1
|
Deng X, Fu X, Teng H, Fang L, Liang B, Zeng R, Chen L, Zou Y. E3 ubiquitin ligase TRIM29 promotes pancreatic cancer growth and progression via stabilizing Yes-associated protein 1. J Transl Med 2021; 19:332. [PMID: 34353343 PMCID: PMC8340474 DOI: 10.1186/s12967-021-03007-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is one of the most fatal digestive system cancers. tripartite motif-29 (TRIM29) has been reported as oncogene in several human cancers. However, the precise role and underlying signal cascade of TRIM29 in PC progression remain unclear. METHODS Western blot, qRT-PCR and immunohistochemistry were used to analyze TRIM29 and Yes-associated protein 1 (YAP1) levels. CCK8 assays, EdU assays and flow cytometry were designed to explore the function and potential mechanism of TRIM29 and YAP1 in the proliferation of PC. Next, a nude mouse model of PC was established for validating the roles of TRIM29 and YAP1 in vivo. The relationship among TRIM29 and YAP1 was explored by co-immunoprecipitation and in vitro ubiquitination assay. RESULTS TRIM29 and YAP1 was significantly upregulated in PC patient samples, and TRIM29 expression was closely related to a malignant phenotype and poorer overall survival (OS) of PC patients. Functional assays revealed that TRIM29 knockdown suppresses cell growth, arrests cell cycle progression and promotes cell apoptosis of PC cells in vivo and in vitro. Furthermore, the rescue experiments demonstrated that TRIM29-induced proliferation is dependent on YAP1 in PC cells. Mechanistically, TRIM29 regulates YAP1 expression by directly binding to YAP1, and reduced its ubiquitination and degradation. CONCLUSION Taken together, these results identify a novel mechanism used by PC growth, and provide insight regarding the role of TRIM29 in PC.
Collapse
Affiliation(s)
- Xueqiang Deng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xiaowei Fu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Hong Teng
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Lu Fang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Bo Liang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Rengui Zeng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Lian Chen
- Department of Medical Ultrasonics, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Yeqing Zou
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
2
|
MG53, A Tissue Repair Protein with Broad Applications in Regenerative Medicine. Cells 2021; 10:cells10010122. [PMID: 33440658 PMCID: PMC7827922 DOI: 10.3390/cells10010122] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 02/06/2023] Open
Abstract
Under natural conditions, injured cells can be repaired rapidly through inherent biological processes. However, in the case of diabetes, cardiovascular disease, muscular dystrophy, and other degenerative conditions, the natural repair process is impaired. Repair of injury to the cell membrane is an important aspect of physiology. Inadequate membrane repair function is implicated in the pathophysiology of many human disorders. Recent studies show that Mitsugumin 53 (MG53), a TRIM family protein, plays a key role in repairing cell membrane damage and facilitating tissue regeneration. Clarifying the role of MG53 and its molecular mechanism are important for the application of MG53 in regenerative medicine. In this review, we analyze current research dissecting MG53′s function in cell membrane repair and tissue regeneration, and highlight the development of recombinant human MG53 protein as a potential therapeutic agent to repair multiple-organ injuries.
Collapse
|
3
|
Unintegrated HIV-1 DNAs are loaded with core and linker histones and transcriptionally silenced. Proc Natl Acad Sci U S A 2019; 116:23735-23742. [PMID: 31685613 DOI: 10.1073/pnas.1912638116] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Upon delivery into the nucleus of the host cell, linear double-stranded retroviral DNAs are either integrated into the host genome to form the provirus or act as a target of the DNA damage response and become circularized. Little is known about the chromatinization status of the unintegrated retroviral DNAs of the human immunodeficiency virus type 1 (HIV-1). In this study, we used chromatin immunoprecipitation to investigate the nature of unintegrated HIV-1 DNAs and discovered that core histones, the histone variant H3.3, and H1 linker histones are all deposited onto extrachromosomal HIV-1 DNA. We performed a time-course analysis and determined that the loading of core and linker histones occurred early after virus application. H3.3 and H1 linker histones were also found to be loaded onto unintegrated DNAs of the Moloney murine leukemia virus. The unintegrated retroviral DNAs are potently silenced, and we provide evidence that the suppression of extrachromosomal HIV-1 DNA is histone-related. Unintegrated DNAs were marked by posttranslational histone modifications characteristic of transcriptionally inactive genes: high levels of H3K9 trimethylation and low levels of H3 acetylation. These findings reveal insights into the nature of unintegrated retroviral DNAs.
Collapse
|
4
|
Boswell MT, Rowland-Jones SL. Delayed disease progression in HIV-2: the importance of TRIM5α and the retroviral capsid. Clin Exp Immunol 2019; 196:305-317. [PMID: 30773620 DOI: 10.1111/cei.13280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2019] [Indexed: 12/21/2022] Open
Abstract
HIV-2 is thought to have entered the human population in the 1930s through cross-species transmission of SIV from sooty mangabeys in West Africa. Unlike HIV-1, HIV-2 has not led to a global pandemic, and recent data suggest that HIV-2 prevalence is declining in some West African states where it was formerly endemic. Although many early isolates of HIV-2 were derived from patients presenting with AIDS-defining illnesses, it was noted that a much larger proportion of HIV-2-infected subjects behaved as long-term non-progressors (LTNP) than their HIV-1-infected counterparts. Many HIV-2-infected adults are asymptomatic, maintaining an undetectable viral load for over a decade. However, despite lower viral loads, HIV-2 progresses to clinical AIDS without therapeutic intervention in most patients. In addition, successful treatment with anti-retroviral therapy (ART) is more challenging than for HIV-1. HIV-2 is significantly more sensitive to restriction by host restriction factor tripartite motif TRIM5α than HIV-1, and this difference in sensitivity is linked to differences in capsid structure. In this review we discuss the determinants of HIV-2 disease progression and focus on the important interactions between TRIM5α and HIV-2 capsid in long-term viral control.
Collapse
Affiliation(s)
- M T Boswell
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
5
|
Multiple Inhibitory Factors Act in the Late Phase of HIV-1 Replication: a Systematic Review of the Literature. Microbiol Mol Biol Rev 2018; 82:82/1/e00051-17. [PMID: 29321222 DOI: 10.1128/mmbr.00051-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The use of lentiviral vectors for therapeutic purposes has shown promising results in clinical trials. The ability to produce a clinical-grade vector at high yields remains a critical issue. One possible obstacle could be cellular factors known to inhibit human immunodeficiency virus (HIV). To date, five HIV restriction factors have been identified, although it is likely that more factors are involved in the complex HIV-cell interaction. Inhibitory factors that have an adverse effect but do not abolish virus production are much less well described. Therefore, a gap exists in the knowledge of inhibitory factors acting late in the HIV life cycle (from transcription to infection of a new cell), which are relevant to the lentiviral vector production process. The objective was to review the HIV literature to identify cellular factors previously implicated as inhibitors of the late stages of lentivirus production. A search for publications was conducted on MEDLINE via the PubMed interface, using the keyword sequence "HIV restriction factor" or "HIV restriction" or "inhibit HIV" or "repress HIV" or "restrict HIV" or "suppress HIV" or "block HIV," with a publication date up to 31 December 2016. Cited papers from the identified records were investigated, and additional database searches were performed. A total of 260 candidate inhibitory factors were identified. These factors have been identified in the literature as having a negative impact on HIV replication. This study identified hundreds of candidate inhibitory factors for which the impact of modulating their expression in lentiviral vector production could be beneficial.
Collapse
|
6
|
Koba R, Oguma K, Sentsui H. Overexpression of feline tripartite motif-containing 25 interferes with the late stage of feline leukemia virus replication. Virus Res 2015; 204:88-94. [DOI: 10.1016/j.virusres.2015.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 03/27/2015] [Accepted: 04/19/2015] [Indexed: 12/21/2022]
|
7
|
Coren LV, Trivett MT, Jain S, Ayala VI, Del Prete GQ, Ohlen C, Ott DE. Potent restriction of HIV-1 and SIVmac239 replication by African green monkey TRIM5α. Retrovirology 2015; 12:11. [PMID: 25809491 PMCID: PMC4348108 DOI: 10.1186/s12977-015-0137-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/08/2015] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The TRIM5α protein is a principal restriction factor that contributes to an HIV-1 replication block in rhesus macaque CD4+ T cells by preventing reverse transcription. HIV-1 restriction is induced in human CD4+ T cells by expression of rhesus TRIM5α as well as those of other old world monkeys. While TRIM5α restriction has been extensively studied in single-round infection assays, fewer studies have examined restriction after extended viral replication. RESULTS To examine TRIM5α restriction of replication, we studied the ability of TRIM5α proteins from African green monkey (AgmTRIM5α) and gorilla (gorTRIM5α) to restrict HIV-1 and SIVmac239 replication. These xenogeneic TRIM5α genes were transduced into human Jurkat-CCR5 cells (JR5), which were then exposed to HIV-1 or SIVmac239. In our single-round infection assays, AgmTRIM5α showed a relatively modest 4- to 10-fold restriction of HIV-1 and SIVmac239, while gorTRIM5α produced a 2- and 3-fold restriction of HIV-1 and SIVmac239, respectively, consistent with the majority of previously published single-round studies. To assess the impact of these modest effects on infection, we tested restriction in replication systems initiated with either cell-free or cell-to-cell challenges. AgmTRIM5α powerfully restricted both HIV-1 and SIVmac239 replication 14 days after cell-free infection, with a ≥ 3-log effect. Moreover, expression of AgmTRIM5α restricted HIV-1 and SIVmac239 replication by 2-logs when co-cultured with infected JR5 cells for 12 days. In contrast, neither expression of gorTRIM5α nor rhesus TRIM5α induced significant resistance when co-cultured with infected cells. Follow up experiments showed that the observed differences between replication and infection were not due to assembly defects as xenogeneic TRIM5α expression had no effect on either virion production or specific infectivity. CONCLUSIONS Our results indicate that AgmTRIM5α has a much greater effect on extended replication than on any single infection event, suggesting that AgmTRIM5α restriction acts cumulatively, building up over many rounds of replication. Furthermore, AgmTRIM5α was able to potently restrict both HIV-1 and SIV replication in a cell-to-cell infection challenge. Thus, AgmTRIM5α is unique among the TRIM5α species tested to date, being able to restrict even at the high multiplicities of infection presented by mixed culture with nonrestrictive infected cells.
Collapse
Affiliation(s)
- Lori V Coren
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, PO Box B, Frederick, MD 21702 USA
| | - Matthew T Trivett
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, PO Box B, Frederick, MD 21702 USA
| | - Sumiti Jain
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, PO Box B, Frederick, MD 21702 USA
| | - Victor I Ayala
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, PO Box B, Frederick, MD 21702 USA
| | - Gregory Q Del Prete
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, PO Box B, Frederick, MD 21702 USA
| | - Claes Ohlen
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, PO Box B, Frederick, MD 21702 USA
| | - David E Ott
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, PO Box B, Frederick, MD 21702 USA
| |
Collapse
|
8
|
Abstract
UNLABELLED We have examined the interactions of wild-type (WT) and matrix protein-deleted (ΔMA) HIV-1 precursor Gag (PrGag) proteins in virus-producing cells using a biotin ligase-tagging approach. To do so, WT and ΔMA PrGag proteins were tagged with the Escherichia coli promiscuous biotin ligase (BirA*), expressed in cells, and examined. Localization patterns of PrGag proteins and biotinylated proteins overlapped, consistent with observations that BirA*-tagged proteins biotinylate neighbor proteins that are in close proximity. Results indicate that BirA*-tagged PrGag proteins biotinylated themselves as well as WT PrGag proteins in trans. Previous data have shown that the HIV-1 Envelope (Env) protein requires an interaction with MA for assembly into virions. Unexpectedly, ΔMA proteins biotinylated Env, whereas WT BirA*-tagged proteins did not, suggesting that the presence of MA made Env inaccessible to biotinylation. We also identified over 50 cellular proteins that were biotinylated by BirA*-tagged PrGag proteins. These included membrane proteins, cytoskeleton-associated proteins, nuclear transport factors, lipid metabolism regulators, translation factors, and RNA-processing proteins. The identification of these biotinylated proteins offers new insights into HIV-1 Gag protein trafficking and activities and provides new potential targets for antiviral interference. IMPORTANCE We have employed a novel strategy to analyze the interactions of the HIV-1 structural Gag proteins, which involved tagging wild-type and mutant Gag proteins with a biotin ligase. Expression of the tagged proteins in cells allowed us to analyze proteins that came in close proximity to the Gag proteins as they were synthesized, transported, assembled, and released from cells. The tagged proteins biotinylated proteins encoded by the HIV-1 pol gene and neighbor Gag proteins, but, surprisingly, only the mutant Gag protein biotinylated the HIV-1 Envelope protein. We also identified over 50 cellular proteins that were biotinylated, including membrane and cytoskeletal proteins and proteins involved in lipid metabolism, nuclear import, translation, and RNA processing. Our results offer new insights into HIV-1 Gag protein trafficking and activities and provide new potential targets for antiviral interference.
Collapse
|
9
|
Quintás-Cardama A, Zhang N, Qiu YH, Post S, Creighton CJ, Cortes J, Coombes KR, Kornblau SM. Loss of TRIM62 expression is an independent adverse prognostic factor in acute myeloid leukemia. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2014; 15:115-127.e15. [PMID: 25248926 DOI: 10.1016/j.clml.2014.07.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/18/2014] [Accepted: 07/29/2014] [Indexed: 11/25/2022]
Abstract
BACKGROUND Tripartite motif (TRIM)-62 is a putative tumor suppressor gene whose role in leukemia is unknown. MATERIALS AND METHODS We evaluated the effect of TRIM62 protein expression in patients with acute myeloid leukemia (AML). We used reverse-phase protein array methodology to determine TRIM62 levels in leukemia-enriched protein samples from 511 patients newly diagnosed with AML. RESULTS TRIM62 levels in AML cells were significantly lower than in normal CD34-positive cells, suggesting that TRIM62 loss might be involved in leukemogenesis, but was not associated with specific karyotypic abnormalities or Nucleophosmin (NPM1), Fms-like Tyrosine Kinase-3 (FLT3), or rat sarcoma viral oncogene (RAS) mutational status. Low TRIM62 levels were associated with shorter complete remission duration and significantly shorter event-free and overall survival rates, particularly among patients with intermediate-risk cytogenetics. In that AML subgroup, age and TRIM62 levels were the most powerful independent prognostic factors for survival. TRIM62 protein levels further refined the risk associated with NPM1 and FLT3 mutational status. TRIM62 loss was associated with altered expression of proteins involved in leukemia stem cell homeostasis (β-catenin and Notch), cell motility, and adhesion (integrin-β3, ras-related C3 botulinum toxin substrate [RAC], and fibronectin), hypoxia (Hypoxia-inducible factor 1-alpha [HIF1α], egl-9 family hypoxia-inducible factor 1 [Egln1], and glucose-regulated protein, 78 kDa [GRP78]), and apoptosis (B-cell lymphoma-extra large (BclXL) and caspase 9). CONCLUSION Low TRIM62 levels, consistent with a tumor suppressor role, represent an independent adverse prognostic factor in AML.
Collapse
Affiliation(s)
| | - Nianxiang Zhang
- Department of Bioinformatics, The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Yi Hua Qiu
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Sean Post
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Chad J Creighton
- Dan L. Duncan Cancer Center, Division of Biostatistics, Baylor College of Medicine, Houston, TX
| | - Jorge Cortes
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Kevin R Coombes
- Department of Bioinformatics, The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Steven M Kornblau
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX
| |
Collapse
|
10
|
Kelly JN, Barr SD. In silico analysis of functional single nucleotide polymorphisms in the human TRIM22 gene. PLoS One 2014; 9:e101436. [PMID: 24983760 PMCID: PMC4077803 DOI: 10.1371/journal.pone.0101436] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 06/06/2014] [Indexed: 01/18/2023] Open
Abstract
Tripartite motif protein 22 (TRIM22) is an evolutionarily ancient protein that plays an integral role in the host innate immune response to viruses. The antiviral TRIM22 protein has been shown to inhibit the replication of a number of viruses, including HIV-1, hepatitis B, and influenza A. TRIM22 expression has also been associated with multiple sclerosis, cancer, and autoimmune disease. In this study, multiple in silico computational methods were used to identify non-synonymous or amino acid-changing SNPs (nsSNP) that are deleterious to TRIM22 structure and/or function. A sequence homology-based approach was adopted for screening nsSNPs in TRIM22, including six different in silico prediction algorithms and evolutionary conservation data from the ConSurf web server. In total, 14 high-risk nsSNPs were identified in TRIM22, most of which are located in a protein interaction module called the B30.2 domain. Additionally, 9 of the top high-risk nsSNPs altered the putative structure of TRIM22's B30.2 domain, particularly in the surface-exposed v2 and v3 regions. These same regions are critical for retroviral restriction by the closely-related TRIM5α protein. A number of putative structural and functional residues, including several sites that undergo post-translational modification, were also identified in TRIM22. This study is the first extensive in silico analysis of the highly polymorphic TRIM22 gene and will be a valuable resource for future targeted mechanistic and population-based studies.
Collapse
Affiliation(s)
- Jenna N. Kelly
- Western University, Schulich School of Medicine and Dentistry, Center for Human Immunology, Department of Microbiology and Immunology, Dental Sciences Building, London, Ontario, Canada
| | - Stephen D. Barr
- Western University, Schulich School of Medicine and Dentistry, Center for Human Immunology, Department of Microbiology and Immunology, Dental Sciences Building, London, Ontario, Canada
| |
Collapse
|
11
|
Kelly JN, Woods MW, Xhiku S, Barr SD. Ancient and Recent Adaptive Evolution in the AntiviralTRIM22Gene: Identification of a Single-Nucleotide Polymorphism That Impacts TRIM22 Function. Hum Mutat 2014; 35:1072-81. [DOI: 10.1002/humu.22595] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/13/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Jenna N. Kelly
- Department of Microbiology and Immunology; Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University; London Ontario Canada
| | - Matthew W. Woods
- Department of Microbiology and Immunology; Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University; London Ontario Canada
| | - Sintia Xhiku
- Department of Microbiology and Immunology; Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University; London Ontario Canada
| | - Stephen D. Barr
- Department of Microbiology and Immunology; Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University; London Ontario Canada
| |
Collapse
|
12
|
Fletcher AJ, Towers GJ. Inhibition of retroviral replication by members of the TRIM protein family. Curr Top Microbiol Immunol 2013; 371:29-66. [PMID: 23686231 DOI: 10.1007/978-3-642-37765-5_2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The TRIM protein family is emerging as a central component of mammalian antiviral innate immunity. Beginning with the identification of TRIM5α as a mammalian post-entry restriction factor against retroviruses, to the repeated observation that many TRIMs ubiquitinate and regulate signaling pathways, the past decade has witnessed an intense research effort to understand how TRIM proteins influence immunity. The list of viral families targeted directly or indirectly by TRIM proteins has grown to include adenoviruses, hepadnaviruses, picornaviruses, flaviviruses, orthomyxoviruses, paramyxoviruses, herpesviruses, rhabdoviruses and arenaviruses. We have come to appreciate how, through intense bouts of positive selection, some TRIM genes have been honed into species-specific restriction factors. Similarly, in the case of TRIMCyp, we are beginning to understand how viruses too have mutated to evade restriction, suggesting that TRIM and viruses have coevolved for millions of years of primate evolution. Recently, TRIM5α returned to the limelight when it was shown to trigger the expression of antiviral genes upon recognition of an incoming virus, a paradigm shift that demonstrated that restriction factors make excellent pathogen sensors. However, it remains unclear how many of ~100 human TRIM genes are antiviral, despite the expression of many of these genes being upregulated by interferon and upon viral infection. TRIM proteins do not conform to one type of antiviral mechanism, reflecting the diversity of viruses they target. Moreover, the cofactors of restriction remain largely enigmatic. The control of retroviral replication remains an important medical subject and provides a useful backdrop for reviewing how TRIM proteins act to repress viral replication.
Collapse
Affiliation(s)
- Adam J Fletcher
- MRC Centre for Medical Molecular Virology, University College, London, UK.
| | | |
Collapse
|
13
|
Jáuregui P, Crespo H, Glaria I, Luján L, Contreras A, Rosati S, de Andrés D, Amorena B, Towers GJ, Reina R. Ovine TRIM5α can restrict visna/maedi virus. J Virol 2012; 86:9504-9. [PMID: 22696640 PMCID: PMC3416128 DOI: 10.1128/jvi.00440-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 06/01/2012] [Indexed: 11/20/2022] Open
Abstract
The restrictive properties of tripartite motif-containing 5 alpha (TRIM5α) from small ruminant species have not been explored. Here, we identify highly similar TRIM5α sequences in sheep and goats. Cells transduced with ovine TRIM5α effectively restricted the lentivirus visna/maedi virus DNA synthesis. Proteasome inhibition in cells transduced with ovine TRIM5α restored restricted viral DNA synthesis, suggesting a conserved mechanism of restriction. Identification of TRIM5α active molecular species may open new prophylactic strategies against lentiviral infections.
Collapse
Affiliation(s)
- P. Jáuregui
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Mutilva Baja, Navarra, Spain
| | - H. Crespo
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Mutilva Baja, Navarra, Spain
| | - I. Glaria
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Mutilva Baja, Navarra, Spain
| | - L. Luján
- Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - A. Contreras
- Departamento de Epidemiología y Enfermedades Infecciosas, Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain
| | - S. Rosati
- Dipartimento di Produzione Animali, Epidemiologia ed Ecologia, Università degli Studi di Torino, Turin, Italy
| | - D. de Andrés
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Mutilva Baja, Navarra, Spain
| | - B. Amorena
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Mutilva Baja, Navarra, Spain
| | - G. J. Towers
- MRC Centre for Medical Molecular Virology, Infection and Immunity, University College London, London, United Kingdom
| | - R. Reina
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Mutilva Baja, Navarra, Spain
| |
Collapse
|
14
|
Nakayama EE, Shioda T. Role of Human TRIM5α in Intrinsic Immunity. Front Microbiol 2012; 3:97. [PMID: 22435067 PMCID: PMC3304089 DOI: 10.3389/fmicb.2012.00097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 02/28/2012] [Indexed: 12/14/2022] Open
Abstract
Human immunodeficiency virus (HIV) has a very narrow host range. HIV type 1 (HIV-1) does not infect Old World monkeys, such as the rhesus monkey (Rh). Rh TRIM5α was identified as a factor that confers resistance, intrinsic immunity, to HIV-1 infection. Unfortunately, human TRIM5α is almost powerless to restrict HIV-1. However, human TRIM5α potently restricts N-tropic murine leukemia viruses (MLV) but not B-tropic MLV, indicating that human TRIM5α represents the restriction factor previously designated as Ref1. African green monkey TRIM5α represents another restriction factor previously designated as Lv1, which restricts both HIV-1 and simian immunodeficiency virus isolated from macaque (SIVmac) infection. TRIM5 is a member of the tripartite motif family containing RING, B-box2, and coiled-coil domains. The RING domain is frequently found in E3 ubiquitin ligase, and TRIM5α is thought to degrade viral core via ubiquitin–proteasome-dependent and -independent pathways. The alpha isoform of TRIM5 has an additional C-terminal PRYSPRY domain, which is a determinant of species-specific retrovirus restriction by TRIM5α. On the other hand, the target regions of viral capsid protein (CA) are scattered on the surface of core. A single amino acid difference in the surface-exposed loop between α-helices 6 and 7 (L6/7) of HIV type 2 (HIV-2) CA affects viral sensitivity to human TRIM5α and was also shown to be associated with viral load in West African HIV-2 patients, indicating that human TRIM5α is a critical modulator of HIV-2 replication in vivo. Interestingly, L6/7 of CA corresponds to the MLV determinant of sensitivity to mouse factor Fv1, which potently restricts N-tropic MLV. In addition, human genetic polymorphisms also affect antiviral activity of human TRIM5α. Recently, human TRIM5α was shown to activate signaling pathways that lead to activation of NF-κB and AP-1 by interacting with TAK1 complex. TRIM5α is thus involved in control of viral infection in multiple ways.
Collapse
Affiliation(s)
- Emi E Nakayama
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University Suita, Osaka, Japan
| | | |
Collapse
|
15
|
Hudson M, Pope J, Mahler M, Tatibouet S, Steele R, Baron M, Fritzler MJ. Clinical significance of antibodies to Ro52/TRIM21 in systemic sclerosis. Arthritis Res Ther 2012; 14:R50. [PMID: 22394602 PMCID: PMC3446416 DOI: 10.1186/ar3763] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 02/07/2012] [Accepted: 03/06/2012] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Autoantibodies to Ro52 recently identified as TRIM21 are among the most common autoantibodies in systemic autoimmune rheumatic diseases, but their clinical association remains poorly understood. We undertook this study to determine the clinical and serologic associations of anti-Ro52/TRIM21 antibodies in patients with systemic sclerosis (SSc). METHODS Detailed clinical data and sera from 963 patients with SSc enrolled in a multicenter cohort study were collected and entered into a central database. Antibodies to Ro52/TRIM21 and other autoantibodies were detected with an addressable laser-bead immunoassay and different enzyme-linked immunosorbent assay (ELISA) systems. Associations between anti-Ro52/TRIM21 antibodies and clinical and other serologic manifestations of SSc were investigated. RESULTS Anti-Ro52/TRIM21 antibodies were present in 20% of SSc patients and overlapped with other main SSc-related antibodies, including anti-centromere (by immunofluorescence and centromere protein (CENP)-A and CENP-B ELISA), anti-topoisomerase I, anti-RNA polymerase III, and anti-Pm/Scl antibodies. Anti-Ro52/TRIM21 antibodies were strongly associated with interstitial lung disease (odds ratio (OR), 1.53; 95% confidence interval (CI), 1.11 to 2.12; P = 0.0091) and overlap syndrome (OR, 2.06; 95% CI, 1.01 to 4.19; P = 0.0059). CONCLUSIONS Anti-Ro52/TRIM21 antibodies were the second most common autoantibodies in this SSc cohort. In SSc, anti-Ro52/TRIM21 antibodies may be a marker of interstitial lung disease and overlap syndrome.
Collapse
Affiliation(s)
- Marie Hudson
- Division of Rheumatology, Jewish General Hospital, 3755 Cote Ste Catherine, Montréal H3T 1E3, Quebec, Canada.
| | | | | | | | | | | | | | | |
Collapse
|