4
|
Leiblich A, Hellberg JEEU, Sekar A, Gandy C, Mendes CC, Redhai S, Mason J, Wainwright M, Marie P, Goberdhan DCI, Hamdy FC, Wilson C. Mating induces switch from hormone-dependent to hormone-independent steroid receptor-mediated growth in Drosophila secondary cells. PLoS Biol 2019; 17:e3000145. [PMID: 31589603 PMCID: PMC6797231 DOI: 10.1371/journal.pbio.3000145] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 10/17/2019] [Accepted: 09/16/2019] [Indexed: 01/19/2023] Open
Abstract
Male reproductive glands like the mammalian prostate and the paired Drosophila melanogaster accessory glands secrete seminal fluid components that enhance fecundity. In humans, the prostate, stimulated by environmentally regulated endocrine and local androgens, grows throughout adult life. We previously showed that in fly accessory glands, secondary cells (SCs) and their nuclei also grow in adults, a process enhanced by mating and controlled by bone morphogenetic protein (BMP) signalling. Here, we demonstrate that BMP-mediated SC growth is dependent on the receptor for the developmental steroid ecdysone, whose concentration is reported to reflect sociosexual experience in adults. BMP signalling appears to regulate ecdysone receptor (EcR) levels via one or more mechanisms involving the EcR's N terminus or the RNA sequence that encodes it. Nuclear growth in virgin males is dependent on ecdysone, some of which is synthesised in SCs. However, mating induces additional BMP-mediated nuclear growth via a cell type-specific form of hormone-independent EcR signalling, which drives genome endoreplication in a subset of adult SCs. Switching to hormone-independent endoreplication after mating allows growth and secretion to be hyperactivated independently of ecdysone levels in SCs, permitting more rapid replenishment of the accessory gland luminal contents. Our data suggest mechanistic parallels between this physiological, behaviour-induced signalling switch and altered pathological signalling associated with prostate cancer progression.
Collapse
Affiliation(s)
- Aaron Leiblich
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | | | - Aashika Sekar
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Carina Gandy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Claudia C. Mendes
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Siamak Redhai
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - John Mason
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Mark Wainwright
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Pauline Marie
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Deborah C. I. Goberdhan
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Freddie C. Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Clive Wilson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Gruber TA, Gedman AL, Zhang J, Koss CS, Marada S, Ta HQ, Chen SC, Su X, Ogden SK, Dang J, Wu G, Gupta V, Andersson AK, Pounds S, Shi L, Easton J, Barbato MI, Mulder HL, Manne J, Wang J, Rusch M, Ranade S, Ganti R, Parker M, Ma J, Radtke I, Ding L, Cazzaniga G, Biondi A, Kornblau SM, Ravandi F, Kantarjian H, Nimer SD, Döhner K, Döhner H, Ley TJ, Ballerini P, Shurtleff S, Tomizawa D, Adachi S, Hayashi Y, Tawa A, Shih LY, Liang DC, Rubnitz JE, Pui CH, Mardis ER, Wilson RK, Downing JR. An Inv(16)(p13.3q24.3)-encoded CBFA2T3-GLIS2 fusion protein defines an aggressive subtype of pediatric acute megakaryoblastic leukemia. Cancer Cell 2012; 22:683-97. [PMID: 23153540 PMCID: PMC3547667 DOI: 10.1016/j.ccr.2012.10.007] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/05/2012] [Accepted: 10/17/2012] [Indexed: 01/12/2023]
Abstract
To define the mutation spectrum in non-Down syndrome acute megakaryoblastic leukemia (non-DS-AMKL), we performed transcriptome sequencing on diagnostic blasts from 14 pediatric patients and validated our findings in a recurrency/validation cohort consisting of 34 pediatric and 28 adult AMKL samples. Our analysis identified a cryptic chromosome 16 inversion (inv(16)(p13.3q24.3)) in 27% of pediatric cases, which encodes a CBFA2T3-GLIS2 fusion protein. Expression of CBFA2T3-GLIS2 in Drosophila and murine hematopoietic cells induced bone morphogenic protein (BMP) signaling and resulted in a marked increase in the self-renewal capacity of hematopoietic progenitors. These data suggest that expression of CBFA2T3-GLIS2 directly contributes to leukemogenesis.
Collapse
MESH Headings
- Animals
- Bone Morphogenetic Proteins/metabolism
- Child
- Chromosome Inversion
- Chromosomes, Human, Pair 16
- Drosophila/genetics
- Drosophila/growth & development
- Gene Expression Profiling
- Humans
- Kruppel-Like Transcription Factors/genetics
- Leukemia, Megakaryoblastic, Acute/classification
- Leukemia, Megakaryoblastic, Acute/diagnosis
- Leukemia, Megakaryoblastic, Acute/genetics
- Mice
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/physiology
- Prognosis
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Recombinant Fusion Proteins/physiology
- Repressor Proteins/genetics
- Sequence Analysis, RNA
- Signal Transduction
- Tumor Suppressor Proteins/genetics
Collapse
Affiliation(s)
- Tanja A. Gruber
- St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project, Memphis, TN, USA and St. Louis, MO, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Amanda Larson Gedman
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jinghui Zhang
- St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project, Memphis, TN, USA and St. Louis, MO, USA
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Cary S. Koss
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Suresh Marada
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Huy Q. Ta
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shann-Ching Chen
- Hartwell Center for Biotechnology and Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaoping Su
- Department of Bioinformatics and Computational Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Stacey K. Ogden
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jinjun Dang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gang Wu
- St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project, Memphis, TN, USA and St. Louis, MO, USA
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Vedant Gupta
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Anna K. Andersson
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lei Shi
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John Easton
- St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project, Memphis, TN, USA and St. Louis, MO, USA
- Pediatric Cancer Genome Project, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael I. Barbato
- St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project, Memphis, TN, USA and St. Louis, MO, USA
- Pediatric Cancer Genome Project, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Heather L. Mulder
- St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project, Memphis, TN, USA and St. Louis, MO, USA
- Pediatric Cancer Genome Project, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jayanthi Manne
- St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project, Memphis, TN, USA and St. Louis, MO, USA
- Pediatric Cancer Genome Project, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jianmin Wang
- St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project, Memphis, TN, USA and St. Louis, MO, USA
- Information Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael Rusch
- St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project, Memphis, TN, USA and St. Louis, MO, USA
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Ramapriya Ganti
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Matthew Parker
- St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project, Memphis, TN, USA and St. Louis, MO, USA
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jing Ma
- St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project, Memphis, TN, USA and St. Louis, MO, USA
- Hartwell Center for Biotechnology and Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ina Radtke
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Li Ding
- St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project, Memphis, TN, USA and St. Louis, MO, USA
- Washington University School of Medicine, Siteman Cancer Center, St. Louis, MO, USA, The Genome Institute at Washington University, St Louis, MO, USA
| | - Giovanni Cazzaniga
- Centro Ricerca Tettamanti, Pediatric Clinic, Univ. Milan Bicocca, Monza, Italy
| | - Andrea Biondi
- Pediatric Unit, University of Milan-Bicocca, San Gerardo Hospital, Monza, Italy
| | - Steven M. Kornblau
- Department of Blood and Marrow Transplantation, University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Farhad Ravandi
- Department of Leukemia, University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Hagop Kantarjian
- Department of Leukemia, University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Stephen D. Nimer
- Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute , New York, NY, USA
| | - Konstanze Döhner
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Hartmut Döhner
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Timothy J. Ley
- St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project, Memphis, TN, USA and St. Louis, MO, USA
- Washington University School of Medicine, Siteman Cancer Center, St. Louis, MO, USA, The Genome Institute at Washington University, St Louis, MO, USA
| | - Paola Ballerini
- Laboratoire d'Hématologie, Hôpital A. Trousseau, Paris, France
| | - Sheila Shurtleff
- St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project, Memphis, TN, USA and St. Louis, MO, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daisuke Tomizawa
- Department of Pediatrics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Souichi Adachi
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhide Hayashi
- Department of Haematology/Oncology, Gunma Children's Medical Center, Shibukawa, Japan
| | - Akio Tawa
- Dept. of Pediatrics, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Lee-Yung Shih
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taipei, Taiwan
| | - Der-Cherng Liang
- Division of Pediatric Hematology Oncology, Mackay Memorial Hospital, Taipei Taiwan
| | - Jeffrey E. Rubnitz
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ching-Hon Pui
- St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project, Memphis, TN, USA and St. Louis, MO, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Elaine R Mardis
- St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project, Memphis, TN, USA and St. Louis, MO, USA
- Washington University School of Medicine, Siteman Cancer Center, St. Louis, MO, USA, The Genome Institute at Washington University, St Louis, MO, USA
| | - Richard K Wilson
- St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project, Memphis, TN, USA and St. Louis, MO, USA
- Washington University School of Medicine, Siteman Cancer Center, St. Louis, MO, USA, The Genome Institute at Washington University, St Louis, MO, USA
| | - James R. Downing
- St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project, Memphis, TN, USA and St. Louis, MO, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|