1
|
Hecht JT, Chiu F, Veerisetty A, Hossain M, Posey KL. Matrix in Medicine: Health Consequences of Mutant Cartilage Oligomeric Matrix Protein and its relationship to abnormal growth and to joint degeneration. Matrix Biol 2023; 119:101-111. [PMID: 37001593 DOI: 10.1016/j.matbio.2023.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/10/2023] [Accepted: 03/24/2023] [Indexed: 04/01/2023]
Abstract
Cartilage oligomeric matrix protein (COMP), an extracellular matrix protein, has been shown to enhance proliferation and mechanical integrity in the matrix, supporting functions of the growth plate and articular cartilage. Mutations in COMP cause pseudoachondroplasia (PSACH), a severe dwarfing condition associated with premature joint degeneration and significant lifelong joint pain. The MT (mutant)-COMP mouse mimics PSACH with decreased limb growth, early joint degeneration and pain. Ablation of endoplasmic reticulum stress CHOP signaling eliminated pain and prevented joint degeneration. The health effects of mutant COMP are discussed in relation to cellular/chondrocyte stress in the growth plate, articular cartilage and nearby tissues, and the implications for therapeutic approaches. There are many similarities between osteoarthritis and mutant-COMP protein-induced joint degeneration, suggesting that the relevance of findings in the joints may extend beyond PSACH to idiopathic primary OA.
Collapse
|
2
|
Hecht JT, Veerisetty AC, Hossain MG, Chiu F, Posey KL. CurQ+, a Next-Generation Formulation of Curcumin, Ameliorates Growth Plate Chondrocyte Stress and Increases Limb Growth in a Mouse Model of Pseudoachondroplasia. Int J Mol Sci 2023; 24:ijms24043845. [PMID: 36835255 PMCID: PMC9959842 DOI: 10.3390/ijms24043845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/18/2023] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
Mutations in cartilage oligomeric matrix protein (COMP) causes protein misfolding and accumulation in chondrocytes that compromises skeletal growth and joint health in pseudoachondroplasia (PSACH), a severe dwarfing condition. Using the MT-COMP mice, a murine model of PSACH, we showed that pathological autophagy blockage was key to the intracellular accumulation of mutant-COMP. Autophagy is blocked by elevated mTORC1 signaling, preventing ER clearance and ensuring chondrocyte death. We demonstrated that resveratrol reduces the growth plate pathology by relieving the autophagy blockage allowing the ER clearance of mutant-COMP, which partially rescues limb length. To expand potential PSACH treatment options, CurQ+, a uniquely absorbable formulation of curcumin, was tested in MT-COMP mice at doses of 82.3 (1X) and 164.6 mg/kg (2X). CurQ+ treatment of MT-COMP mice from 1 to 4 weeks postnatally decreased mutant COMP intracellular retention, inflammation, restoring both autophagy and chondrocyte proliferation. CurQ+ reduction of cellular stress in growth plate chondrocytes dramatically reduced chondrocyte death, normalized femur length at 2X 164.6 mg/kg and recovered 60% of lost limb growth at 1X 82.3 mg/kg. These results indicate that CurQ+ is a potential therapy for COMPopathy-associated lost limb growth, joint degeneration, and other conditions involving persistent inflammation, oxidative stress, and a block of autophagy.
Collapse
Affiliation(s)
- Jacqueline T. Hecht
- Department of Pediatrics, McGovern Medical School at UTHealth Houston, Houston, TX 77030, USA
- School of Dentistry, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
| | - Alka C. Veerisetty
- Department of Pediatrics, McGovern Medical School at UTHealth Houston, Houston, TX 77030, USA
| | - Mohammad G. Hossain
- Department of Pediatrics, McGovern Medical School at UTHealth Houston, Houston, TX 77030, USA
| | - Frankie Chiu
- Department of Pediatrics, McGovern Medical School at UTHealth Houston, Houston, TX 77030, USA
| | - Karen L. Posey
- Department of Pediatrics, McGovern Medical School at UTHealth Houston, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
3
|
Lamandé SR, Bateman JF. Genetic Disorders of the Extracellular Matrix. Anat Rec (Hoboken) 2019; 303:1527-1542. [PMID: 30768852 PMCID: PMC7318566 DOI: 10.1002/ar.24086] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022]
Abstract
Mutations in the genes for extracellular matrix (ECM) components cause a wide range of genetic connective tissues disorders throughout the body. The elucidation of mutations and their correlation with pathology has been instrumental in understanding the roles of many ECM components. The pathological consequences of ECM protein mutations depend on its tissue distribution, tissue function, and on the nature of the mutation. The prevalent paradigm for the molecular pathology has been that there are two global mechanisms. First, mutations that reduce the production of ECM proteins impair matrix integrity largely due to quantitative ECM defects. Second, mutations altering protein structure may reduce protein secretion but also introduce dominant negative effects in ECM formation, structure and/or stability. Recent studies show that endoplasmic reticulum (ER) stress, caused by mutant misfolded ECM proteins, makes a significant contribution to the pathophysiology. This suggests that targeting ER‐stress may offer a new therapeutic strategy in a range of ECM disorders caused by protein misfolding mutations. Anat Rec, 2019. © 2019 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
Collapse
Affiliation(s)
- Shireen R Lamandé
- Musculoskeletal Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville Victoria, Australia
| | - John F Bateman
- Musculoskeletal Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville Victoria, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville Victoria, Australia
| |
Collapse
|
4
|
Posey KL, Coustry F, Veerisetty AC, Hossain M, Gattis D, Booten S, Alcorn JL, Seth PP, Hecht JT. Antisense Reduction of Mutant COMP Reduces Growth Plate Chondrocyte Pathology. Mol Ther 2017; 25:705-714. [PMID: 28162960 DOI: 10.1016/j.ymthe.2016.12.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 11/28/2016] [Accepted: 12/25/2016] [Indexed: 01/25/2023] Open
Abstract
Mutations in cartilage oligomeric matrix protein cause pseudoachondroplasia, a severe disproportionate short stature disorder. Mutant cartilage oligomeric matrix protein produces massive intracellular retention of cartilage oligomeric matrix protein, stimulating ER and oxidative stresses and inflammation, culminating in post-natal loss of growth plate chondrocytes, which compromises linear bone growth. Treatments for pseudoachondroplasia are limited because cartilage is relatively avascular and considered inaccessible. Here we report successful delivery and treatment using antisense oligonucleotide technology in our transgenic pseudoachondroplasia mouse model. We demonstrate delivery of human cartilage oligomeric matrix protein-specific antisense oligonucleotides to cartilage and reduction of cartilage oligomeric matrix protein expression, which largely alleviates pseudoachondroplasia growth plate chondrocyte pathology. One antisense oligonucleotide reduced steady-state levels of cartilage oligomeric matrix protein mRNA and dampened intracellular retention of mutant cartilage oligomeric matrix protein, leading to a reduction of inflammatory markers and cell death and partial restoration of proliferation. This novel and exciting work demonstrates that antisense-based therapy is a viable approach for treating pseudoachondroplasia and other human cartilage disorders.
Collapse
Affiliation(s)
- Karen L Posey
- Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA.
| | - Francoise Coustry
- Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
| | - Alka C Veerisetty
- Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
| | - Mohammad Hossain
- Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
| | - Danielle Gattis
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - Sheri Booten
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - Joseph L Alcorn
- Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
| | - Punit P Seth
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - Jacqueline T Hecht
- Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
| |
Collapse
|
5
|
Abstract
Introduction: Genetic skeletal diseases (GSDs) are a diverse and complex group of rare genetic conditions that affect the development and homeostasis of the skeleton. Although individually rare, as a group of related diseases, GSDs have an overall prevalence of at least 1 per 4,000 children. There are currently very few specific therapeutic interventions to prevent, halt or modify skeletal disease progression and therefore the generation of new and effective treatments requires novel and innovative research that can identify tractable therapeutic targets and biomarkers of these diseases. Areas covered: Remarkable progress has been made in identifying the genetic basis of the majority of GSDs and in developing relevant model systems that have delivered new knowledge on disease mechanisms and are now starting to identify novel therapeutic targets. This review will provide an overview of disease mechanisms that are shared amongst groups of different GSDs and describe potential therapeutic approaches that are under investigation. Expert opinion: The extensive clinical variability and genetic heterogeneity of GSDs renders this broad group of rare diseases a bench to bedside challenge. However, the evolving hypothesis that clinically different diseases might share common disease mechanisms is a powerful concept that will generate critical mass for the identification and validation of novel therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Michael D Briggs
- Newcastle University, Institute of Genetic Medicine, International Centre for Life , Central Parkway, Newcastle-upon-Tyne, NE1 3BZ, UK
| | - Peter A Bell
- Newcastle University, Institute of Genetic Medicine, International Centre for Life , Newcastle-upon-Tyne, NE1 3BZ, UK
| | - Michael J Wright
- Newcastle University, Institute of Genetic Medicine, International Centre for Life , Newcastle-upon-Tyne, NE1 3BZ, UK
| | - Katarzyna A Pirog
- Newcastle University, Institute of Genetic Medicine, International Centre for Life , Newcastle-upon-Tyne, NE1 3BZ, UK
| |
Collapse
|
6
|
Stevens JW. Swarm chondrosarcoma: a continued resource for chondroblastic-like extracellular matrix and chondrosarcoma biology research. Connect Tissue Res 2013; 54:252-9. [PMID: 23758266 DOI: 10.3109/03008207.2013.806913] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Since its first description over four decades ago, the Swarm chondrosarcoma (Swarm rat chondrosarcoma, SRC) remains a valuable tool for studies of chondroblastic-like extracellular matrix (ECM) biology and as an animal model of human chondrosarcoma of histological grades I-III. Moreover, articular joints and skeletal anomalies such as arthritis as well as cartilage regeneration, skeletal development, tissue engineering, hard tissue tumorigenesis and space flight physiology are advanced through studies in hyaline cartilage-like models. With more than 500 articles published since the first report on the characteristics of mucopolysaccharides (glycosaminoglycans) of the tumor in 1971, several transplantable tumor and cell lines have been developed by multiple laboratories worldwide. This review describes the characterization of SRC tumors and cell lines, including the use of SRC lines as a resource for isolation and characterization of several ECM elements that have become vital for the advancement of our understanding of cartilage biology. Also presented is the importance of pertubation of ECM components and the influence of the tumor microenvironment on disease progression. Therapeutic failure and currently pursued avenues of intervention utilizing the SRC lines in treatment of chondrosarcoma are also discussed.
Collapse
Affiliation(s)
- Jeff W Stevens
- Department of Internal Medicine, Division of Hematology and Oncology, University of Iowa Carver College of Medicine , Iowa City, IA , USA
| |
Collapse
|
7
|
Xie X, Liao L, Gao J, Luo X. A novel COMP mutation in a Chinese patient with pseudoachondroplasia. Gene 2013; 522:102-6. [PMID: 23562786 DOI: 10.1016/j.gene.2013.02.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 02/16/2013] [Accepted: 02/19/2013] [Indexed: 10/27/2022]
Abstract
A 2.75-year-old Chinese boy presented with typical clinical features of pseudoachondroplasia, including disproportionate short-limb short stature, brachydactyly, genu varus and waddling gait. Radiologically, tubular bones were short with widened metaphyses, irregular and small epiphyses; anterior tonguing or beaking of vertebral bodies were characteristic. DNA sequencing analysis of the COMP gene revealed a heterozygous mutation (c.1511G>A, p.Cys504Tyr) in the patient but his parents were unaffected without this genetic change. The missense mutation (c.1511G>A) was not found in 100 healthy controls and has not been reported previously. Our findings expand the spectrum of known mutations in COMP leading to pseudoachondroplasia.
Collapse
Affiliation(s)
- Xuemei Xie
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | | | | | | |
Collapse
|
8
|
Coustry F, Posey KL, Liu P, Alcorn JL, Hecht JT. D469del-COMP retention in chondrocytes stimulates caspase-independent necroptosis. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:738-48. [PMID: 22154936 PMCID: PMC3349870 DOI: 10.1016/j.ajpath.2011.10.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/19/2011] [Accepted: 10/23/2011] [Indexed: 12/31/2022]
Abstract
Mutations in the cartilage oligomeric matrix protein gene (COMP) cause pseudoachondroplasia (PSACH). This dysplasia results from the intracellular retention of mutant COMP protein and premature death of growth-plate chondrocytes. Toward better understanding of these underlying mechanisms, we examined D469del-COMP activation of the unfolded protein response and cell death pathways in rat chondrosarcoma cells. Using an inducible expression system, we examined the effects of D469del-COMP retention after 4 days of mRNA expression and then 5 days without inducing agent. Retention of D469del-COMP stimulated Chop (Ddit3) and Gadd34 (Ppp1r15a) and triggered reactivation of protein translation that exacerbated intracellular retention. High levels of Nox4 and endoplasmic reticulum receptor stress-inducible Ero1β generated reactive oxygen species, causing oxidative stress. Increased expression of Gadd genes and presence of γH2AX indicated that DNA damage was occurring. The presence of cleaved apoptosis inducing factor (tAIF) and the absence of activated caspases indicated that retention of D469del-COMP triggers cell death in chondrocytes by necroptosis, a caspase-independent programmed necrosis. Loss of growth-plate chondrocytes by necroptosis was also found in our pseudoachondroplasia mouse model. These results suggest a model in which D469del-COMP expression induces persistent endoplasmic reticulum stress, oxidative stress, and DNA damage, thus priming chondrocytes for necroptosis. We define for the first time the precise mechanisms underlying D469del-COMP pathology in pseudoachondroplasia and suggest that oxidative stress and AIF may be promising therapeutic targets.
Collapse
Affiliation(s)
- Françoise Coustry
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, Texas
| | - Karen L. Posey
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, Texas
| | - Peiman Liu
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, Texas
| | - Joseph L. Alcorn
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, Texas
| | - Jacqueline T. Hecht
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, Texas
- Shriners Hospital for Children, Houston, Texas
| |
Collapse
|
9
|
Chop (Ddit3) is essential for D469del-COMP retention and cell death in chondrocytes in an inducible transgenic mouse model of pseudoachondroplasia. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:727-37. [PMID: 22154935 DOI: 10.1016/j.ajpath.2011.10.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/19/2011] [Accepted: 10/23/2011] [Indexed: 11/21/2022]
Abstract
Cartilage oligomeric matrix protein (COMP), a secreted glycoprotein synthesized by chondrocytes, regulates proliferation and type II collagen assembly. Mutations in the COMP gene cause pseudoachondroplasia and multiple epiphyseal dysplasia. Previously, we have shown that expression of D469del-COMP in transgenic mice causes intracellular retention of D469del-COMP, thereby recapitulating pseudoachondroplasia chondrocyte pathology. This inducible transgenic D469del-COMP mouse is the only in vivo model to replicate the critical cellular and clinical features of pseudoachondroplasia. Here, we report developmental studies of D469del-COMP-induced chondrocyte pathology from the prenatal period to adolescence. D469del-COMP retention was limited prenatally and did not negatively affect the growth plate until 3 weeks after birth. Results of immunostaining, transcriptome analysis, and qRT-PCR suggest a molecular model in which D469del-COMP triggers apoptosis during the first postnatal week. By 3 weeks (when most chondrocytes are retaining D469del-COMP), inflammation, oxidative stress, and DNA damage contribute to chondrocyte cell death by necroptosis. Importantly, by crossing the D469del-COMP mouse onto a Chop null background (Ddit3 null), thereby eliminating Chop, the unfolded protein response was disrupted, thus alleviating both D469del-COMP intracellular retention and premature chondrocyte cell death. Chop therefore plays a significant role in processes that mediate D469del-COMP retention. Taken together, these results suggest that there may be an optimal window before the induction of significant D469del-COMP retention during which endoplasmic reticulum stress could be targeted.
Collapse
|
10
|
Abstract
Thrombospondins are evolutionarily conserved, calcium-binding glycoproteins that undergo transient or longer-term interactions with other extracellular matrix components. They share properties with other matrix molecules, cytokines, adaptor proteins, and chaperones, modulate the organization of collagen fibrils, and bind and localize an array of growth factors or proteases. At cell surfaces, interactions with an array of receptors activate cell-dependent signaling and phenotypic outcomes. Through these dynamic, pleiotropic, and context-dependent pathways, mammalian thrombospondins contribute to wound healing and angiogenesis, vessel wall biology, connective tissue organization, and synaptogenesis. We overview the domain organization and structure of thrombospondins, key features of their evolution, and their cell biology. We discuss their roles in vivo, associations with human disease, and ongoing translational applications. In many respects, we are only beginning to appreciate the important roles of these proteins in physiology and pathology.
Collapse
Affiliation(s)
- Josephine C Adams
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom.
| | | |
Collapse
|