endogenous slow and fast myosin dynamics have not been fully understood. To elucidate those dynamics, here we generated mice expressing green fluorescence protein-tagged slow myosin heavy chain (GFP-Myh7) and Kusabira Orange fluorescence protein-tagged fast myosin heavy chain (KuO-Myh1). First, these mice enabled us to distinguish between GFP- and KuO-myofibers under fluorescence microscopy: GFP-Myh7 and KuO-Myh1 were exclusively expressed in slow myofibers and fast myofibers, respectively. Next, to monitor endogenous myosin dynamics, fluorescence recovery after photobleaching (FRAP) was conducted. The mobile fraction (Mf) of GFP-Myh7 and that of KuO-Myh1 were almost constant values independent of the regions of the myofibers and the muscle portions where the myofibers were isolated. Intriguingly, proteasome inhibitor treatment significantly decreased the Mf in GFP-Myh7 but not in KuO-Myh1 myofibers, indicating that the response to a disturbance in protein turnover depended on muscle fiber type. Taken together, the present results indicated that the mice we generated are promising tools not only for distinguishing between GFP- and KuO-myofibers but also for studying the dynamics of endogenous myosin isoforms by live-cell fluorescence imaging.
Collapse
Affiliation(s)
- Koichi Ojima
- Muscle Biology Research Unit, Division of Animal Products Research, Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, Japan
| | - Masahiro Kigaki
- Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Emi Ichimura
- Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takahiro Suzuki
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Ken Kobayashi
- Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Susumu Muroya
- Muscle Biology Research Unit, Division of Animal Products Research, Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, Japan
| | - Takanori Nishimura
- Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
4
|
Biophysical and functional study of CRL5 Ozz, a muscle specific ubiquitin ligase complex. Sci Rep 2022; 12:7820. [PMID: 35551201 PMCID: PMC9098882 DOI: 10.1038/s41598-022-10955-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/15/2022] [Indexed: 01/01/2023] Open
Abstract
Ozz, a member of the SOCS-box family of proteins, is the substrate-binding component of CRL5Ozz, a muscle-specific Cullin-RING ubiquitin ligase complex composed of Elongin B/C, Cullin 5 and Rbx1. CRL5Ozz targets for proteasomal degradation selected pools of substrates, including sarcolemma-associated β-catenin, sarcomeric MyHCemb and Alix/PDCD6IP, which all interact with the actin cytoskeleton. Ubiquitination and degradation of these substrates are required for the remodeling of the contractile sarcomeric apparatus. However, how CRL5Ozz assembles into an active E3 complex and interacts with its substrates remain unexplored. Here, we applied a baculovirus-based expression system to produce large quantities of two subcomplexes, Ozz–EloBC and Cul5–Rbx1. We show that these subcomplexes mixed in a 1:1 ratio reconstitutes a five-components CRL5Ozz monomer and dimer, but that the reconstituted complex interacts with its substrates only as monomer. The in vitro assembled CRL5Ozz complex maintains the capacity to polyubiquitinate each of its substrates, indicating that the protein production method used in these studies is well-suited to generate large amounts of a functional CRL5Ozz. Our findings highlight a mode of assembly of the CRL5Ozz that differs in presence or absence of its cognate substrates and grant further structural studies.
Collapse
|
5
|
Ichimura E, Ojima K, Muroya S, Kobayashi K, Nishimura T. Thick filament-associated myosin undergoes frequent replacement at the tip of the thick filament. FEBS Open Bio 2022; 12:852-863. [PMID: 35138697 PMCID: PMC8972040 DOI: 10.1002/2211-5463.13379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 11/08/2022] Open
Abstract
Myosin plays a fundamental role in muscle contraction. Approximately 300 myosins form a bipolar thick filament, in which myosin is continuously replaced by protein turnover. However, it is unclear how rapidly this process occurs and whether the myosin exchange rate differs depending on the region of the thick filament. To answer this question, we first measured myosin release and insertion rates over a short period and monitored myotubes expressing a photoconvertible fluorescence protein-tagged myosin, which enabled us to monitor myosin release and insertion simultaneously. About 20% of myosins were replaced within 10 min, while 70% of myosins were exchanged over 10 h with symmetrical and biphasic alteration of myosin release and insertion rates. Next, a fluorescence pulse-chase assay was conducted to investigate whether myosin is incorporated into specific regions in the thick filament. Newly synthesized myosin was located at the tip of the thick filament rather than the center in the first 7 min of pulse-chase labeling and was observed in the remainder of the thick filament by 30 min. These results suggest that the myosin replacement rate differs depending on the regions of the thick filament. We concluded that myosin release and insertion occur concurrently and that myosin is more frequently exchanged at the tip of the thick filament.
Collapse
Affiliation(s)
- Emi Ichimura
- Research Faculty of AgricultureGraduate School of AgricultureHokkaido UniversitySapporoJapan
| | - Koichi Ojima
- Muscle Biology Research UnitDivision of Animal Products ResearchInstitute of Livestock and Grassland Science, NAROTsukubaJapan
| | - Susumu Muroya
- Muscle Biology Research UnitDivision of Animal Products ResearchInstitute of Livestock and Grassland Science, NAROTsukubaJapan
| | - Ken Kobayashi
- Research Faculty of AgricultureGraduate School of AgricultureHokkaido UniversitySapporoJapan
| | - Takanori Nishimura
- Research Faculty of AgricultureGraduate School of AgricultureHokkaido UniversitySapporoJapan
| |
Collapse
|
6
|
Takegaki J, Sase K, Kono Y, Nakano D, Fujita T, Konishi S, Fujita S. Intramuscular injection of mesenchymal stem cells activates anabolic and catabolic systems in mouse skeletal muscle. Sci Rep 2021; 11:21224. [PMID: 34707171 PMCID: PMC8551189 DOI: 10.1038/s41598-021-00627-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/01/2021] [Indexed: 01/06/2023] Open
Abstract
Skeletal muscle mass is critical for good quality of life. Mesenchymal stem cells (MSCs) are multipotent stem cells distributed across various tissues. They are characterized by the capacity to secrete growth factors and differentiate into skeletal muscle cells. These capabilities suggest that MSCs might be beneficial for muscle growth. Nevertheless, little is known regarding the effects on muscle protein anabolic and catabolic systems of intramuscular injection of MSCs into skeletal muscle. Therefore, in the present study, we measured changes in mechanistic target of rapamycin complex 1 (mTORC1) signaling, the ubiquitin–proteasome system, and autophagy-lysosome system-related factors after a single intramuscular injection of MSCs with green fluorescence protein (GFP) into mouse muscles. The intramuscularly-injected MSCs were retained in the gastrocnemius muscle for 7 days after the injection, indicated by detection of GFP and expression of platelet-derived growth factor receptor-alpha. The injection of MSCs increased the expression of satellite cell-related genes, activated mTORC1 signaling and muscle protein synthesis, and increased protein ubiquitination and autophagosome formation (indicated by the expression of microtubule-associated protein 1 light chain 3-II). These results suggest that the intramuscular injection of MSCs activated muscle anabolic and catabolic systems and accelerated muscle protein turnover.
Collapse
Affiliation(s)
- Junya Takegaki
- Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan.,Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Kohei Sase
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Yusuke Kono
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Daiki Nakano
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Takuya Fujita
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Satoshi Konishi
- Faculty of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Satoshi Fujita
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
7
|
Ichimura E, Ojima K, Muroya S, Suzuki T, Kobayashi K, Nishimura T. The ubiquitin ligase Ozz decreases the replacement rate of embryonic myosin in myofibrils. Physiol Rep 2021; 9:e15003. [PMID: 34435451 PMCID: PMC8387782 DOI: 10.14814/phy2.15003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 01/26/2023] Open
Abstract
Myosin, the most abundant myofibrillar protein in skeletal muscle, functions as a motor protein in muscle contraction. Myosin polymerizes into the thick filaments in the sarcomere where approximately 50% of embryonic myosin (Myh3) are replaced within 3 h (Ojima K, Ichimura E, Yasukawa Y, Wakamatsu J, Nishimura T, Am J Physiol Cell Physiol 309: C669-C679, 2015). The sarcomere structure including the thick filament is maintained by a balance between protein biosynthesis and degradation. However, the involvement of a protein degradation system in the myosin replacement process remains unclear. Here, we show that the muscle-specific ubiquitin ligase Ozz regulates replacement rate of Myh3. To examine the direct effect of Ozz on myosin replacement, eGFP-Myh3 replacement rate was measured in myotubes overexpressing Ozz by fluorescence recovery after photobleaching. Ozz overexpression significantly decreased the replacement rate of eGFP-Myh3 in the myofibrils, whereas it had no effect on other myosin isoforms. It is likely that ectopic Ozz promoted myosin degradation through increment of ubiquitinated myosin, and decreased myosin supply for replacement, thereby reducing myosin replacement rate. Intriguingly, treatment with a proteasome inhibitor MG132 also decreased myosin replacement rate, although MG132 enhanced the accumulation of ubiquitinated myosin in the cytosol where replaceable myosin is pooled, suggesting that ubiquitinated myosin is not replaced by myosin in the myofibril. Collectively, our findings showed that Myh3 replacement rate was reduced in the presence of overexpressed Ozz probably through enhanced ubiquitination and degradation of Myh3 by Ozz.
Collapse
Affiliation(s)
- Emi Ichimura
- Research Faculty of AgricultureGraduate School of AgricultureHokkaido UniversitySapporoJapan
| | - Koichi Ojima
- Muscle Biology Research UnitDivision of Animal Products ResearchInstitute of Livestock and Grassland ScienceNAROTsukubaJapan
| | - Susumu Muroya
- Muscle Biology Research UnitDivision of Animal Products ResearchInstitute of Livestock and Grassland ScienceNAROTsukubaJapan
| | - Takahiro Suzuki
- Research Faculty of AgricultureGraduate School of AgricultureHokkaido UniversitySapporoJapan
- Department of Bioresource SciencesFaculty of AgricultureKyushu UniversityFukuokaJapan
| | - Ken Kobayashi
- Research Faculty of AgricultureGraduate School of AgricultureHokkaido UniversitySapporoJapan
| | - Takanori Nishimura
- Research Faculty of AgricultureGraduate School of AgricultureHokkaido UniversitySapporoJapan
| |
Collapse
|
8
|
Blondelle J, Biju A, Lange S. The Role of Cullin-RING Ligases in Striated Muscle Development, Function, and Disease. Int J Mol Sci 2020; 21:E7936. [PMID: 33114658 PMCID: PMC7672578 DOI: 10.3390/ijms21217936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
The well-orchestrated turnover of proteins in cross-striated muscles is one of the fundamental processes required for muscle cell function and survival. Dysfunction of the intricate protein degradation machinery is often associated with development of cardiac and skeletal muscle myopathies. Most muscle proteins are degraded by the ubiquitin-proteasome system (UPS). The UPS involves a number of enzymes, including E3-ligases, which tightly control which protein substrates are marked for degradation by the proteasome. Recent data reveal that E3-ligases of the cullin family play more diverse and crucial roles in cross striated muscles than previously anticipated. This review highlights some of the findings on the multifaceted functions of cullin-RING E3-ligases, their substrate adapters, muscle protein substrates, and regulatory proteins, such as the Cop9 signalosome, for the development of cross striated muscles, and their roles in the etiology of myopathies.
Collapse
Affiliation(s)
- Jordan Blondelle
- Department of Medicine, University of California, La Jolla, CA 92093, USA
| | - Andrea Biju
- Department of Medicine, University of California, La Jolla, CA 92093, USA
| | - Stephan Lange
- Department of Medicine, University of California, La Jolla, CA 92093, USA
- Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| |
Collapse
|
9
|
Shaping Striated Muscles with Ubiquitin Proteasome System in Health and Disease. Trends Mol Med 2019; 25:760-774. [PMID: 31235369 DOI: 10.1016/j.molmed.2019.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/03/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023]
Abstract
For long-lived contractile cells, such as striated muscle cells, maintaining proteome integrity is a challenging task. These cells require hundreds of components that must be properly synthesized, folded, and incorporated into the basic contractile unit, the sarcomere. Muscle protein quality control in cells is mainly guaranteed by the ubiquitin-proteasome system (UPS), the lysosome-autophagy system, and various molecular chaperones. Recent studies establish the concept of dedicated UPS in the regulation of sarcomere assembly during development and in adult life to maintain the intricate and interwoven organization of protein complexes in muscle. Failure of sarcomere protein quality control often represents the basis of severe myopathies and cardiomyopathies in human, further highlighting its importance in producing and maintaining the contractile machinery of muscle cells in shape.
Collapse
|
10
|
Hellerschmied D, Roessler M, Lehner A, Gazda L, Stejskal K, Imre R, Mechtler K, Dammermann A, Clausen T. UFD-2 is an adaptor-assisted E3 ligase targeting unfolded proteins. Nat Commun 2018; 9:484. [PMID: 29396393 PMCID: PMC5797217 DOI: 10.1038/s41467-018-02924-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 01/09/2018] [Indexed: 11/09/2022] Open
Abstract
Muscle development requires the coordinated activities of specific protein folding and degradation factors. UFD-2, a U-box ubiquitin ligase, has been reported to play a central role in this orchestra regulating the myosin chaperone UNC-45. Here, we apply an integrative in vitro and in vivo approach to delineate the substrate-targeting mechanism of UFD-2 and elucidate its distinct mechanistic features as an E3/E4 enzyme. Using Caenorhabditis elegans as model system, we demonstrate that UFD-2 is not regulating the protein levels of UNC-45 in muscle cells, but rather shows the characteristic properties of a bona fide E3 ligase involved in protein quality control. Our data demonstrate that UFD-2 preferentially targets unfolded protein segments. Moreover, the UNC-45 chaperone can serve as an adaptor protein of UFD-2 to poly-ubiquitinate unfolded myosin, pointing to a possible role of the UFD-2/UNC-45 pair in maintaining proteostasis in muscle cells.
Collapse
Affiliation(s)
- Doris Hellerschmied
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Max Roessler
- Max F. Perutz Laboratories (MFPL), University of Vienna, Doktor-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Anita Lehner
- Vienna Biocenter Core Facilities, Doktor-Bohr-Gasse 3, 1030, Vienna, Austria
| | - Linn Gazda
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Karel Stejskal
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Richard Imre
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Alexander Dammermann
- Max F. Perutz Laboratories (MFPL), University of Vienna, Doktor-Bohr-Gasse 9, 1030, Vienna, Austria.
| | - Tim Clausen
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria.
- Medical University of Vienna, Vienna BioCenter (VBC), 1030, Vienna, Austria.
| |
Collapse
|
11
|
Liu S, Boulianne GL. The NHR domains of Neuralized and related proteins: Beyond Notch signalling. Cell Signal 2017; 29:62-68. [DOI: 10.1016/j.cellsig.2016.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/03/2016] [Accepted: 10/12/2016] [Indexed: 11/17/2022]
|
12
|
Polge C, Koulmann N, Claustre A, Jarzaguet M, Serrurier B, Combaret L, Béchet D, Bigard X, Attaix D, Taillandier D. UBE2D2 is not involved in MuRF1-dependent muscle wasting during hindlimb suspension. Int J Biochem Cell Biol 2016; 79:488-493. [PMID: 27378730 DOI: 10.1016/j.biocel.2016.06.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/14/2016] [Accepted: 06/28/2016] [Indexed: 01/07/2023]
Abstract
The Ubiquitin Proteasome System (UPS) is mainly responsible for the increased protein breakdown observed in muscle wasting. The E3 ligase MuRF1 is so far the only enzyme known to direct the main contractile proteins for degradation (i.e. troponin I, myosin heavy chains and actin). However, MuRF1 does not possess any catalytic activity and thus depends on the presence of a dedicated E2 for catalyzing the covalent binding of polyubiquitin (polyUb) chains on the substrates. The E2 enzymes belonging to the UBE2D family are commonly used for in vitro ubiquitination assays but no experimental data suggesting their physiological role as bona fide MuRF1-interacting E2 enzymes are available. In this work, we first found that the mRNA levels of critical E3 enzymes implicated in the atrophying program (MuRF1, MAFbx, Nedd4 and to a lesser extent Mdm2) are tightly and rapidly controlled during the atrophy (up regulation) and recovery (down regulation) phases in the soleus muscle from hindlimb suspended rats. By contrast, E3 ligases (Ozz, ASB2β and E4b) implicated in other processes (muscle development or regeneration) poorly responded to atrophy and recovery. UBE2B, an E2 enzyme systematically up regulated in various catabolic situations, was controlled at the mRNA levels like the E3s implicated in the atrophying process. By contrast, UBE2D2 was progressively repressed during atrophy and recovery, which makes it a poor candidate for a role during muscle atrophy. In addition, UBE2D2 did not exhibit any affinity with MuRF1 using either yeast two-hybrid or Surface Plasmon Resonance (SPR) approaches. Finally, UBE2D2 was unable to promote the degradation of the MuRF1 substrate α-actin in HEK293T cells, suggesting that no functional interaction exists between these enzymes within a cellular context. Altogether, our data strongly suggest that UBE2D2 is not the cognate ubiquitinating enzyme for MuRF1 and that peculiar properties of UBE2D enzymes may have biased in vitro ubiquitination assays.
Collapse
Affiliation(s)
- Cécile Polge
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1019, Unité de Nutrition Humaine (UNH), Centre de Recherche en Nutrition Humaine (CNRH) Auvergne, Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, UNH, BP 10448, Clermont-Ferrand, France
| | - Nathalie Koulmann
- Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Antenne de La Tronche, BP 87, 38702, La Tronche Cedex, France
| | - Agnès Claustre
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1019, Unité de Nutrition Humaine (UNH), Centre de Recherche en Nutrition Humaine (CNRH) Auvergne, Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, UNH, BP 10448, Clermont-Ferrand, France
| | - Marianne Jarzaguet
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1019, Unité de Nutrition Humaine (UNH), Centre de Recherche en Nutrition Humaine (CNRH) Auvergne, Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, UNH, BP 10448, Clermont-Ferrand, France
| | - Bernard Serrurier
- Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Antenne de La Tronche, BP 87, 38702, La Tronche Cedex, France
| | - Lydie Combaret
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1019, Unité de Nutrition Humaine (UNH), Centre de Recherche en Nutrition Humaine (CNRH) Auvergne, Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, UNH, BP 10448, Clermont-Ferrand, France
| | - Daniel Béchet
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1019, Unité de Nutrition Humaine (UNH), Centre de Recherche en Nutrition Humaine (CNRH) Auvergne, Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, UNH, BP 10448, Clermont-Ferrand, France
| | - Xavier Bigard
- Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Antenne de La Tronche, BP 87, 38702, La Tronche Cedex, France; French Anti-Doping Agency, Paris, France
| | - Didier Attaix
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1019, Unité de Nutrition Humaine (UNH), Centre de Recherche en Nutrition Humaine (CNRH) Auvergne, Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, UNH, BP 10448, Clermont-Ferrand, France
| | - Daniel Taillandier
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1019, Unité de Nutrition Humaine (UNH), Centre de Recherche en Nutrition Humaine (CNRH) Auvergne, Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, UNH, BP 10448, Clermont-Ferrand, France.
| |
Collapse
|
13
|
Campos Y, Qiu X, Gomero E, Wakefield R, Horner L, Brutkowski W, Han YG, Solecki D, Frase S, Bongiovanni A, d'Azzo A. Alix-mediated assembly of the actomyosin-tight junction polarity complex preserves epithelial polarity and epithelial barrier. Nat Commun 2016; 7:11876. [PMID: 27336173 PMCID: PMC4931029 DOI: 10.1038/ncomms11876] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 05/09/2016] [Indexed: 02/07/2023] Open
Abstract
Maintenance of epithelial cell polarity and epithelial barrier relies on the spatial organization of the actin cytoskeleton and proper positioning/assembly of intercellular junctions. However, how these processes are regulated is poorly understood. Here we reveal a key role for the multifunctional protein Alix in both processes. In a knockout mouse model of Alix, we identified overt structural changes in the epithelium of the choroid plexus and in the ependyma, such as asymmetrical cell shape and size, misplacement and abnormal beating of cilia, blebbing of the microvilli. These defects culminate in excessive cell extrusion, enlargement of the lateral ventricles and hydrocephalus. Mechanistically, we find that by interacting with F-actin, the Par complex and ZO-1, Alix ensures the formation and maintenance of the apically restricted actomyosin-tight junction complex. We propose that in this capacity Alix plays a role in the establishment of apical-basal polarity and in the maintenance of the epithelial barrier.
Collapse
Affiliation(s)
- Yvan Campos
- Department of Genetics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Xiaohui Qiu
- Department of Genetics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Elida Gomero
- Department of Genetics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Randall Wakefield
- Cellular Imaging Shared Resource, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Linda Horner
- Cellular Imaging Shared Resource, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Wojciech Brutkowski
- Laboratory of Imaging Tissue Structure and Function, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Young-Goo Han
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - David Solecki
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Sharon Frase
- Cellular Imaging Shared Resource, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Antonella Bongiovanni
- Institute of Biomedicine and Molecular Immunology, National Research Council, 90146 Palermo, Italy
| | - Alessandra d'Azzo
- Department of Genetics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| |
Collapse
|
14
|
Malavaki CJ, Sakkas GK, Mitrou GI, Kalyva A, Stefanidis I, Myburgh KH, Karatzaferi C. Skeletal muscle atrophy: disease-induced mechanisms may mask disuse atrophy. J Muscle Res Cell Motil 2016; 36:405-21. [DOI: 10.1007/s10974-015-9439-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/08/2015] [Indexed: 01/07/2023]
|
15
|
Sakaguchi S, Shono JI, Suzuki T, Sawano S, Anderson JE, Do MKQ, Ohtsubo H, Mizunoya W, Sato Y, Nakamura M, Furuse M, Yamada K, Ikeuchi Y, Tatsumi R. Implication of anti-inflammatory macrophages in regenerative moto-neuritogenesis: promotion of myoblast migration and neural chemorepellent semaphorin 3A expression in injured muscle. Int J Biochem Cell Biol 2014; 54:272-85. [PMID: 24886696 DOI: 10.1016/j.biocel.2014.05.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/06/2014] [Accepted: 05/22/2014] [Indexed: 02/06/2023]
Abstract
Regenerative mechanisms that regulate intramuscular motor innervation are thought to reside in the spatiotemporal expression of axon-guidance molecules. Our previous studies proposed a heretofore unexplored role of resident myogenic stem cell (satellite cell)-derived myoblasts as a key presenter of a secreted neural chemorepellent semaphorin 3A (Sema3A); hepatocyte growth factor (HGF) triggered its expression exclusively at the early-differentiation phase. In order to verify this concept, the present study was designed to clarify a paracrine source of HGF release. In vitro experiments demonstrated that activated anti-inflammatory macrophages (CD206-positive M2) produce HGF and thereby promote myoblast chemoattraction and Sema3A expression. Media from pro-inflammatory macrophage cultures (M1) did not show any significant effect. M2 also enhanced the expression of myoblast-differentiation markers in culture, and infiltrated predominantly at the early-differentiation phase (3-5 days post-injury); M2 were confirmed to produce HGF as monitored by in vivo/ex vivo immunocytochemistry of CD11b/CD206/HGF-positive cells and by HGF in situ hybridization of cardiotoxin- or crush-injured tibialis anterior muscle, respectively. These studies advance our understanding of the stage-specific activation of Sema3A expression signaling. Findings, therefore, encourage the idea that M2 contribute to spatiotemporal up-regulation of extracellular Sema3A concentrations by producing HGF that, in turn, stimulates a burst of Sema3A secretion by myoblasts that are recruited to site of injury. This model may ensure a coordinated delay in re-attachment of motoneuron terminals onto damaged fibers early in muscle regeneration, and thus synchronize the recovery of muscle-fiber integrity and the early resolution of inflammation after injury.
Collapse
Affiliation(s)
- Shohei Sakaguchi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 8128581, Japan
| | - Jun-ichi Shono
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 8128581, Japan
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 8128581, Japan
| | - Shoko Sawano
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 8128581, Japan
| | - Judy E Anderson
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Mai-Khoi Q Do
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 8128581, Japan
| | - Hideaki Ohtsubo
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 8128581, Japan
| | - Wataru Mizunoya
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 8128581, Japan
| | - Yusuke Sato
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 8128581, Japan
| | - Mako Nakamura
- Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 8128581, Japan
| | - Mitsuhiro Furuse
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 8128581, Japan
| | - Koji Yamada
- Department of Food Science and Biotechnology, Graduate School of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 8128581, Japan
| | - Yoshihide Ikeuchi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 8128581, Japan
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 8128581, Japan.
| |
Collapse
|
16
|
Romancino DP, Paterniti G, Campos Y, De Luca A, Di Felice V, d'Azzo A, Bongiovanni A. Identification and characterization of the nano-sized vesicles released by muscle cells. FEBS Lett 2013; 587:1379-84. [PMID: 23523921 DOI: 10.1016/j.febslet.2013.03.012] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/22/2013] [Accepted: 03/07/2013] [Indexed: 10/27/2022]
Abstract
Several cell types secrete small membranous vesicles that contain cell-specific collections of proteins, lipids, and genetic material. The function of these vesicles is to allow cell-to-cell signaling and the horizontal transfer of their cargo molecules. Here, we demonstrate that muscle cells secrete nano-sized vesicles and that their release increases during muscle differentiation. Analysis of these nanovesicles allowed us to characterize them as exosome-like particles and to define the potential role of the multifunctional protein Alix in their biogenesis.
Collapse
Affiliation(s)
- Daniele P Romancino
- Institute of Biomedicine and Molecular Immunology A. Monroy (IBIM), National Research Council (CNR), Palermo, Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
Interferon-γ causes cardiac myocyte atrophy via selective degradation of myosin heavy chain in a model of chronic myocarditis. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:2038-46. [PMID: 23058369 DOI: 10.1016/j.ajpath.2012.08.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 08/09/2012] [Accepted: 08/30/2012] [Indexed: 11/23/2022]
Abstract
Interferon-γ (IFN-γ), a proinflammatory cytokine, has been implicated in the pathogenesis of a number of forms of heart disease including myocarditis and congestive heart failure. In fact, overexpression of IFN-γ in mice causes dilated cardiomyopathy. However, the direct effects of IFN-γ on cardiac myocytes and the mechanism by which it causes cardiac dysfunction have not been described. Here, we present the molecular pathology of IFN-γ exposure and its effect on myofibrillar proteins in isolated neonatal rat ventricular myocytes. Treatment with IFN-γ caused cardiac myocyte atrophy attributable to a specific decrease in myosin heavy chain protein. This selective degradation of myosin heavy chain was not accompanied by a decrease in total protein synthesis or by an increase in total protein degradation. IFN-γ increased both proteasome and immunoproteasome activity in cardiac myocytes and their inhibition blocked myosin heavy chain loss and myocyte atrophy, whereas inhibition of the lysosome or autophagosome did not. Collectively, these results provide a mechanism by which IFN-γ causes cardiac pathology in the setting of chronic inflammatory diseases.
Collapse
|
18
|
Bongiovanni A, Romancino DP, Campos Y, Paterniti G, Qiu X, Moshiach S, Di Felice V, Vergani N, Ustek D, d'Azzo A. Alix protein is substrate of Ozz-E3 ligase and modulates actin remodeling in skeletal muscle. J Biol Chem 2012; 287:12159-71. [PMID: 22334701 DOI: 10.1074/jbc.m111.297036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Alix/AIP1 is a multifunctional adaptor protein that participates in basic cellular processes, including membrane trafficking and actin cytoskeleton assembly, by binding selectively to a variety of partner proteins. However, the mechanisms regulating Alix turnover, subcellular distribution, and function in muscle cells are unknown. We now report that Alix is expressed in skeletal muscle throughout myogenic differentiation. In myotubes, a specific pool of Alix colocalizes with Ozz, the substrate-binding component of the muscle-specific ubiquitin ligase complex Ozz-E3. We found that interaction of the two endogenous proteins in the differentiated muscle fibers changes Alix conformation and promotes its ubiquitination. This in turn regulates the levels of the protein in specific subcompartments, in particular the one containing the actin polymerization factor cortactin. In Ozz(-/-) myotubes, the levels of filamentous (F)-actin is perturbed, and Alix accumulates in large puncta positive for cortactin. In line with this observation, we show that the knockdown of Alix expression in C2C12 muscle cells affects the amount and distribution of F-actin, which consequently leads to changes in cell morphology, impaired formation of sarcolemmal protrusions, and defective cell motility. These findings suggest that the Ozz-E3 ligase regulates Alix at sites where the actin cytoskeleton undergoes remodeling.
Collapse
Affiliation(s)
- Antonella Bongiovanni
- Institute of Biomedicine and Molecular Immunology, National Research Council, 90146 Palermo, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mammen AL, Mahoney JA, St. Germain A, Badders N, Taylor JP, Rosen A, Spinette S. A novel conserved isoform of the ubiquitin ligase UFD2a/UBE4B is expressed exclusively in mature striated muscle cells. PLoS One 2011; 6:e28861. [PMID: 22174917 PMCID: PMC3235170 DOI: 10.1371/journal.pone.0028861] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 11/16/2011] [Indexed: 12/29/2022] Open
Abstract
Yeast Ufd2p was the first identified E4 multiubiquitin chain assembly factor. Its vertebrate homologues later referred to as UFD2a, UBE4B or E4B were also shown to have E3 ubiquitin ligase activity. UFD2a function in the brain has been well established in vivo, and in vitro studies have shown that its activity is essential for proper condensation and segregation of chromosomes during mitosis. Here we show that 2 alternative splice forms of UFD2a, UFD2a-7 and -7/7a, are expressed sequentially during myoblast differentiation of C2C12 cell cultures and during cardiotoxin-induced regeneration of skeletal muscle in mice. UFD2a-7 contains an alternate exon 7, and UFD2a-7/7a, the larger of the 2 isoforms, contains an additional novel exon 7a. Analysis of protein or mRNA expression in mice and zebrafish revealed that a similar pattern of isoform switching occurs during developmental myogenesis of cardiac and skeletal muscle. In vertebrates (humans, rodents, zebrafish), UFD2a-7/7a is expressed only in mature striated muscle. This unique tissue specificity is further validated by the conserved presence of 2 muscle-specific splicing regulatory motifs located in the 3' introns of exons 7 and 7a. UFD2a interacts with VCP/p97, an AAA-type ATPase implicated in processes whose functions appear to be regulated, in part, through their interaction with one or more of 15 previously identified cofactors. UFD2a-7/7a did not interact with VCP/p97 in yeast 2-hybrid experiments, which may allow the ATPase to bind cofactors that facilitate its muscle-specific functions. We conclude that the regulated expression of these UFD2a isoforms most likely imparts divergent functions that are important for myogenisis.
Collapse
Affiliation(s)
- Andrew L. Mammen
- Johns Hopkins University School of Medicine, Department of Medicine, Division of Rheumatology, Baltimore, Maryland, United States of America
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, Maryland, United States of America
| | - James A. Mahoney
- Johns Hopkins University School of Medicine, Department of Medicine, Division of Rheumatology, Baltimore, Maryland, United States of America
| | - Amanda St. Germain
- Department of Biology, Rhode Island College, Providence, Rhode Island, United States of America
| | - Nisha Badders
- Department of Developmental Neurobiology, St. Jude's Children's Research Hospital, Memphis, Tennessee, United States of America
| | - J. Paul Taylor
- Department of Developmental Neurobiology, St. Jude's Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Antony Rosen
- Johns Hopkins University School of Medicine, Department of Medicine, Division of Rheumatology, Baltimore, Maryland, United States of America
| | - Sarah Spinette
- Department of Biology, Rhode Island College, Providence, Rhode Island, United States of America
| |
Collapse
|
20
|
Polge C, Heng AE, Jarzaguet M, Ventadour S, Claustre A, Combaret L, Béchet D, Matondo M, Uttenweiler-Joseph S, Monsarrat B, Attaix D, Taillandier D. Muscle actin is polyubiquitinylated in vitro and in vivo and targeted for breakdown by the E3 ligase MuRF1. FASEB J 2011; 25:3790-802. [PMID: 21764995 DOI: 10.1096/fj.11-180968] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Muscle atrophy prevails in numerous diseases (cancer cachexia, renal failure, infections, etc.), mainly results from elevated proteolysis, and is accelerated by bed rest. This largely contributes to increased health costs. Devising new strategies to prevent muscle wasting is a major clinical challenge. The ubiquitin proteasome system (UPS) degrades myofibrillar proteins, but the precise mechanisms responsible for actin breakdown are surprisingly poorly characterized. We report that chimeric flag-actin was destabilized and polyubiquitinylated in stably transfected C2C12 myotubes treated with the catabolic agent dexamethasone (1 μM) and that only proteasome inhibitors blocked its breakdown. Actin polyubiquitinylation was also detected in wild-type C2C12 myotubes and human muscle biopsies from control participants and patients with cancer. The muscle-specific E3 ubiquitin ligase MuRF1 is up-regulated in catabolic conditions and polyubiquitinylates components of the thick filament. We also demonstrate that recombinant GST-MuRF1 physically interacted and polyubiquitinylated actin in vitro and that MuRF1 is a critical component for actin breakdown, since MuRF1 siRNA stabilized flag-actin. These data identify unambiguously the abundant contractile protein actin as a target of the UPS in skeletal muscle both in vitro and in vivo, further supporting the need for new strategies blocking specifically the activation of this pathway in muscle wasting conditions.
Collapse
Affiliation(s)
- Cécile Polge
- Institut National de Recherche Agronomique, Unité Mixte de Recherche 1019, Unité de Nutrition Humaine, Centre de Recherche en Nutrition Humaine Auvergne, Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|