1
|
Durant-Vesga J, Suzuki N, Ochi H, Le Bouffant R, Eschstruth A, Ogino H, Umbhauer M, Riou JF. Retinoic acid control of pax8 during renal specification of Xenopus pronephros involves hox and meis3. Dev Biol 2023; 493:17-28. [PMID: 36279927 DOI: 10.1016/j.ydbio.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022]
Abstract
Development of the Xenopus pronephros relies on renal precursors grouped at neurula stage into a specific region of dorso-lateral mesoderm called the kidney field. Formation of the kidney field at early neurula stage is dependent on retinoic (RA) signaling acting upstream of renal master transcriptional regulators such as pax8 or lhx1. Although lhx1 might be a direct target of RA-mediated transcriptional activation in the kidney field, how RA controls the emergence of the kidney field remains poorly understood. In order to better understand RA control of renal specification of the kidney field, we have performed a transcriptomic profiling of genes affected by RA disruption in lateral mesoderm explants isolated prior to the emergence of the kidney field and cultured at different time points until early neurula stage. Besides genes directly involved in pronephric development (pax8, lhx1, osr2, mecom), hox (hoxa1, a3, b3, b4, c5 and d1) and the hox co-factor meis3 appear as a prominent group of genes encoding transcription factors (TFs) downstream of RA. Supporting the idea of a role of meis3 in the kidney field, we have observed that meis3 depletion results in a severe inhibition of pax8 expression in the kidney field. Meis3 depletion only marginally affects expression of lhx1 and aldh1a2 suggesting that meis3 principally acts upstream of pax8. Further arguing for a role of meis3 and hox in the control of pax8, expression of a combination of meis3, hoxb4 and pbx1 in animal caps induces pax8 expression, but not that of lhx1. The same combination of TFs is also able to transactivate a previously identified pax8 enhancer, Pax8-CNS1. Mutagenesis of potential PBX-Hox binding motifs present in Pax8-CNS1 further allows to identify two of them that are necessary for transactivation. Finally, we have tested deletions of regulatory sequences in reporter assays with a previously characterized transgene encompassing 36.5 kb of the X. tropicalis pax8 gene that allows expression of a truncated pax8-GFP fusion protein recapitulating endogenous pax8 expression. This transgene includes three conserved pax8 enhancers, Pax8-CNS1, Pax8-CNS2 and Pax8-CNS3. Deletion of Pax8-CNS1 alone does not affect reporter expression, but deletion of a 3.5 kb region encompassing Pax8-CNS1 and Pax8-CNS2 results in a severe inhibition of reporter expression both in the otic placode and kidney field domains.
Collapse
Affiliation(s)
- Jennifer Durant-Vesga
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, Laboratoire de Biologie Du Développement, UMR7622, 9, Quai Saint-Bernard, 75252, Paris, Cedex05, France
| | - Nanoka Suzuki
- Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan; Amphibian Research Center / Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagami-yama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Ronan Le Bouffant
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, Laboratoire de Biologie Du Développement, UMR7622, 9, Quai Saint-Bernard, 75252, Paris, Cedex05, France
| | - Alexis Eschstruth
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, Laboratoire de Biologie Du Développement, UMR7622, 9, Quai Saint-Bernard, 75252, Paris, Cedex05, France
| | - Hajime Ogino
- Amphibian Research Center / Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagami-yama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Muriel Umbhauer
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, Laboratoire de Biologie Du Développement, UMR7622, 9, Quai Saint-Bernard, 75252, Paris, Cedex05, France
| | - Jean-François Riou
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, Laboratoire de Biologie Du Développement, UMR7622, 9, Quai Saint-Bernard, 75252, Paris, Cedex05, France.
| |
Collapse
|
2
|
Hoxa2 selectively enhances Meis binding to change a branchial arch ground state. Dev Cell 2015; 32:265-77. [PMID: 25640223 PMCID: PMC4333904 DOI: 10.1016/j.devcel.2014.12.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/18/2014] [Accepted: 12/23/2014] [Indexed: 02/07/2023]
Abstract
Hox transcription factors (TFs) are essential for vertebrate development, but how these evolutionary conserved proteins function in vivo remains unclear. Because Hox proteins have notoriously low binding specificity, they are believed to bind with cofactors, mainly homeodomain TFs Pbx and Meis, to select their specific targets. We mapped binding of Meis, Pbx, and Hoxa2 in the branchial arches, a series of segments in the developing vertebrate head. Meis occupancy is largely similar in Hox-positive and -negative arches. Hoxa2, which specifies second arch (IIBA) identity, recognizes a subset of Meis prebound sites that contain Hox motifs. Importantly, at these sites Meis binding is strongly increased. This enhanced Meis binding coincides with active enhancers, which are linked to genes highly expressed in the IIBA and regulated by Hoxa2. These findings show that Hoxa2 operates as a tissue-specific cofactor, enhancing Meis binding to specific sites that provide the IIBA with its anatomical identity. Meis provides a ground state that is common to all the branchial arches Hoxa2 recognizes Meis prebound sites in the second arch that contain Hox motifs Hoxa2 enhances Meis binding, which coincides with active enhancers, at these sites Hoxa2 modulates the ground-state binding of Meis to instruct second arch identity
Collapse
|
3
|
Pfeifer K, Dorresteijn AWC, Fröbius AC. Activation of Hox genes during caudal regeneration of the polychaete annelid Platynereis dumerilii. Dev Genes Evol 2012; 222:165-79. [PMID: 22569931 DOI: 10.1007/s00427-012-0402-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 04/18/2012] [Indexed: 12/16/2022]
Abstract
The capability of regenerating posterior segments and pygidial structures is ancestral for annelids and has been lost only a few times within this phylum. As one of the three major segmented taxa, annelids enable us to monitor reconstruction of lost tissues and organs. During regeneration, regional identities have to be imprinted onto the newly formed segments. In this study, we show spatial and temporal localization of expression of nine Hox genes during caudal regeneration of the polychaete annelid Platynereis dumerilii. Hox genes are homeodomain genes encoding transcriptional regulators of axial patterning in bilaterian animals during development. We demonstrate that five Platynereis Hox genes belonging to paralog groups (PG) 1, 4, 5, 6, and 9-14 are expressed in domains of the regenerating nervous system consistent with providing positional information along the anteroposterior axis of the regenerate. We report that expression in regenerating neuromeres is limited to varying subsets of perikarya, called gangliosomes. Four of nine genes analyzed do not appear to be involved in axial patterning. Two genes, Pdu-Hox2 and Pdu-Hox3, are predominantly expressed in the growth zone region. For some Hox genes expression in newly formed coelomic epithelia can be observed. Platynereis Hox genes do not exhibit temporal or spatial colinearity. Although there are some similarities to previously reported expression patterns during larval and postlarval development in Nereididae (Kulakova et al. 2007), expression patterns observed during caudal regeneration also show unique patterns.
Collapse
Affiliation(s)
- Kathrin Pfeifer
- Institut für Allgemeine und Spezielle Zoologie, Abteilung Entwicklungsbiologie, Justus-Liebig-Universität Giessen, Stephanstr.24, 35390, Giessen, Germany
| | | | | |
Collapse
|