1
|
Liu J, Liu J, Li M, Zhou L, Kong W, Zhang H, Jin P, Lu F, Lin G, Shi L. Division of developmental phases of freshwater leech Whitmania pigra and key genes related to neurogenesis revealed by whole genome and transcriptome analysis. BMC Genomics 2023; 24:203. [PMID: 37069497 PMCID: PMC10111769 DOI: 10.1186/s12864-023-09286-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 03/30/2023] [Indexed: 04/19/2023] Open
Abstract
The freshwater leech Whitmania pigra (W. pigra) Whitman (Annelida phylum) is a model organism for neurodevelopmental studies. However, molecular biology research on its embryonic development is still scarce. Here, we described a series of developmental stages of the W. pigra embryos and defined five broad stages of embryogenesis: cleavage stages, blastocyst stage, gastrula stage, organogenesis and refinement, juvenile. We obtained a total of 239.64 Gb transcriptome data of eight representative developmental phases of embryos (from blastocyst stage to maturity), which was then assembled into 21,482 unigenes according to our reference genome sequenced by single-molecule real-time (SMRT) long-read sequencing. We found 3114 genes differentially expressed during the eight phases with phase-specific expression pattern. Using a comprehensive transcriptome dataset, we demonstrated that 57, 49 and 77 DEGs were respectively related to morphogenesis, signal pathways and neurogenesis. 49 DEGs related to signal pathways included 30 wnt genes, 14 notch genes, and 5 hedgehog genes. In particular, we found a cluster consisting of 7 genes related to signal pathways as well as synapses, which were essential for regulating embryonic development. Eight genes cooperatively participated in regulating neurogenesis. Our results reveal the whole picture of W. pigra development mechanism from the perspective of transcriptome and provide new clues for organogenesis and neurodevelopmental studies of Annelida species.
Collapse
Affiliation(s)
- Jiali Liu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College Beijing 100193, China Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Jinxin Liu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College Beijing 100193, China Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Mingyue Li
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Lisi Zhou
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College Beijing 100193, China Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Weijun Kong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Hailin Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, China
| | - Panpan Jin
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College Beijing 100193, China Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Fuhua Lu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College Beijing 100193, China Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Gufa Lin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, China.
| | - Linchun Shi
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College Beijing 100193, China Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China.
| |
Collapse
|
2
|
Phetsanthad A, Vu NQ, Yu Q, Buchberger AR, Chen Z, Keller C, Li L. Recent advances in mass spectrometry analysis of neuropeptides. MASS SPECTROMETRY REVIEWS 2023; 42:706-750. [PMID: 34558119 PMCID: PMC9067165 DOI: 10.1002/mas.21734] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/22/2021] [Accepted: 08/28/2021] [Indexed: 05/08/2023]
Abstract
Due to their involvement in numerous biochemical pathways, neuropeptides have been the focus of many recent research studies. Unfortunately, classic analytical methods, such as western blots and enzyme-linked immunosorbent assays, are extremely limited in terms of global investigations, leading researchers to search for more advanced techniques capable of probing the entire neuropeptidome of an organism. With recent technological advances, mass spectrometry (MS) has provided methodology to gain global knowledge of a neuropeptidome on a spatial, temporal, and quantitative level. This review will cover key considerations for the analysis of neuropeptides by MS, including sample preparation strategies, instrumental advances for identification, structural characterization, and imaging; insightful functional studies; and newly developed absolute and relative quantitation strategies. While many discoveries have been made with MS, the methodology is still in its infancy. Many of the current challenges and areas that need development will also be highlighted in this review.
Collapse
Affiliation(s)
- Ashley Phetsanthad
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Nhu Q. Vu
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Qing Yu
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Amanda R. Buchberger
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Zhengwei Chen
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Caitlin Keller
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
3
|
Aoki J, Isokawa M, Toyoda M. Space and Time Coherent Mapping for Subcellular Resolution of Imaging Mass Spectrometry. Cells 2022; 11:cells11213382. [PMID: 36359779 PMCID: PMC9653616 DOI: 10.3390/cells11213382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 12/02/2022] Open
Abstract
Space and time coherent mapping (STCM) is a technology developed in our laboratory for improved matrix-assisted laser desorption ionization (MALDI) time of flight (TOF) imaging mass spectrometry (IMS). STCM excels in high spatial resolutions, which probe-based scanning methods cannot attain in conventional MALDI IMS. By replacing a scanning probe with a large field laser beam, focusing ion optics, and position-sensitive detectors, STCM tracks the entire flight trajectories of individual ions throughout the ionization process and visualizes the ionization site on the sample surface with a subcellular scale of precision and a substantially short acquisition time. Results obtained in thinly sectioned leech segmental ganglia and epididymis demonstrate that STCM IMS is highly suited for (1) imaging bioactive lipid messengers such as endocannabinoids and the mediators of neuronal activities in situ with spatial resolution sufficient to detail subcellular localization, (2) integrating resultant images in mass spectrometry to optically defined cell anatomy, and (3) assembling a stack of ion maps derived from mass spectra for cluster analysis. We propose that STCM IMS is the choice over a probe-based scanning mass spectrometer for high-resolution single-cell molecular imaging.
Collapse
Affiliation(s)
- Jun Aoki
- Center for Biosystems Dynamics Research, RIKEN, Saitama 351-0198, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
- Correspondence:
| | - Masako Isokawa
- Forefront Research Center, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Michisato Toyoda
- Forefront Research Center, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| |
Collapse
|
4
|
Ma X, Yan X, Ke R, Shan H, Rehman SU, Feng T, Zheng Y, Chuang C, Zhou W, Liu Q, Zheng J. Comparative Transcriptome Sequencing Analysis of Hirudo nipponia in Different Growth Periods. Front Physiol 2022; 13:873831. [PMID: 35812329 PMCID: PMC9259933 DOI: 10.3389/fphys.2022.873831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Hirudo nipponia is the only blood-sucking leech included in Chinese Pharmacopoeia having distinct features of anticoagulation, exorcizing blood stasis, and promoting menstruation. Despite such significant characteristics, very little is known about its molecular genetics and related physiological mechanisms. In this study, the transcriptomes of H. nipponia at three developmental stages (larvae, young, and adults), revealed a total of 1,348 differentially expressed genes (DEGs), 223 differentially expressed lncRNAs, and 88 novel mRNAs. A significant diverse gene expression patterns were observed at different developmental stages which were analyzed by differential gene expression trends, and the overall gene expression trends consist of three overall down-regulated trends, and two overall up-regulated trends. Furthermore, the GO and KEGG enrichment functional annotation analysis revealed that these DEGs were mainly associated with protein hydrolysis, signal transduction, energy metabolism, and lipid metabolism while growth, development, metabolism, and reproduction-related DEGs were also found. Additionally, real-time quantitative PCR results confirmed deep sequencing results based on the relative expression levels of nine randomly selected genes. This is the first transcriptome-based comprehensive study of H. irudo nipponia at different developmental stages which provided considerable deep understanding related to gene expression patterns and their relevant developmental pathways, neurodevelopmental and reproductive characteristics of the leech.
Collapse
Affiliation(s)
- Xiaocong Ma
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Xiuying Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Ren Ke
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Huiquan Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Saif ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Tong Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Yalin Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Chen Chuang
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Weiguan Zhou
- Thai Natural Hirudin Co, Ltd., Bangkok, Thailand
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
- *Correspondence: Qingyou Liu, ; Jinghui Zheng,
| | - Jinghui Zheng
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
- *Correspondence: Qingyou Liu, ; Jinghui Zheng,
| |
Collapse
|
5
|
Clarke TL, Johnson RL, Simone JJ, Carlone RL. The Endocannabinoid System and Invertebrate Neurodevelopment and Regeneration. Int J Mol Sci 2021; 22:2103. [PMID: 33672634 PMCID: PMC7924210 DOI: 10.3390/ijms22042103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
Cannabis has long been used for its medicinal and psychoactive properties. With the relatively new adoption of formal medicinal cannabis regulations worldwide, the study of cannabinoids, both endogenous and exogenous, has similarly flourished in more recent decades. In particular, research investigating the role of cannabinoids in regeneration and neurodevelopment has yielded promising results in vertebrate models. However, regeneration-competent vertebrates are few, whereas a myriad of invertebrate species have been established as superb models for regeneration. As such, this review aims to provide a comprehensive summary of the endocannabinoid system, with a focus on current advances in the area of endocannabinoid system contributions to invertebrate neurodevelopment and regeneration.
Collapse
Affiliation(s)
- Tristyn L. Clarke
- Department of Biological Sciences, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada; (T.L.C.); (R.L.J.); (J.J.S.)
| | - Rachael L. Johnson
- Department of Biological Sciences, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada; (T.L.C.); (R.L.J.); (J.J.S.)
| | - Jonathan J. Simone
- Department of Biological Sciences, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada; (T.L.C.); (R.L.J.); (J.J.S.)
- Centre for Neuroscience, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada
- eCB Consulting Inc., P.O. Box 652, 3 Cameron St. W., Cannington, ON L2S 3A1, Canada
| | - Robert L. Carlone
- Department of Biological Sciences, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada; (T.L.C.); (R.L.J.); (J.J.S.)
- Centre for Neuroscience, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
6
|
Ong TH, Romanova EV, Roberts-Galbraith RH, Yang N, Zimmerman TA, Collins JJ, Lee JE, Kelleher NL, Newmark PA, Sweedler JV. Mass Spectrometry Imaging and Identification of Peptides Associated with Cephalic Ganglia Regeneration in Schmidtea mediterranea. J Biol Chem 2016; 291:8109-20. [PMID: 26884331 PMCID: PMC4825013 DOI: 10.1074/jbc.m115.709196] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Indexed: 12/21/2022] Open
Abstract
Tissue regeneration is a complex process that involves a mosaic of molecules that vary spatially and temporally. Insights into the chemical signaling underlying this process can be achieved with a multiplex and untargeted chemical imaging method such as mass spectrometry imaging (MSI), which can enablede novostudies of nervous system regeneration. A combination of MSI and multivariate statistics was used to differentiate peptide dynamics in the freshwater planarian flatwormSchmidtea mediterraneaat different time points during cephalic ganglia regeneration. A protocol was developed to makeS. mediterraneatissues amenable for MSI. MS ion images of planarian tissue sections allow changes in peptides and unknown compounds to be followed as a function of cephalic ganglia regeneration. In conjunction with fluorescence imaging, our results suggest that even though the cephalic ganglia structure is visible after 6 days of regeneration, the original chemical composition of these regenerated structures is regained only after 12 days. Differences were observed in many peptides, such as those derived from secreted peptide 4 and EYE53-1. Peptidomic analysis further identified multiple peptides from various known prohormones, histone proteins, and DNA- and RNA-binding proteins as being associated with the regeneration process. Mass spectrometry data also facilitated the identification of a new prohormone, which we have named secreted peptide prohormone 20 (SPP-20), and is up-regulated during regeneration in planarians.
Collapse
Affiliation(s)
- Ta-Hsuan Ong
- From the Department of Chemistry, and the Beckman Institute
| | | | - Rachel H Roberts-Galbraith
- the Department of Cell and Developmental Biology, Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, and
| | - Ning Yang
- From the Department of Chemistry, and the Beckman Institute
| | | | - James J Collins
- the Department of Cell and Developmental Biology, Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, and
| | - Ji Eun Lee
- From the Department of Chemistry, and the Beckman Institute
| | - Neil L Kelleher
- the Departments of Chemistry and Molecular Biosciences, Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60611
| | - Phillip A Newmark
- the Department of Cell and Developmental Biology, Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, and
| | | |
Collapse
|
7
|
Hibsh D, Schori H, Efroni S, Shefi O. De novo transcriptome assembly databases for the central nervous system of the medicinal leech. Sci Data 2015; 2:150015. [PMID: 25977819 PMCID: PMC4412018 DOI: 10.1038/sdata.2015.15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/03/2015] [Indexed: 01/17/2023] Open
Abstract
The study of non-model organisms stands to benefit greatly from genetic and genomic data. For a better understanding of the molecular mechanisms driving neuronal development, and to characterize the entire leech Hirudo medicinalis central nervous system (CNS) transcriptome we combined Trinity for de-novo assembly and Illumina HiSeq2000 for RNA-Seq. We present a set of 73,493 de-novo assembled transcripts for the leech, reconstructed from RNA collected, at a single ganglion resolution, from the CNS. This set of transcripts greatly enriches the available data for the leech. Here, we share two databases, such that each dataset allows a different type of search for candidate homologues. The first is the raw set of assembled transcripts. This set allows a sequence-based search. A comprehensive analysis of which revealed 22,604 contigs with high e-values, aligned versus the Swiss-Prot database. This analysis enabled the production of the second database, which includes correlated sequences to annotated transcript names, with the confidence of BLAST best hit.
Collapse
Affiliation(s)
- Dror Hibsh
- Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel
- Institute of Nanotechnologies and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Hadas Schori
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel
- Institute of Nanotechnologies and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Sol Efroni
- Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Orit Shefi
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel
- Institute of Nanotechnologies and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
8
|
Challenges and recent advances in mass spectrometric imaging of neurotransmitters. Bioanalysis 2014; 6:525-40. [PMID: 24568355 DOI: 10.4155/bio.13.341] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mass spectrometric imaging (MSI) is a powerful tool that grants the ability to investigate a broad mass range of molecules, from small molecules to large proteins, by creating detailed distribution maps of selected compounds. To date, MSI has demonstrated its versatility in the study of neurotransmitters and neuropeptides of different classes toward investigation of neurobiological functions and diseases. These studies have provided significant insight in neurobiology over the years and current technical advances are facilitating further improvements in this field. Herein, we briefly review new MSI studies of neurotransmitters, focusing specifically on the challenges and recent advances of MSI of neurotransmitters.
Collapse
|
9
|
Kopp C, Wisztorski M, Revel J, Mehiri M, Dani V, Capron L, Carette D, Fournier I, Massi L, Mouajjah D, Pagnotta S, Priouzeau F, Salzet M, Meibom A, Sabourault C. MALDI-MS and NanoSIMS imaging techniques to study cnidarian-dinoflagellate symbioses. ZOOLOGY 2014; 118:125-31. [PMID: 25447219 DOI: 10.1016/j.zool.2014.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/29/2014] [Accepted: 06/30/2014] [Indexed: 12/22/2022]
Abstract
Cnidarian-dinoflagellate photosynthetic symbioses are fundamental to biologically diverse and productive coral reef ecosystems. The hallmark of this symbiotic relationship is the ability of dinoflagellate symbionts to supply their cnidarian host with a wide range of nutrients. Many aspects of this association nevertheless remain poorly characterized, including the exact identity of the transferred metabolic compounds, the mechanisms that control their exchange across the host-symbiont interface, and the precise subcellular fate of the translocated materials in cnidarian tissues. This lack of knowledge is mainly attributed to difficulties in investigating such metabolic interactions both in situ, i.e. on intact symbiotic associations, and at high spatial resolution. To address these issues, we illustrate the application of two in situ and high spatial resolution molecular and ion imaging techniques-matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) and the nano-scale secondary-ion mass spectrometry (NanoSIMS) ion microprobe. These imaging techniques provide important new opportunities for the detailed investigation of many aspects of cnidarian-dinoflagellate associations, including the dynamics of cellular interactions.
Collapse
Affiliation(s)
- C Kopp
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - M Wisztorski
- PRISM, University of Lille 1, EA 4550 - FRE3637 CNRS, Bat SN3, F-59655 Villeneuve d'Ascq Cedex, France
| | - J Revel
- UMR7138 University of Nice-Sophia Antipolis, CNRS, Faculty of Science, 28 Avenue Valrose, BP 71, F-06108 Nice Cedex 2, France; UMR7138 Sorbonne University Paris 6, CNRS, Institut de Biologie Paris-Seine, 7 quai Saint Bernard, 75005 Paris, France
| | - M Mehiri
- UMR7272 University of Nice-Sophia Antipolis, CNRS, Institut de Chimie de Nice, Faculty of Science, 28 Avenue Valrose, BP 71, F-06108 Nice Cedex 2, France
| | - V Dani
- UMR7138 University of Nice-Sophia Antipolis, CNRS, Faculty of Science, 28 Avenue Valrose, BP 71, F-06108 Nice Cedex 2, France; UMR7138 Sorbonne University Paris 6, CNRS, Institut de Biologie Paris-Seine, 7 quai Saint Bernard, 75005 Paris, France
| | - L Capron
- UMR7272 University of Nice-Sophia Antipolis, CNRS, Institut de Chimie de Nice, Faculty of Science, 28 Avenue Valrose, BP 71, F-06108 Nice Cedex 2, France
| | - D Carette
- CCMA, University of Nice-Sophia Antipolis, Faculty of Science, 28 Avenue Valrose, BP 71, F-06108 Nice Cedex 2, France
| | - I Fournier
- PRISM, University of Lille 1, EA 4550 - FRE3637 CNRS, Bat SN3, F-59655 Villeneuve d'Ascq Cedex, France
| | - L Massi
- UMR7272 University of Nice-Sophia Antipolis, CNRS, Institut de Chimie de Nice, Faculty of Science, 28 Avenue Valrose, BP 71, F-06108 Nice Cedex 2, France
| | - D Mouajjah
- PRISM, University of Lille 1, EA 4550 - FRE3637 CNRS, Bat SN3, F-59655 Villeneuve d'Ascq Cedex, France
| | - S Pagnotta
- CCMA, University of Nice-Sophia Antipolis, Faculty of Science, 28 Avenue Valrose, BP 71, F-06108 Nice Cedex 2, France
| | - F Priouzeau
- UMR7138 University of Nice-Sophia Antipolis, CNRS, Faculty of Science, 28 Avenue Valrose, BP 71, F-06108 Nice Cedex 2, France; UMR7138 Sorbonne University Paris 6, CNRS, Institut de Biologie Paris-Seine, 7 quai Saint Bernard, 75005 Paris, France
| | - M Salzet
- PRISM, University of Lille 1, EA 4550 - FRE3637 CNRS, Bat SN3, F-59655 Villeneuve d'Ascq Cedex, France
| | - A Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; Center for Advanced Surface Analysis, Institute of Earth Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - C Sabourault
- UMR7138 University of Nice-Sophia Antipolis, CNRS, Faculty of Science, 28 Avenue Valrose, BP 71, F-06108 Nice Cedex 2, France; UMR7138 Sorbonne University Paris 6, CNRS, Institut de Biologie Paris-Seine, 7 quai Saint Bernard, 75005 Paris, France.
| |
Collapse
|
10
|
Arafah K, Longuespée R, Desmons A, Kerdraon O, Fournier I, Salzet M. Lipidomics for clinical diagnosis: Dye-Assisted Laser Desorption/Ionization (DALDI) method for lipids detection in MALDI mass spectrometry imaging. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:487-98. [PMID: 24905741 DOI: 10.1089/omi.2013.0175] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Lipid-based biomarkers for research and diagnosis are rapidly emerging to unpack the basis of person-to-person and population variations in disease susceptibility, drug and nutritional responses, to name but a few. Hence, with the advent of MALDI Mass Spectrometry Imaging, lipids have begun to be investigated intensively. However, lipids are highly mobile during tissue preparation, and are soluble in the solvent used for matrix preparation or in the fixing fluid such as formalin, resulting in substantial delocalization. In the present article, we investigated as another alternative, the possibility of using specific dyes that can absorb UV wavelengths, in order to desorb the lipids specifically from tissue sections, and are known to immobilize them in tissues. Indeed, after lipid insolubilization with chromate solution or chemical fixation with osmium tetroxide, heterocyclic-based dyes can be directly used without matrix. Taking into account the fact that some dyes have this matrix-free capability, we identified particular dyes dedicated to histological staining of lipids that could be used with MALDI mass spectrometry imaging. We stained tissue sections with either Sudan Black B, Nile Blue A, or Oil Red O. An important advantage of this assay relies on its compatibility with usual practices of histopathological investigation of lipids. As a new method, DALDI stands for Dye-Assisted Laser Desorption Ionization and allows for future clinical and histopathological applications using routine histological protocols. Additionally, this novel methodology was validated in human ovarian cancer biopsies to demonstrate its use as a suitable procedure, for histological diagnosis in lipidomics field.
Collapse
Affiliation(s)
- Karim Arafah
- 1 Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Université de Lille 1 , Cité Scientifique, Villeneuve D'Ascq, France
| | | | | | | | | | | |
Collapse
|
11
|
Meccariello R, Battista N, Bradshaw HB, Wang H. Updates in reproduction coming from the endocannabinoid system. Int J Endocrinol 2014; 2014:412354. [PMID: 24550985 PMCID: PMC3914453 DOI: 10.1155/2014/412354] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 11/20/2013] [Accepted: 12/04/2013] [Indexed: 12/26/2022] Open
Abstract
The endocannabinoid system (ECS) is an evolutionarily conserved master system deeply involved in the central and local control of reproductive functions in both sexes. The tone of these lipid mediators-deeply modulated by the activity of biosynthetic and hydrolyzing machineries-regulates reproductive functions from gonadotropin discharge and steroid biosynthesis to the formation of high quality gametes and successful pregnancy. This review provides an overview on ECS and reproduction and focuses on the insights in the regulation of endocannabinoid production by steroids, in the regulation of male reproductive activity, and in placentation and parturition. Taken all together, evidences emerge that the activity of the ECS is crucial for procreation and may represent a target for the therapeutic exploitation of infertility.
Collapse
Affiliation(s)
- Rosaria Meccariello
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli Parthenope, via Medina 40, 80133 Napoli, Italy
- *Rosaria Meccariello:
| | - Natalia Battista
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- European Center for Brain Research (CERC), Santa Lucia Foundation, 00143 Rome, Italy
| | - Heather B. Bradshaw
- Department of Psychological and Brain Sciences, The Kinsey Institute for Research in Sex, Gender, and Reproduction, Indiana University, Bloomington, IN 47405, USA
| | - Haibin Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
12
|
Hibsh D, Schori H, Efroni S, Shefi O. Spatial regulation dominates gene function in the ganglia chain. ACTA ACUST UNITED AC 2013; 30:310-6. [PMID: 24085568 DOI: 10.1093/bioinformatics/btt570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
MOTIVATION To understand the molecular mechanisms of neurons, it is imperative to identify genomic dissimilarities within the heterogeneity of the neural system. This is especially true for neuronal disorders in which spatial considerations are of critical nature. For this purpose, Hirudo medicinalis provides here an ideal system in which we are able to follow gene expression along the central nervous system, to affiliate location with gene behavior. RESULTS In all, 221.1 million high-quality short reads were sequenced on the Illumina Hiseq2000 platform at the single ganglion level. Thereafter, a de novo assembly was performed using two state-of-the-art assemblers, Trinity and Trans-ABySS, to reconstruct a comprehensive de novo transcriptome. Classification of Trinity and Trans-ABySS transcripts produced a non-redundant set of 76 845 and 268 355 transcripts (>200 bp), respectively. Remarkably, using Trinity, 82% of the published medicinal leech messenger RNAs was identified. For the innexin family, all of the 21 recently reported genes were identified. Spatial regulation analysis across three ganglia throughout the entire central nervous system revealed distinct patterns of gene expression. These transcriptome data were combined with expression distribution to produce a spatio-transcripto map along the ganglia chain. This study provides a resource for gene discovery and gene regulation in future studies.
Collapse
Affiliation(s)
- Dror Hibsh
- Faculty of Life Sciences, Faculty of Engineering and Institute of Nanotechnologies and Advanced Materials, Bar Ilan University, Ramat Gan, Israel 52900
| | | | | | | |
Collapse
|
13
|
Quanico J, Franck J, Dauly C, Strupat K, Dupuy J, Day R, Salzet M, Fournier I, Wisztorski M. Development of liquid microjunction extraction strategy for improving protein identification from tissue sections. J Proteomics 2013; 79:200-18. [DOI: 10.1016/j.jprot.2012.11.025] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 11/20/2012] [Accepted: 11/30/2012] [Indexed: 12/22/2022]
|
14
|
Arafah K, Croix D, Vizioli J, Desmons A, Fournier I, Salzet M. Involvement of nitric oxide through endocannabinoids release in microglia activation during the course of CNS regeneration in the medicinal leech. Glia 2013; 61:636-49. [DOI: 10.1002/glia.22462] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 12/17/2012] [Indexed: 11/06/2022]
|
15
|
Franco C, Soares R, Pires E, Koci K, Almeida AM, Santos R, Coelho AV. Understanding regeneration through proteomics. Proteomics 2013; 13:686-709. [DOI: 10.1002/pmic.201200397] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/31/2012] [Accepted: 11/06/2012] [Indexed: 12/29/2022]
Affiliation(s)
- Catarina Franco
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
| | - Renata Soares
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
| | - Elisabete Pires
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
| | - Kamila Koci
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
| | - André M. Almeida
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
- Instituto de Investigação Científica Tropical; Lisboa Portugal
| | - Romana Santos
- Unidade de Investigação em Ciências Orais e Biomédicas, Faculdade de Medicina Dentária; Universidade de Lisboa; Portugal
| | - Ana Varela Coelho
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
| |
Collapse
|
16
|
Jones EA, Deininger SO, Hogendoorn PC, Deelder AM, McDonnell LA. Imaging mass spectrometry statistical analysis. J Proteomics 2012; 75:4962-4989. [DOI: 10.1016/j.jprot.2012.06.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 06/06/2012] [Accepted: 06/16/2012] [Indexed: 12/22/2022]
|
17
|
Yuan S, Burrell BD. Long-term depression of nociceptive synapses by non-nociceptive afferent activity: role of endocannabinoids, Ca²+, and calcineurin. Brain Res 2012; 1460:1-11. [PMID: 22578358 DOI: 10.1016/j.brainres.2012.04.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/16/2012] [Accepted: 04/16/2012] [Indexed: 02/08/2023]
Abstract
Activity in non-nociceptive afferents is known to produce long-lasting decreases in nociceptive signaling, often referred to as gate control, but the cellular mechanisms mediating this form of neuroplasticity are poorly understood. In the leech, activation of non-nociceptive touch (T) mechanosensory neurons induces a heterosynaptic depression of nociceptive (N) synapses that is endocannabinoid-dependent. This heterosynaptic, endocannabinoid-dependent long-term depression (ecLTD) is observed where the T- and N-cells converge on a common postsynaptic target, in this case the motor neuron that innervates the longitudinal muscles (L-cells) that contributes to a defensive withdrawal reflex. Depression in the nociceptive synapse required both presynaptic and postsynaptic increases in intracellular Ca²⁺. Activation of the Ca²⁺-sensitive protein phosphatase calcineurin was also required, but only in the presynaptic neuron. Heterosynaptic ecLTD was unaffected by antagonists for NMDA or metabotropic glutamate receptors, but was blocked by the 5-HT₂ receptor antagonist ritanserin. Depression was also blocked by the CB1 receptor antagonist rimonabant, but this is thought to represent an effect on a TRPV-like receptor. This heterosynaptic, endocannabinoid-dependent modulation of nociceptive synapses represents a novel mechanism for regulating how injury-inducing or painful stimuli are transmitted to the rest of the central nervous system.
Collapse
Affiliation(s)
- Sharleen Yuan
- Sanford School of Medicine at The University of South Dakota, Division of Basic Biomedical Sciences, Neuroscience Group, 414 E. Clark Street, Lee Med Bldg, Vermillion, SD, USA
| | | |
Collapse
|
18
|
Abstract
While immune responses in neurodegeneration were regarded as little more than a curiosity a decade ago, they are now increasingly moving toward center stage. Factors driving this movement include the recognition that most of the relevant immune molecules are produced within the brain, that microglia are proficient immune cells shaping neuronal circuitry and fate, and that systemic immune responses affect brain function. We will review this complex field from the perspective of neurons, extra-neuronal brain cells, and the systemic environment and highlight the possibility that cell intrinsic innate immune molecules in neurons may function in neurodegenerative processes.
Collapse
Affiliation(s)
- Eva Czirr
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305-5489, USA
| | | |
Collapse
|
19
|
Probing neuropeptide signaling at the organ and cellular domains via imaging mass spectrometry. J Proteomics 2012; 75:5014-5026. [PMID: 22465716 DOI: 10.1016/j.jprot.2012.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/25/2012] [Accepted: 03/05/2012] [Indexed: 11/24/2022]
Abstract
Imaging mass spectrometry (IMS) has evolved to be a promising technology due to its ability to detect a broad mass range of molecular species and create density maps for selected compounds. It is currently one of the most useful techniques to determine the spatial distribution of neuropeptides in cells and tissues. Although IMS is conceptually simple, sample preparation steps, mass analyzers, and software suites are just a few of the factors that contribute to the successful design of a neuropeptide IMS experiment. This review provides a brief overview of IMS sampling protocols, instrumentation, data analysis tools, technological advancements and applications to neuropeptide localization in neurons and endocrine tissues. Future perspectives in this field are also provided, concluding that neuropeptide IMS would greatly facilitate studies of neuronal network and biomarker discovery.
Collapse
|
20
|
Abstract
The Transient receptor potential (TRP) family of cation channels is a large protein family, which is mainly structurally uniform. Proteins consist typically of six transmembrane domains and mostly four subunits are necessary to form a functional channel. Apart from this, TRP channels display a wide variety of activation mechanisms (ligand binding, G-protein coupled receptor dependent, physical stimuli such as temperature, pressure, etc.) and ion selectivity profiles (from highly Ca(2+) selective to non-selective for cations). They have been described now in almost every tissue of the body, including peripheral and central neurons. Especially in the sensory nervous system the role of several TRP channels is already described on a detailed level. This review summarizes data that is currently available on their role in the central nervous system. TRP channels are involved in neurogenesis and brain development, synaptic transmission and they play a key role in the development of several neurological diseases.
Collapse
|