1
|
Guo M, Addy GA, Yang N, Asare E, Wu H, Saleh AA, Shi S, Gao B, Song C. PiggyBac Transposon Mining in the Small Genomes of Animals. BIOLOGY 2023; 13:24. [PMID: 38248455 PMCID: PMC10813416 DOI: 10.3390/biology13010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024]
Abstract
TEs, including DNA transposons, are major contributors of genome expansions, and have played a very significant role in shaping the evolution of animal genomes, due to their capacity to jump from one genomic position to the other. In this study, we investigated the evolution landscapes of PB transposons, including their distribution, diversity, activity and structure organization in 79 species of small (compact) genomes of animals comprising both vertebrate and invertebrates. Overall, 212 PB transposon types were detected from almost half (37) of the total number of the small genome species (79) investigated. The detected PB transposon types, which were unevenly distributed in various genera and phyla, have been classified into seven distinct clades or families with good bootstrap support (>80%). The PB transposon types that were identified have a length ranging from 1.23 kb to 9.51 kb. They encode transposases of approximately ≥500 amino acids in length, and possess terminal inverted repeats (TIRs) ranging from 4 bp to 24 bp. Though some of the transposon types have long TIRs (528 bp), they still maintain the consistent and reliable 4 bp target site duplication (TSD) of TTAA. However, PiggyBac-2_Cvir transposon originating from the Crassostrea virginica species exhibits a unique TSD of TATG. The TIRs of the transposons in all the seven families display high divergence, with a highly conserved 5' end motif. The core transposase domains (DDD) were better conserved among the seven different families compared to the other protein domains, which were less prevalent in the vertebrate genome. The divergent evolution dynamics analysis also indicated that the majority of the PB transposon types identified in this study are either relatively young or old, with some being active. Additionally, numerous invasions of PB transposons were found in the genomes of both vertebrate and invertebrate animals. The data reveals that the PB superfamily is widely distributed in these species. PB transposons exhibit high diversity and activity in the small genomes of animals, and might play a crucial role in shaping the evolution of these small genomes of animals.
Collapse
Affiliation(s)
- Mengke Guo
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China; (M.G.); (G.A.A.); (N.Y.); (E.A.); (A.A.S.); (S.S.); (B.G.)
| | - George A. Addy
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China; (M.G.); (G.A.A.); (N.Y.); (E.A.); (A.A.S.); (S.S.); (B.G.)
| | - Naisu Yang
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China; (M.G.); (G.A.A.); (N.Y.); (E.A.); (A.A.S.); (S.S.); (B.G.)
| | - Emmanuel Asare
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China; (M.G.); (G.A.A.); (N.Y.); (E.A.); (A.A.S.); (S.S.); (B.G.)
| | - Han Wu
- Department of Immunology, School of Medicine, Shenzhen University, Shenzhen 518060, China;
| | - Ahmed A. Saleh
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China; (M.G.); (G.A.A.); (N.Y.); (E.A.); (A.A.S.); (S.S.); (B.G.)
- Animal and Fish Production Department, Faculty of Agriculture (Alshatby), Alexandria University, Alexandria City 11865, Egypt
| | - Shasha Shi
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China; (M.G.); (G.A.A.); (N.Y.); (E.A.); (A.A.S.); (S.S.); (B.G.)
| | - Bo Gao
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China; (M.G.); (G.A.A.); (N.Y.); (E.A.); (A.A.S.); (S.S.); (B.G.)
| | - Chengyi Song
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China; (M.G.); (G.A.A.); (N.Y.); (E.A.); (A.A.S.); (S.S.); (B.G.)
| |
Collapse
|
2
|
Seah BK, Singh M, Emmerich C, Singh A, Woehle C, Huettel B, Byerly A, Stover NA, Sugiura M, Harumoto T, Swart EC. MITE infestation accommodated by genome editing in the germline genome of the ciliate Blepharisma. Proc Natl Acad Sci U S A 2023; 120:e2213985120. [PMID: 36669106 PMCID: PMC9942856 DOI: 10.1073/pnas.2213985120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/06/2022] [Indexed: 01/21/2023] Open
Abstract
During their development following sexual conjugation, ciliates excise numerous internal eliminated sequences (IESs) from a copy of the germline genome to produce the functional somatic genome. Most IESs are thought to have originated from transposons, but the presumed homology is often obscured by sequence decay. To obtain more representative perspectives on the nature of IESs and ciliate genome editing, we assembled 40,000 IESs of Blepharisma stoltei, a species belonging to a lineage (Heterotrichea) that diverged early from those of the intensively studied model ciliate species. About a quarter of IESs were short (<115 bp), largely nonrepetitive, and with a pronounced ~10 bp periodicity in length; the remainder were longer (up to 7 kbp) and nonperiodic and contained abundant interspersed repeats. Contrary to the expectation from current models, the assembled Blepharisma germline genome encodes few transposases. Instead, its most abundant repeat (8,000 copies) is a Miniature Inverted-repeat Transposable Element (MITE), apparently a deletion derivative of a germline-limited Pogo-family transposon. We hypothesize that MITEs are an important source of IESs whose proliferation is eventually self-limiting and that rather than defending the germline genomes against mobile elements, transposase domestication actually facilitates the accumulation of junk DNA.
Collapse
Affiliation(s)
| | - Minakshi Singh
- Max Planck Institute for Biology, Tuebingen72072, Germany
| | | | - Aditi Singh
- Max Planck Institute for Biology, Tuebingen72072, Germany
| | - Christian Woehle
- Max Planck Genome Center Cologne, Max Planck Institute for Plant Breeding, Cologne50829, Germany
| | - Bruno Huettel
- Max Planck Genome Center Cologne, Max Planck Institute for Plant Breeding, Cologne50829, Germany
| | - Adam Byerly
- Department of Computer Science and Information Systems, Bradley University, Peoria, IL61625
| | | | - Mayumi Sugiura
- Department of Chemistry, Biology, and Environmental Sciences, Faculty of Science, Nara Women’s University, Nara630-8506, Japan
| | - Terue Harumoto
- Department of Chemistry, Biology, and Environmental Sciences, Faculty of Science, Nara Women’s University, Nara630-8506, Japan
| | | |
Collapse
|
3
|
Repeat variants for the SbMATE transporter protect sorghum roots from aluminum toxicity by transcriptional interplay in cis and trans. Proc Natl Acad Sci U S A 2018; 116:313-318. [PMID: 30545913 DOI: 10.1073/pnas.1808400115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Acidic soils, where aluminum (Al) toxicity is a major agricultural constraint, are globally widespread and are prevalent in developing countries. In sorghum, the root citrate transporter SbMATE confers Al tolerance by protecting root apices from toxic Al3+, but can exhibit reduced expression when introgressed into different lines. We show that allele-specific SbMATE transactivation occurs and is caused by factors located away from SbMATE Using expression-QTL mapping and expression genome-wide association mapping, we establish that SbMATE transcription is controlled in a bipartite fashion, primarily in cis but also in trans Multiallelic promoter transactivation and ChIP analyses demonstrated that intermolecular effects on SbMATE expression arise from a WRKY and a zinc finger-DHHC transcription factor (TF) that bind to and trans-activate the SbMATE promoter. A haplotype analysis in sorghum RILs indicates that the TFs influence SbMATE expression and Al tolerance. Variation in SbMATE expression likely results from changes in tandemly repeated cis sequences flanking a transposable element (a miniature inverted repeat transposable element) insertion in the SbMATE promoter, which are recognized by the Al3+-responsive TFs. According to our model, repeat expansion in Al-tolerant genotypes increases TF recruitment and, hence, SbMATE expression, which is, in turn, lower in Al-sensitive genetic backgrounds as a result of lower TF expression and fewer binding sites. We thus show that even dominant cis regulation of an agronomically important gene can be subjected to precise intermolecular fine-tuning. These concerted cis/trans interactions, which allow the plant to sense and respond to environmental cues, such as Al3+ toxicity, can now be used to increase yields and food security on acidic soils.
Collapse
|
4
|
Šatović E, Plohl M. Two new miniature inverted-repeat transposable elements in the genome of the clam Donax trunculus. Genetica 2017; 145:379-385. [PMID: 28653298 DOI: 10.1007/s10709-017-9973-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 04/22/2017] [Indexed: 01/09/2023]
Abstract
Repetitive sequences are important components of eukaryotic genomes that drive their evolution. Among them are different types of mobile elements that share the ability to spread throughout the genome and form interspersed repeats. To broaden the generally scarce knowledge on bivalves at the genome level, in the clam Donax trunculus we described two new non-autonomous DNA transposons, miniature inverted-repeat transposable elements (MITEs), named DTC M1 and DTC M2. Like other MITEs, they are characterized by their small size, their A + T richness, and the presence of terminal inverted repeats (TIRs). DTC M1 and DTC M2 are 261 and 286 bp long, respectively, and in addition to TIRs, both of them contain a long imperfect palindrome sequence in their central parts. These elements are present in complete and truncated versions within the genome of the clam D. trunculus. The two new MITEs share only structural similarity, but lack any nucleotide sequence similarity to each other. In a search for related elements in databases, blast search revealed within the Crassostrea gigas genome a larger element sharing sequence similarity only to DTC M1 in its TIR sequences. The lack of sequence similarity with any previously published mobile elements indicates that DTC M1 and DTC M2 elements may be unique to D. trunculus.
Collapse
Affiliation(s)
- Eva Šatović
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10 000, Zagreb, Croatia.
| | - Miroslav Plohl
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10 000, Zagreb, Croatia
| |
Collapse
|
5
|
Meštrović N, Mravinac B, Pavlek M, Vojvoda-Zeljko T, Šatović E, Plohl M. Structural and functional liaisons between transposable elements and satellite DNAs. Chromosome Res 2016; 23:583-96. [PMID: 26293606 DOI: 10.1007/s10577-015-9483-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transposable elements (TEs) and satellite DNAs (satDNAs) are typically identified as major repetitive DNA components in eukaryotic genomes. TEs are DNA segments able to move throughout a genome while satDNAs are tandemly repeated sequences organized in long arrays. Both classes of repetitive sequences are extremely diverse, and many TEs and satDNAs exist within a genome. Although they differ in structure, genomic organization, mechanisms of spread, and evolutionary dynamics, TEs and satDNAs can share sequence similarity and organizational patterns, thus indicating that complex mutual relationships can determine their evolution, and ultimately define roles they might have on genome architecture and function. Motivated by accumulating data about sequence elements that incorporate features of both TEs and satDNAs, here we present an overview of their structural and functional liaisons.
Collapse
Affiliation(s)
| | | | - Martina Pavlek
- Ruđer Bošković Institute, Bijenička 54, HR-10000, Zagreb, Croatia
| | | | - Eva Šatović
- Ruđer Bošković Institute, Bijenička 54, HR-10000, Zagreb, Croatia
| | - Miroslav Plohl
- Ruđer Bošković Institute, Bijenička 54, HR-10000, Zagreb, Croatia.
| |
Collapse
|
6
|
Yang G, Fattash I, Lee CN, Liu K, Cavinder B. Birth of three stowaway-like MITE families via microhomology-mediated miniaturization of a Tc1/Mariner element in the yellow fever mosquito. Genome Biol Evol 2014; 5:1937-48. [PMID: 24068652 PMCID: PMC3814204 DOI: 10.1093/gbe/evt146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Eukaryotic genomes contain numerous DNA transposons that move by a cut-and-paste mechanism. The majority of these elements are self-insufficient and dependent on their autonomous relatives to transpose. Miniature inverted repeat transposable elements (MITEs) are often the most numerous nonautonomous DNA elements in a higher eukaryotic genome. Little is known about the origin of these MITE families as few of them are accompanied by their direct ancestral elements in a genome. Analyses of MITEs in the yellow fever mosquito identified its youngest MITE family, designated as Gnome, that contains at least 116 identical copies. Genome-wide search for direct ancestral autonomous elements of Gnome revealed an elusive single copy Tc1/Mariner-like element, named as Ozma, that encodes a transposase with a DD37E triad motif. Strikingly, Ozma also gave rise to two additional MITE families, designated as Elf and Goblin. These three MITE families were derived at different times during evolution and bear internal sequences originated from different regions of Ozma. Upon close inspection of the sequence junctions, the internal deletions during the formation of these three MITE families always occurred between two microhomologous sites (6–8 bp). These results suggest that multiple MITE families may originate from a single ancestral autonomous element, and formation of MITEs can be mediated by sequence microhomology. Ozma and its related MITEs are exceptional candidates for the long sought-after endogenous active transposon tool in genetic control of mosquitoes.
Collapse
Affiliation(s)
- Guojun Yang
- Department of Biology, University of Toronto Mississauga, Ontario, Canada
- *Corresponding author: E-mail:
| | - Isam Fattash
- Department of Biology, University of Toronto Mississauga, Ontario, Canada
| | - Chia-Ni Lee
- Department of Biology, University of Toronto Mississauga, Ontario, Canada
| | - Kun Liu
- Department of Botany and Plant Sciences, University of California Riverside
| | - Brad Cavinder
- Department of Plant Pathology and Microbiology, University of California Riverside
| |
Collapse
|
7
|
Piégu B, Guizard S, Spears T, Cruaud C, Couloux A, Bideshi DK, Federici BA, Bigot Y. Complete genome sequence of invertebrate iridescent virus 22 isolated from a blackfly larva. J Gen Virol 2013; 94:2112-2116. [PMID: 23804567 DOI: 10.1099/vir.0.054213-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Members of the family Iridoviridae are animal viruses that infect only invertebrates and poikilothermic vertebrates. Invertebrate iridescent virus 22 (IIV-22) was originally isolated from the larva of a blackfly (Simulium sp., order Diptera) found in the Ystwyth river, near Aberystwyth, Wales, UK. IIV-22 virions are icosahedral, with a diameter of about 130 nm and contain a dsDNA genome that is 197.7 kb in length, has a G+C content of 28.05 mol% and contains 167 coding sequences. Here, we describe the complete genome sequence of this virus and its annotation. This is the fourth genome sequence of an invertebrate iridovirus to be reported.
Collapse
Affiliation(s)
- Benoît Piégu
- UMR INRA-CNRS 7247, PRC, Centre INRA de Nouzilly, 37380 Nouzilly, France
| | - Sébastien Guizard
- UMR INRA-CNRS 7247, PRC, Centre INRA de Nouzilly, 37380 Nouzilly, France
| | - Tatsinda Spears
- Interdepartmental Graduate Programs in Cell, Molecular and Developmental Biology, University of California, Riverside, CA 92521, USA.,Department of Entomology, Molecular and Developmental Biology, University of California, Riverside, CA 92521, USA
| | - Corinne Cruaud
- CEA/Institut de Génomique GENOSCOPE, 2 rue Gaston Crémieux, CP 5706, 91057 Evry CEDEX, France
| | - Arnault Couloux
- CEA/Institut de Génomique GENOSCOPE, 2 rue Gaston Crémieux, CP 5706, 91057 Evry CEDEX, France
| | - Dennis K Bideshi
- California Baptist University, Department of Natural and Mathematical Sciences, 8432 Magnolia Avenue Riverside, CA 92504, USA.,Department of Entomology, Molecular and Developmental Biology, University of California, Riverside, CA 92521, USA
| | - Brian A Federici
- Interdepartmental Graduate Programs in Cell, Molecular and Developmental Biology, University of California, Riverside, CA 92521, USA.,Department of Entomology, Molecular and Developmental Biology, University of California, Riverside, CA 92521, USA
| | - Yves Bigot
- UMR INRA-CNRS 7247, PRC, Centre INRA de Nouzilly, 37380 Nouzilly, France
| |
Collapse
|
8
|
Fattash I, Rooke R, Wong A, Hui C, Luu T, Bhardwaj P, Yang G. Miniature inverted-repeat transposable elements: discovery, distribution, and activity. Genome 2013; 56:475-86. [PMID: 24168668 DOI: 10.1139/gen-2012-0174] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Eukaryotic organisms have dynamic genomes, with transposable elements (TEs) as a major contributing factor. Although the large autonomous TEs can significantly shape genomic structures during evolution, genomes often harbor more miniature nonautonomous TEs that can infest genomic niches where large TEs are rare. In spite of their cut-and-paste transposition mechanisms that do not inherently favor copy number increase, miniature inverted-repeat transposable elements (MITEs) are abundant in eukaryotic genomes and exist in high copy numbers. Based on the large number of MITE families revealed in previous studies, accurate annotation of MITEs, particularly in newly sequenced genomes, will identify more genomes highly rich in these elements. Novel families identified from these analyses, together with the currently known families, will further deepen our understanding of the origins, transposase sources, and dramatic amplification of these elements.
Collapse
Affiliation(s)
- Isam Fattash
- a Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Two distinct classes of repetitive sequences, interspersed mobile elements and satellite DNAs, shape eukaryotic genomes and drive their evolution. Short arrays of tandem repeats can also be present within nonautonomous miniature inverted repeat transposable elements (MITEs). In the clam Donax trunculus, we characterized a composite, high copy number MITE, named DTC84. It is composed of a central region built of up to five core repeats linked to a microsatellite segment at one array end and flanked by sequences holding short inverted repeats. The modular composition and the conserved putative target site duplication sequence AA at the element termini are equivalent to the composition of several elements found in the cupped oyster Crassostrea virginica and in some insects. A unique feature of D. trunculus element is ordered array of core repeat variants, distinctive by diagnostic changes. Position of variants in the array is fixed, regardless of alterations in the core repeat copy number. Each repeat harbors a palindrome near the junction with the following unit, being a potential hotspot responsible for array length variations. As a consequence, variations in number of tandem repeats and variations in flanking sequences make every sequenced element unique. Core repeats may be thus considered as individual units within the MITE, with flanking sequences representing a "cassette" for internal repeats. Our results demonstrate that onset and spread of tandem repeats can be more intimately linked to processes of transposition than previously thought and suggest that genomes are shaped by interplays within a complex network of repetitive sequences.
Collapse
Affiliation(s)
- Eva Šatović
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Miroslav Plohl
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
10
|
Yaakov B, Kashkush K. Mobilization of Stowaway-like MITEs in newly formed allohexaploid wheat species. PLANT MOLECULAR BIOLOGY 2012; 80:419-27. [PMID: 22933118 DOI: 10.1007/s11103-012-9957-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/16/2012] [Indexed: 05/02/2023]
Abstract
Transposable elements (TEs) dominate the genetic capacity of most eukaryotes, especially plants, where they can account for up to 90 % of the genome, such as in wheat. The relationship between TEs and their hosts and the role of TEs in organismal biology are poorly understood. In this study, we have applied next generation sequencing, together with a transposon display technique in order to test whether a Stowaway-like MITE, termed Minos, transposes following allopolyploidization events in wheat. We have generated a 454-pyrosequencing database of Minos-specific amplicons (transposon display products) from a newly formed wheat allohexaploid and its parental lines and retrieved hundreds of novel MITE insertions in the allohexaploid. Clear mobilization of Minos was also seen by site-specific PCR analysis and sequence validation. In addition, using real-time qPCR analysis we observed an insignificant change in the relative quantity of Minos from the expected value of merging the two parental genomes, indicating that, despite its activation, no significant burst in Minos copy number can be seen in the newly formed allohexaploid. Interestingly, we found that CCGG sites surrounding Minos underwent massive hypermethylation following the allohexaploidization process. Our data suggest that MITEs have maintained their capacity for activity throughout the evolution of wheat and might be epigenetically deregulated in the first generations following allopolyploidization.
Collapse
Affiliation(s)
- Beery Yaakov
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | | |
Collapse
|