1
|
Tolstova AP, Adzhubei AA, Strelkova MA, Makarov AA, Mitkevich VA. Survey of the Aβ-peptide structural diversity: molecular dynamics approaches. Biophys Rev 2024; 16:701-722. [PMID: 39830132 PMCID: PMC11735825 DOI: 10.1007/s12551-024-01253-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/04/2024] [Indexed: 01/22/2025] Open
Abstract
The review deals with the application of Molecular Dynamics (MD) to the structure modeling of beta-amyloids (Aβ), currently classified as intrinsically disordered proteins (IDPs). In this review, we strive to relate the main advances in this area but specifically focus on the approaches and methodology. All relevant papers on the Aβ modeling are cited in the Tables in Supplementary Data, including a concise description of the applied approaches, sorted according to the types of the studied systems: modeling of the monomeric Aβ and Aβ aggregates. Similar sections focused according to the type of modeled object are present in the review. In the final part of the review, novel methods of general IDP modeling not confined to Aβ are described. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-024-01253-y.
Collapse
Affiliation(s)
- Anna P. Tolstova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia
| | - Alexei A. Adzhubei
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia
- Washington University School of Medicine and Health Sciences, Washington, DC USA
| | - Maria A. Strelkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia
| | - Alexander A. Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia
| | - Vladimir A. Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia
| |
Collapse
|
2
|
Kumar V, Ozguney B, Vlachou A, Chen Y, Gazit E, Tamamis P. Peptide Self-Assembled Nanocarriers for Cancer Drug Delivery. J Phys Chem B 2023; 127:1857-1871. [PMID: 36812392 PMCID: PMC10848270 DOI: 10.1021/acs.jpcb.2c06751] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/24/2022] [Indexed: 02/24/2023]
Abstract
The design of novel cancer drug nanocarriers is critical in the framework of cancer therapeutics. Nanomaterials are gaining increased interest as cancer drug delivery systems. Self-assembling peptides constitute an emerging novel class of highly attractive nanomaterials with highly promising applications in drug delivery, as they can be used to facilitate drug release and/or stability while reducing side effects. Here, we provide a perspective on peptide self-assembled nanocarriers for cancer drug delivery and highlight the aspects of metal coordination, structure stabilization, and cyclization, as well as minimalism. We review particular challenges in nanomedicine design criteria and, finally, provide future perspectives on addressing a portion of the challenges via self-assembling peptide systems. We consider that the intrinsic advantages of such systems, along with the increasing progress in computational and experimental approaches for their study and design, could possibly lead to novel classes of single or multicomponent systems incorporating such materials for cancer drug delivery.
Collapse
Affiliation(s)
- Vijay
Bhooshan Kumar
- The
Shmunis School of Biomedicine and Cancer Research, George S. Wise
Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Busra Ozguney
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Anastasia Vlachou
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Yu Chen
- The
Shmunis School of Biomedicine and Cancer Research, George S. Wise
Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ehud Gazit
- The
Shmunis School of Biomedicine and Cancer Research, George S. Wise
Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Department
of Materials Science and Engineering, Iby and Aladar Fleischman Faculty
of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol
School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Phanourios Tamamis
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College
Station, Texas 77843-3003, United States
| |
Collapse
|
3
|
van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, Kanekiyo M, Li D, Reyderman L, Cohen S, Froelich L, Katayama S, Sabbagh M, Vellas B, Watson D, Dhadda S, Irizarry M, Kramer LD, Iwatsubo T. Lecanemab in Early Alzheimer's Disease. N Engl J Med 2023; 388:9-21. [PMID: 36449413 DOI: 10.1056/nejmoa2212948] [Citation(s) in RCA: 2345] [Impact Index Per Article: 1172.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND The accumulation of soluble and insoluble aggregated amyloid-beta (Aβ) may initiate or potentiate pathologic processes in Alzheimer's disease. Lecanemab, a humanized IgG1 monoclonal antibody that binds with high affinity to Aβ soluble protofibrils, is being tested in persons with early Alzheimer's disease. METHODS We conducted an 18-month, multicenter, double-blind, phase 3 trial involving persons 50 to 90 years of age with early Alzheimer's disease (mild cognitive impairment or mild dementia due to Alzheimer's disease) with evidence of amyloid on positron-emission tomography (PET) or by cerebrospinal fluid testing. Participants were randomly assigned in a 1:1 ratio to receive intravenous lecanemab (10 mg per kilogram of body weight every 2 weeks) or placebo. The primary end point was the change from baseline at 18 months in the score on the Clinical Dementia Rating-Sum of Boxes (CDR-SB; range, 0 to 18, with higher scores indicating greater impairment). Key secondary end points were the change in amyloid burden on PET, the score on the 14-item cognitive subscale of the Alzheimer's Disease Assessment Scale (ADAS-cog14; range, 0 to 90; higher scores indicate greater impairment), the Alzheimer's Disease Composite Score (ADCOMS; range, 0 to 1.97; higher scores indicate greater impairment), and the score on the Alzheimer's Disease Cooperative Study-Activities of Daily Living Scale for Mild Cognitive Impairment (ADCS-MCI-ADL; range, 0 to 53; lower scores indicate greater impairment). RESULTS A total of 1795 participants were enrolled, with 898 assigned to receive lecanemab and 897 to receive placebo. The mean CDR-SB score at baseline was approximately 3.2 in both groups. The adjusted least-squares mean change from baseline at 18 months was 1.21 with lecanemab and 1.66 with placebo (difference, -0.45; 95% confidence interval [CI], -0.67 to -0.23; P<0.001). In a substudy involving 698 participants, there were greater reductions in brain amyloid burden with lecanemab than with placebo (difference, -59.1 centiloids; 95% CI, -62.6 to -55.6). Other mean differences between the two groups in the change from baseline favoring lecanemab were as follows: for the ADAS-cog14 score, -1.44 (95% CI, -2.27 to -0.61; P<0.001); for the ADCOMS, -0.050 (95% CI, -0.074 to -0.027; P<0.001); and for the ADCS-MCI-ADL score, 2.0 (95% CI, 1.2 to 2.8; P<0.001). Lecanemab resulted in infusion-related reactions in 26.4% of the participants and amyloid-related imaging abnormalities with edema or effusions in 12.6%. CONCLUSIONS Lecanemab reduced markers of amyloid in early Alzheimer's disease and resulted in moderately less decline on measures of cognition and function than placebo at 18 months but was associated with adverse events. Longer trials are warranted to determine the efficacy and safety of lecanemab in early Alzheimer's disease. (Funded by Eisai and Biogen; Clarity AD ClinicalTrials.gov number, NCT03887455.).
Collapse
Affiliation(s)
- Christopher H van Dyck
- From the Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, CT (C.H.D.); Eisai, Nutley, NJ (C.J.S., M.K., D.L., L.R., S.D., M.I., L.D.K.); the Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego (P.A.); Washington University School of Medicine in St. Louis, St. Louis (R.B.); the Memory, Aging, and Cognition Center, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.C.); Eisai, Hatfield, United Kingdom (M.G.); Toronto Memory Program, Toronto (S.C.); Medical Faculty Mannheim, University of Heidelberg, Central Institute of Mental Health, Mannheim, Germany (L.F.); Katayama Medical Clinic, Okayama (S.K.), and the Department of Neuropathology, Graduate School of Medicine, University of Tokyo, and the National Center of Neurology and Psychiatry, Tokyo (T.I.) - all in Japan; Barrow Neurological Institute, Phoenix, AZ (M.S.); Toulouse Gerontopole University Hospital, Université Paul Sabatier, INSERM Unité 1295, Toulouse, France (B.V.); and Alzheimer's Research and Treatment Center, Wellington, FL (D.W.)
| | - Chad J Swanson
- From the Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, CT (C.H.D.); Eisai, Nutley, NJ (C.J.S., M.K., D.L., L.R., S.D., M.I., L.D.K.); the Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego (P.A.); Washington University School of Medicine in St. Louis, St. Louis (R.B.); the Memory, Aging, and Cognition Center, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.C.); Eisai, Hatfield, United Kingdom (M.G.); Toronto Memory Program, Toronto (S.C.); Medical Faculty Mannheim, University of Heidelberg, Central Institute of Mental Health, Mannheim, Germany (L.F.); Katayama Medical Clinic, Okayama (S.K.), and the Department of Neuropathology, Graduate School of Medicine, University of Tokyo, and the National Center of Neurology and Psychiatry, Tokyo (T.I.) - all in Japan; Barrow Neurological Institute, Phoenix, AZ (M.S.); Toulouse Gerontopole University Hospital, Université Paul Sabatier, INSERM Unité 1295, Toulouse, France (B.V.); and Alzheimer's Research and Treatment Center, Wellington, FL (D.W.)
| | - Paul Aisen
- From the Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, CT (C.H.D.); Eisai, Nutley, NJ (C.J.S., M.K., D.L., L.R., S.D., M.I., L.D.K.); the Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego (P.A.); Washington University School of Medicine in St. Louis, St. Louis (R.B.); the Memory, Aging, and Cognition Center, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.C.); Eisai, Hatfield, United Kingdom (M.G.); Toronto Memory Program, Toronto (S.C.); Medical Faculty Mannheim, University of Heidelberg, Central Institute of Mental Health, Mannheim, Germany (L.F.); Katayama Medical Clinic, Okayama (S.K.), and the Department of Neuropathology, Graduate School of Medicine, University of Tokyo, and the National Center of Neurology and Psychiatry, Tokyo (T.I.) - all in Japan; Barrow Neurological Institute, Phoenix, AZ (M.S.); Toulouse Gerontopole University Hospital, Université Paul Sabatier, INSERM Unité 1295, Toulouse, France (B.V.); and Alzheimer's Research and Treatment Center, Wellington, FL (D.W.)
| | - Randall J Bateman
- From the Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, CT (C.H.D.); Eisai, Nutley, NJ (C.J.S., M.K., D.L., L.R., S.D., M.I., L.D.K.); the Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego (P.A.); Washington University School of Medicine in St. Louis, St. Louis (R.B.); the Memory, Aging, and Cognition Center, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.C.); Eisai, Hatfield, United Kingdom (M.G.); Toronto Memory Program, Toronto (S.C.); Medical Faculty Mannheim, University of Heidelberg, Central Institute of Mental Health, Mannheim, Germany (L.F.); Katayama Medical Clinic, Okayama (S.K.), and the Department of Neuropathology, Graduate School of Medicine, University of Tokyo, and the National Center of Neurology and Psychiatry, Tokyo (T.I.) - all in Japan; Barrow Neurological Institute, Phoenix, AZ (M.S.); Toulouse Gerontopole University Hospital, Université Paul Sabatier, INSERM Unité 1295, Toulouse, France (B.V.); and Alzheimer's Research and Treatment Center, Wellington, FL (D.W.)
| | - Christopher Chen
- From the Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, CT (C.H.D.); Eisai, Nutley, NJ (C.J.S., M.K., D.L., L.R., S.D., M.I., L.D.K.); the Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego (P.A.); Washington University School of Medicine in St. Louis, St. Louis (R.B.); the Memory, Aging, and Cognition Center, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.C.); Eisai, Hatfield, United Kingdom (M.G.); Toronto Memory Program, Toronto (S.C.); Medical Faculty Mannheim, University of Heidelberg, Central Institute of Mental Health, Mannheim, Germany (L.F.); Katayama Medical Clinic, Okayama (S.K.), and the Department of Neuropathology, Graduate School of Medicine, University of Tokyo, and the National Center of Neurology and Psychiatry, Tokyo (T.I.) - all in Japan; Barrow Neurological Institute, Phoenix, AZ (M.S.); Toulouse Gerontopole University Hospital, Université Paul Sabatier, INSERM Unité 1295, Toulouse, France (B.V.); and Alzheimer's Research and Treatment Center, Wellington, FL (D.W.)
| | - Michelle Gee
- From the Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, CT (C.H.D.); Eisai, Nutley, NJ (C.J.S., M.K., D.L., L.R., S.D., M.I., L.D.K.); the Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego (P.A.); Washington University School of Medicine in St. Louis, St. Louis (R.B.); the Memory, Aging, and Cognition Center, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.C.); Eisai, Hatfield, United Kingdom (M.G.); Toronto Memory Program, Toronto (S.C.); Medical Faculty Mannheim, University of Heidelberg, Central Institute of Mental Health, Mannheim, Germany (L.F.); Katayama Medical Clinic, Okayama (S.K.), and the Department of Neuropathology, Graduate School of Medicine, University of Tokyo, and the National Center of Neurology and Psychiatry, Tokyo (T.I.) - all in Japan; Barrow Neurological Institute, Phoenix, AZ (M.S.); Toulouse Gerontopole University Hospital, Université Paul Sabatier, INSERM Unité 1295, Toulouse, France (B.V.); and Alzheimer's Research and Treatment Center, Wellington, FL (D.W.)
| | - Michio Kanekiyo
- From the Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, CT (C.H.D.); Eisai, Nutley, NJ (C.J.S., M.K., D.L., L.R., S.D., M.I., L.D.K.); the Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego (P.A.); Washington University School of Medicine in St. Louis, St. Louis (R.B.); the Memory, Aging, and Cognition Center, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.C.); Eisai, Hatfield, United Kingdom (M.G.); Toronto Memory Program, Toronto (S.C.); Medical Faculty Mannheim, University of Heidelberg, Central Institute of Mental Health, Mannheim, Germany (L.F.); Katayama Medical Clinic, Okayama (S.K.), and the Department of Neuropathology, Graduate School of Medicine, University of Tokyo, and the National Center of Neurology and Psychiatry, Tokyo (T.I.) - all in Japan; Barrow Neurological Institute, Phoenix, AZ (M.S.); Toulouse Gerontopole University Hospital, Université Paul Sabatier, INSERM Unité 1295, Toulouse, France (B.V.); and Alzheimer's Research and Treatment Center, Wellington, FL (D.W.)
| | - David Li
- From the Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, CT (C.H.D.); Eisai, Nutley, NJ (C.J.S., M.K., D.L., L.R., S.D., M.I., L.D.K.); the Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego (P.A.); Washington University School of Medicine in St. Louis, St. Louis (R.B.); the Memory, Aging, and Cognition Center, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.C.); Eisai, Hatfield, United Kingdom (M.G.); Toronto Memory Program, Toronto (S.C.); Medical Faculty Mannheim, University of Heidelberg, Central Institute of Mental Health, Mannheim, Germany (L.F.); Katayama Medical Clinic, Okayama (S.K.), and the Department of Neuropathology, Graduate School of Medicine, University of Tokyo, and the National Center of Neurology and Psychiatry, Tokyo (T.I.) - all in Japan; Barrow Neurological Institute, Phoenix, AZ (M.S.); Toulouse Gerontopole University Hospital, Université Paul Sabatier, INSERM Unité 1295, Toulouse, France (B.V.); and Alzheimer's Research and Treatment Center, Wellington, FL (D.W.)
| | - Larisa Reyderman
- From the Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, CT (C.H.D.); Eisai, Nutley, NJ (C.J.S., M.K., D.L., L.R., S.D., M.I., L.D.K.); the Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego (P.A.); Washington University School of Medicine in St. Louis, St. Louis (R.B.); the Memory, Aging, and Cognition Center, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.C.); Eisai, Hatfield, United Kingdom (M.G.); Toronto Memory Program, Toronto (S.C.); Medical Faculty Mannheim, University of Heidelberg, Central Institute of Mental Health, Mannheim, Germany (L.F.); Katayama Medical Clinic, Okayama (S.K.), and the Department of Neuropathology, Graduate School of Medicine, University of Tokyo, and the National Center of Neurology and Psychiatry, Tokyo (T.I.) - all in Japan; Barrow Neurological Institute, Phoenix, AZ (M.S.); Toulouse Gerontopole University Hospital, Université Paul Sabatier, INSERM Unité 1295, Toulouse, France (B.V.); and Alzheimer's Research and Treatment Center, Wellington, FL (D.W.)
| | - Sharon Cohen
- From the Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, CT (C.H.D.); Eisai, Nutley, NJ (C.J.S., M.K., D.L., L.R., S.D., M.I., L.D.K.); the Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego (P.A.); Washington University School of Medicine in St. Louis, St. Louis (R.B.); the Memory, Aging, and Cognition Center, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.C.); Eisai, Hatfield, United Kingdom (M.G.); Toronto Memory Program, Toronto (S.C.); Medical Faculty Mannheim, University of Heidelberg, Central Institute of Mental Health, Mannheim, Germany (L.F.); Katayama Medical Clinic, Okayama (S.K.), and the Department of Neuropathology, Graduate School of Medicine, University of Tokyo, and the National Center of Neurology and Psychiatry, Tokyo (T.I.) - all in Japan; Barrow Neurological Institute, Phoenix, AZ (M.S.); Toulouse Gerontopole University Hospital, Université Paul Sabatier, INSERM Unité 1295, Toulouse, France (B.V.); and Alzheimer's Research and Treatment Center, Wellington, FL (D.W.)
| | - Lutz Froelich
- From the Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, CT (C.H.D.); Eisai, Nutley, NJ (C.J.S., M.K., D.L., L.R., S.D., M.I., L.D.K.); the Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego (P.A.); Washington University School of Medicine in St. Louis, St. Louis (R.B.); the Memory, Aging, and Cognition Center, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.C.); Eisai, Hatfield, United Kingdom (M.G.); Toronto Memory Program, Toronto (S.C.); Medical Faculty Mannheim, University of Heidelberg, Central Institute of Mental Health, Mannheim, Germany (L.F.); Katayama Medical Clinic, Okayama (S.K.), and the Department of Neuropathology, Graduate School of Medicine, University of Tokyo, and the National Center of Neurology and Psychiatry, Tokyo (T.I.) - all in Japan; Barrow Neurological Institute, Phoenix, AZ (M.S.); Toulouse Gerontopole University Hospital, Université Paul Sabatier, INSERM Unité 1295, Toulouse, France (B.V.); and Alzheimer's Research and Treatment Center, Wellington, FL (D.W.)
| | - Sadao Katayama
- From the Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, CT (C.H.D.); Eisai, Nutley, NJ (C.J.S., M.K., D.L., L.R., S.D., M.I., L.D.K.); the Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego (P.A.); Washington University School of Medicine in St. Louis, St. Louis (R.B.); the Memory, Aging, and Cognition Center, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.C.); Eisai, Hatfield, United Kingdom (M.G.); Toronto Memory Program, Toronto (S.C.); Medical Faculty Mannheim, University of Heidelberg, Central Institute of Mental Health, Mannheim, Germany (L.F.); Katayama Medical Clinic, Okayama (S.K.), and the Department of Neuropathology, Graduate School of Medicine, University of Tokyo, and the National Center of Neurology and Psychiatry, Tokyo (T.I.) - all in Japan; Barrow Neurological Institute, Phoenix, AZ (M.S.); Toulouse Gerontopole University Hospital, Université Paul Sabatier, INSERM Unité 1295, Toulouse, France (B.V.); and Alzheimer's Research and Treatment Center, Wellington, FL (D.W.)
| | - Marwan Sabbagh
- From the Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, CT (C.H.D.); Eisai, Nutley, NJ (C.J.S., M.K., D.L., L.R., S.D., M.I., L.D.K.); the Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego (P.A.); Washington University School of Medicine in St. Louis, St. Louis (R.B.); the Memory, Aging, and Cognition Center, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.C.); Eisai, Hatfield, United Kingdom (M.G.); Toronto Memory Program, Toronto (S.C.); Medical Faculty Mannheim, University of Heidelberg, Central Institute of Mental Health, Mannheim, Germany (L.F.); Katayama Medical Clinic, Okayama (S.K.), and the Department of Neuropathology, Graduate School of Medicine, University of Tokyo, and the National Center of Neurology and Psychiatry, Tokyo (T.I.) - all in Japan; Barrow Neurological Institute, Phoenix, AZ (M.S.); Toulouse Gerontopole University Hospital, Université Paul Sabatier, INSERM Unité 1295, Toulouse, France (B.V.); and Alzheimer's Research and Treatment Center, Wellington, FL (D.W.)
| | - Bruno Vellas
- From the Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, CT (C.H.D.); Eisai, Nutley, NJ (C.J.S., M.K., D.L., L.R., S.D., M.I., L.D.K.); the Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego (P.A.); Washington University School of Medicine in St. Louis, St. Louis (R.B.); the Memory, Aging, and Cognition Center, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.C.); Eisai, Hatfield, United Kingdom (M.G.); Toronto Memory Program, Toronto (S.C.); Medical Faculty Mannheim, University of Heidelberg, Central Institute of Mental Health, Mannheim, Germany (L.F.); Katayama Medical Clinic, Okayama (S.K.), and the Department of Neuropathology, Graduate School of Medicine, University of Tokyo, and the National Center of Neurology and Psychiatry, Tokyo (T.I.) - all in Japan; Barrow Neurological Institute, Phoenix, AZ (M.S.); Toulouse Gerontopole University Hospital, Université Paul Sabatier, INSERM Unité 1295, Toulouse, France (B.V.); and Alzheimer's Research and Treatment Center, Wellington, FL (D.W.)
| | - David Watson
- From the Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, CT (C.H.D.); Eisai, Nutley, NJ (C.J.S., M.K., D.L., L.R., S.D., M.I., L.D.K.); the Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego (P.A.); Washington University School of Medicine in St. Louis, St. Louis (R.B.); the Memory, Aging, and Cognition Center, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.C.); Eisai, Hatfield, United Kingdom (M.G.); Toronto Memory Program, Toronto (S.C.); Medical Faculty Mannheim, University of Heidelberg, Central Institute of Mental Health, Mannheim, Germany (L.F.); Katayama Medical Clinic, Okayama (S.K.), and the Department of Neuropathology, Graduate School of Medicine, University of Tokyo, and the National Center of Neurology and Psychiatry, Tokyo (T.I.) - all in Japan; Barrow Neurological Institute, Phoenix, AZ (M.S.); Toulouse Gerontopole University Hospital, Université Paul Sabatier, INSERM Unité 1295, Toulouse, France (B.V.); and Alzheimer's Research and Treatment Center, Wellington, FL (D.W.)
| | - Shobha Dhadda
- From the Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, CT (C.H.D.); Eisai, Nutley, NJ (C.J.S., M.K., D.L., L.R., S.D., M.I., L.D.K.); the Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego (P.A.); Washington University School of Medicine in St. Louis, St. Louis (R.B.); the Memory, Aging, and Cognition Center, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.C.); Eisai, Hatfield, United Kingdom (M.G.); Toronto Memory Program, Toronto (S.C.); Medical Faculty Mannheim, University of Heidelberg, Central Institute of Mental Health, Mannheim, Germany (L.F.); Katayama Medical Clinic, Okayama (S.K.), and the Department of Neuropathology, Graduate School of Medicine, University of Tokyo, and the National Center of Neurology and Psychiatry, Tokyo (T.I.) - all in Japan; Barrow Neurological Institute, Phoenix, AZ (M.S.); Toulouse Gerontopole University Hospital, Université Paul Sabatier, INSERM Unité 1295, Toulouse, France (B.V.); and Alzheimer's Research and Treatment Center, Wellington, FL (D.W.)
| | - Michael Irizarry
- From the Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, CT (C.H.D.); Eisai, Nutley, NJ (C.J.S., M.K., D.L., L.R., S.D., M.I., L.D.K.); the Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego (P.A.); Washington University School of Medicine in St. Louis, St. Louis (R.B.); the Memory, Aging, and Cognition Center, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.C.); Eisai, Hatfield, United Kingdom (M.G.); Toronto Memory Program, Toronto (S.C.); Medical Faculty Mannheim, University of Heidelberg, Central Institute of Mental Health, Mannheim, Germany (L.F.); Katayama Medical Clinic, Okayama (S.K.), and the Department of Neuropathology, Graduate School of Medicine, University of Tokyo, and the National Center of Neurology and Psychiatry, Tokyo (T.I.) - all in Japan; Barrow Neurological Institute, Phoenix, AZ (M.S.); Toulouse Gerontopole University Hospital, Université Paul Sabatier, INSERM Unité 1295, Toulouse, France (B.V.); and Alzheimer's Research and Treatment Center, Wellington, FL (D.W.)
| | - Lynn D Kramer
- From the Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, CT (C.H.D.); Eisai, Nutley, NJ (C.J.S., M.K., D.L., L.R., S.D., M.I., L.D.K.); the Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego (P.A.); Washington University School of Medicine in St. Louis, St. Louis (R.B.); the Memory, Aging, and Cognition Center, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.C.); Eisai, Hatfield, United Kingdom (M.G.); Toronto Memory Program, Toronto (S.C.); Medical Faculty Mannheim, University of Heidelberg, Central Institute of Mental Health, Mannheim, Germany (L.F.); Katayama Medical Clinic, Okayama (S.K.), and the Department of Neuropathology, Graduate School of Medicine, University of Tokyo, and the National Center of Neurology and Psychiatry, Tokyo (T.I.) - all in Japan; Barrow Neurological Institute, Phoenix, AZ (M.S.); Toulouse Gerontopole University Hospital, Université Paul Sabatier, INSERM Unité 1295, Toulouse, France (B.V.); and Alzheimer's Research and Treatment Center, Wellington, FL (D.W.)
| | - Takeshi Iwatsubo
- From the Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, CT (C.H.D.); Eisai, Nutley, NJ (C.J.S., M.K., D.L., L.R., S.D., M.I., L.D.K.); the Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego (P.A.); Washington University School of Medicine in St. Louis, St. Louis (R.B.); the Memory, Aging, and Cognition Center, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.C.); Eisai, Hatfield, United Kingdom (M.G.); Toronto Memory Program, Toronto (S.C.); Medical Faculty Mannheim, University of Heidelberg, Central Institute of Mental Health, Mannheim, Germany (L.F.); Katayama Medical Clinic, Okayama (S.K.), and the Department of Neuropathology, Graduate School of Medicine, University of Tokyo, and the National Center of Neurology and Psychiatry, Tokyo (T.I.) - all in Japan; Barrow Neurological Institute, Phoenix, AZ (M.S.); Toulouse Gerontopole University Hospital, Université Paul Sabatier, INSERM Unité 1295, Toulouse, France (B.V.); and Alzheimer's Research and Treatment Center, Wellington, FL (D.W.)
| |
Collapse
|
4
|
Tang Y, Zhang D, Gong X, Zheng J. A mechanistic survey of Alzheimer's disease. Biophys Chem 2021; 281:106735. [PMID: 34894476 DOI: 10.1016/j.bpc.2021.106735] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is the most common, age-dependent neurodegenerative disorder. While AD has been intensively studied from different aspects, there is no effective cure for AD, largely due to a lack of a clear mechanistic understanding of AD. In this mini-review, we mainly focus on the discussion and summary of mechanistic causes of Alzheimer's disease (AD). While different AD mechanisms illustrate different molecular and cellular pathways in AD pathogenesis, they do not necessarily exclude each other. Instead, some of them could work together to initiate, trigger, and promote the onset and development of AD. In a broader viewpoint, some AD mechanisms (e.g., amyloid aggregation mechanism, microbial infection/neuroinflammation mechanism, and amyloid cross-seeding mechanism) could also be applicable to other amyloid diseases including type II diabetes, Parkinson's disease, and prion disease. Such common mechanisms for AD and other amyloid diseases explain not only the pathogenesis of individual amyloid diseases, but also the spreading of pathologies between these diseases, which will inspire new strategies for therapeutic intervention and prevention for AD.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, OH, United States of America
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, OH, United States of America
| | - Xiong Gong
- Department of Polymer Engineering, The University of Akron, OH, United States of America
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, OH, United States of America.
| |
Collapse
|
5
|
Molecular insight into the early stage of amyloid-β(1-42) Homodimers aggregation influenced by histidine tautomerism. Int J Biol Macromol 2021; 184:887-897. [PMID: 34153362 DOI: 10.1016/j.ijbiomac.2021.06.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/23/2021] [Accepted: 06/10/2021] [Indexed: 11/20/2022]
Abstract
Aggregated amyloid β-peptide (Aβ) in small oligomeric forms inside the brain causes synaptic function disruption and the development of Alzheimer's disease (AD). Histidine is an important amino acid that may lead to structural changes. Aβ42 monomer chain includes 3 histidine residues that considering two ε and δ tautomers 8 isomers, including (εεε) and (εδδ) could be formed. Molecular dynamics simulation on homodimerization of (εεε) (the most common type of tautomers) and (εδδ) tautomers with different initial configurations using monomer chains from our previous work were performed to uncover the tautomeric behavior of histidine on Aβ42 aggregation in a physiological pH which is still largely unknown and impossible to observe experimentally. We found a higher propensity of forming β-sheet in (εδδ) homodimers and specifically in a greater amount from Aβ42 than from Aβ40. A smaller amount of β-sheet formation was observed for (εεε) homodimers compared with (εδδ). Additionally, interactions in (εδδ) homodimers may indicate the importance of the hydrophobic core and C-/N-terminals during oligomerization. Our findings indicate the important role of the tautomeric effect of histidine and (εδδ) homodimers at the early stage of Aβ aggregation.
Collapse
|
6
|
Swanson CJ, Zhang Y, Dhadda S, Wang J, Kaplow J, Lai RYK, Lannfelt L, Bradley H, Rabe M, Koyama A, Reyderman L, Berry DA, Berry S, Gordon R, Kramer LD, Cummings JL. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer's disease with lecanemab, an anti-Aβ protofibril antibody. Alzheimers Res Ther 2021; 13:80. [PMID: 33865446 PMCID: PMC8053280 DOI: 10.1186/s13195-021-00813-8] [Citation(s) in RCA: 512] [Impact Index Per Article: 128.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/23/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Lecanemab (BAN2401), an IgG1 monoclonal antibody, preferentially targets soluble aggregated amyloid beta (Aβ), with activity across oligomers, protofibrils, and insoluble fibrils. BAN2401-G000-201, a randomized double-blind clinical trial, utilized a Bayesian design with response-adaptive randomization to assess 3 doses across 2 regimens of lecanemab versus placebo in early Alzheimer's disease, mild cognitive impairment due to Alzheimer's disease (AD) and mild AD dementia. METHODS BAN2401-G000-201 aimed to establish the effective dose 90% (ED90), defined as the simplest dose that achieves ≥90% of the maximum treatment effect. The primary endpoint was Bayesian analysis of 12-month clinical change on the Alzheimer's Disease Composite Score (ADCOMS) for the ED90 dose, which required an 80% probability of ≥25% clinical reduction in decline versus placebo. Key secondary endpoints included 18-month Bayesian and frequentist analyses of brain amyloid reduction using positron emission tomography; clinical decline on ADCOMS, Clinical Dementia Rating-Sum-of-Boxes (CDR-SB), and Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog14); changes in CSF core biomarkers; and total hippocampal volume (HV) using volumetric magnetic resonance imaging. RESULTS A total of 854 randomized subjects were treated (lecanemab, 609; placebo, 245). At 12 months, the 10-mg/kg biweekly ED90 dose showed a 64% probability to be better than placebo by 25% on ADCOMS, which missed the 80% threshold for the primary outcome. At 18 months, 10-mg/kg biweekly lecanemab reduced brain amyloid (-0.306 SUVr units) while showing a drug-placebo difference in favor of active treatment by 27% and 30% on ADCOMS, 56% and 47% on ADAS-Cog14, and 33% and 26% on CDR-SB versus placebo according to Bayesian and frequentist analyses, respectively. CSF biomarkers were supportive of a treatment effect. Lecanemab was well-tolerated with 9.9% incidence of amyloid-related imaging abnormalities-edema/effusion at 10 mg/kg biweekly. CONCLUSIONS BAN2401-G000-201 did not meet the 12-month primary endpoint. However, prespecified 18-month Bayesian and frequentist analyses demonstrated reduction in brain amyloid accompanied by a consistent reduction of clinical decline across several clinical and biomarker endpoints. A phase 3 study (Clarity AD) in early Alzheimer's disease is underway. TRIAL REGISTRATION Clinical Trials.gov NCT01767311 .
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lars Lannfelt
- BioArctic AB, Warfvinges väg 35, SE-112 51, Stockholm, Sweden
- Department of Public Health/Geriatrics, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA.
| |
Collapse
|
7
|
Zhang Y, Zhang M, Liu Y, Zhang D, Tang Y, Ren B, Zheng J. Dual amyloid cross-seeding reveals steric zipper-facilitated fibrillization and pathological links between protein misfolding diseases. J Mater Chem B 2021; 9:3300-3316. [PMID: 33651875 DOI: 10.1039/d0tb02958k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Amyloid cross-seeding, as a result of direct interaction and co-aggregation between different disease-causative peptides, is considered as a main mechanism for the spread of the overlapping pathology across different cells and tissues between different protein-misfolding diseases (PMDs). Despite the biomedical significance of amyloid cross-seeding in amyloidogenesis, it remains a great challenge to discover amyloid cross-seeding systems and reveal their cross-seeding structures and mechanisms. Herein, we are the first to report that GNNQQNY - a short fragment from yeast prion protein Sup35 - can cross-seed with both amyloid-β (Aβ, associated with Alzheimer's disease) and human islet amyloid polypeptide (hIAPP, associated with type II diabetes) to form β-structure-rich assemblies and to accelerate amyloid fibrillization. Dry, steric β-zippers, formed by the two β-sheets of different amyloid peptides, provide generally interactive and structural motifs to facilitate amyloid cross-seeding. The presence of different steric β-zippers in a variety of GNNQQNY-Aβ and GNNQQNY-hIAPP assemblies also explains amyloid polymorphism. In addition, alteration of steric zipper formation by single-point mutations of GNNQQNY and interactions of GNNQQNY with different Aβ and hIAPP seeds leads to different amyloid cross-seeding efficiencies, further confirming the existence of cross-seeding barriers. This work offers a better structural-based understanding of amyloid cross-seeding mechanisms linked to different PMDs.
Collapse
Affiliation(s)
- Yanxian Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering The University of Akron, Ohio, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Lin Y, Sahoo BR, Ozawa D, Kinoshita M, Kang J, Lim MH, Okumura M, Huh YH, Moon E, Jang JH, Lee HJ, Ryu KY, Ham S, Won HS, Ryu KS, Sugiki T, Bang JK, Hoe HS, Fujiwara T, Ramamoorthy A, Lee YH. Diverse Structural Conversion and Aggregation Pathways of Alzheimer's Amyloid-β (1-40). ACS NANO 2019; 13:8766-8783. [PMID: 31310506 PMCID: PMC11585080 DOI: 10.1021/acsnano.9b01578] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Complex amyloid aggregation of amyloid-β (1-40) (Aβ1-40) in terms of monomer structures has not been fully understood. Herein, we report the microscopic mechanism and pathways of Aβ1-40 aggregation with macroscopic viewpoints through tuning its initial structure and solubility. Partial helical structures of Aβ1-40 induced by low solvent polarity accelerated cytotoxic Aβ1-40 amyloid fibrillation, while predominantly helical folds did not aggregate. Changes in the solvent polarity caused a rapid formation of β-structure-rich protofibrils or oligomers via aggregation-prone helical structures. Modulation of the pH and salt concentration transformed oligomers to protofibrils, which proceeded to amyloid formation. We reveal diverse molecular mechanisms underlying Aβ1-40 aggregation with conceptual energy diagrams and propose that aggregation-prone partial helical structures are key to inducing amyloidogenesis. We demonstrate that context-dependent protein aggregation is comprehensively understood using the macroscopic phase diagram, which provides general insights into differentiation of amyloid formation and phase separation from unfolded and folded structures.
Collapse
Affiliation(s)
- Yuxi Lin
- Department of Chemistry , Sookmyung Women's University , Cheongpa-ro 47-gil 100 , Yongsan-gu, Seoul 04310 , South Korea
| | - Bikash R Sahoo
- Biophysics Program and Department of Chemistry, Biomedical Engineering, and Macromolecular Science and Engineering , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| | - Daisaku Ozawa
- Department of Neurotherapeutics , Osaka University Graduate School of Medicine , 2-2 Yamadaoka , Suita , Osaka 565-0871 , Japan
| | - Misaki Kinoshita
- Frontier Research Institute for Interdisciplinary Sciences , Tohoku University , 6-3 Aramaki-Aza-Aoba , Aoba-ku, Sendai 980-8578 , Japan
| | - Juhye Kang
- Department of Chemistry , Korea Advanced Institute of Science and Technology , Daejeon 34141 , South Korea
- Department of Chemistry , Ulsan National Institute of Science and Technology , Ulsan 44919 , South Korea
| | - Mi Hee Lim
- Department of Chemistry , Korea Advanced Institute of Science and Technology , Daejeon 34141 , South Korea
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences , Tohoku University , 6-3 Aramaki-Aza-Aoba , Aoba-ku, Sendai 980-8578 , Japan
| | | | | | | | - Hyun-Ju Lee
- Department of Neural Development and Disease , Korea Brain Research Institute , 61 Cheomdan-ro , Dong-gu, Daegu 41068 , South Korea
| | - Ka-Young Ryu
- Department of Neural Development and Disease , Korea Brain Research Institute , 61 Cheomdan-ro , Dong-gu, Daegu 41068 , South Korea
| | - Sihyun Ham
- Department of Chemistry , Sookmyung Women's University , Cheongpa-ro 47-gil 100 , Yongsan-gu, Seoul 04310 , South Korea
| | - Hyung-Sik Won
- Department of Biotechnology, Research Institute and College of Biomedical and Health Science , Konkuk University , Chungju , Chungbuk 27478 , South Korea
| | | | - Toshihiko Sugiki
- Institute for Protein Research , Osaka University , Yamadaoka 3-2 , Suita , Osaka 565-0871 , Japan
| | | | - Hyang-Sook Hoe
- Department of Neural Development and Disease , Korea Brain Research Institute , 61 Cheomdan-ro , Dong-gu, Daegu 41068 , South Korea
| | - Toshimichi Fujiwara
- Institute for Protein Research , Osaka University , Yamadaoka 3-2 , Suita , Osaka 565-0871 , Japan
| | - Ayyalusamy Ramamoorthy
- Biophysics Program and Department of Chemistry, Biomedical Engineering, and Macromolecular Science and Engineering , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| | - Young-Ho Lee
- Institute for Protein Research , Osaka University , Yamadaoka 3-2 , Suita , Osaka 565-0871 , Japan
- Bio-Analytical Science , University of Science and Technology , Daejeon 34113 , South Korea
| |
Collapse
|
9
|
Karim R, Lepeltier E, Esnault L, Pigeon P, Lemaire L, Lépinoux-Chambaud C, Clere N, Jaouen G, Eyer J, Piel G, Passirani C. Enhanced and preferential internalization of lipid nanocapsules into human glioblastoma cells: effect of a surface-functionalizing NFL peptide. NANOSCALE 2018; 10:13485-13501. [PMID: 29972178 DOI: 10.1039/c8nr02132e] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Increasing intracellular drug concentration using nanocarriers can be a potential strategy to improve efficacy against glioblastoma (GBM). Here, the fluorescent-labelled NFL-TBS·40-63 peptide (fluoNFL) concentration on a lipid nanocapsule (LNC) was studied to enhance nanovector internalization into human GBM cells. LNC surface-functionalization with various fluoNFL concentrations was performed by adsorption. LNC size and surface charge altered gradually with increasing peptide concentration, but their complement protein consumption remained low. Desorption of fluoNFL from the LNC surface was found to be slow. Furthermore, it was observed that the rate and extent of LNC internalization in the U87MG human glioblastoma cells were dependent on the surface-functionalizing fluoNFL concentration. In addition, we showed that the uptake of fluoNFL-functionalized LNCs was preferential towards U87MG cells compared to healthy human astrocytes. The fluoNFL-functionalized LNC internalization into the U87MG cells was energy-dependent and occurred possibly by macropinocytosis and clathrin-mediated and caveolin-mediated endocytosis. A new ferrocifen-type molecule (FcTriOH), as a potent anticancer candidate, was then encapsulated in the LNCs and the functionalization improved its in vitro efficacy compared to other tested formulations against U87MG cells. In the preliminary study, on subcutaneous human GBM tumor model in nude mice, a significant reduction of relative tumor volume was observed at one week after the second intravenous injection with FcTriOH-loaded LNCs. These results showed that enhancing NFL peptide concentration on the LNC surface is a promising approach for increased and preferential nanocarrier internalization into human GBM cells, and the FcTriOH-loaded LNCs are a promising therapy approach for GBM.
Collapse
Affiliation(s)
- Reatul Karim
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Angers, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ge X, Sun Y, Ding F. Structures and dynamics of β-barrel oligomer intermediates of amyloid-beta16-22 aggregation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1687-1697. [PMID: 29550287 DOI: 10.1016/j.bbamem.2018.03.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 01/13/2023]
Abstract
Accumulating evidence suggests that soluble oligomers are more toxic than final fibrils of amyloid aggregations. Among the mixture of inter-converting intermediates with continuous distribution of sizes and secondary structures, oligomers in the β-barrel conformation - a common class of protein folds with a closed β-sheet - have been postulated as the toxic species with well-defined three-dimensional structures to perform pathological functions. A common mechanism for amyloid toxicity, therefore, implies that all amyloid peptides should be able to form β-barrel oligomers as the aggregation intermediates. Here, we applied all-atom discrete molecular dynamics (DMD) simulations to evaluate the formation of β-barrel oligomers and characterize their structures and dynamics in the aggregation of a seven-residue amyloid peptide, corresponding to the amyloid core of amyloid-β with a sequence of 16KLVFFAE22 (Aβ16-22). We carried out aggregation simulations with various numbers of peptides to study the size dependence of aggregation dynamics and assembly structures. Consistent with previous computational studies, we observed the formation of β-barrel oligomers in all-atom DMD simulations. Using a network-based approach to automatically identify β-barrel conformations, we systematically characterized β-barrels of various sizes. Our simulations revealed the conformational inter-conversion between β-barrels and double-layer β-sheets due to increased structural strains upon forming a closed β-barrel while maximizing backbone hydrogen bonds. The potential of mean force analysis further characterized the free energy barriers between these two states. The obtained structural and dynamic insights of β-barrel oligomers may help better understand the molecular mechanism of oligomer toxicities and design novel therapeutics targeting the toxic β-barrel oligomers. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.
Collapse
Affiliation(s)
- Xinwei Ge
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States.
| |
Collapse
|
11
|
Hane FT, Lee BY, Leonenko Z. Recent Progress in Alzheimer's Disease Research, Part 1: Pathology. J Alzheimers Dis 2018; 57:1-28. [PMID: 28222507 DOI: 10.3233/jad-160882] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The field of Alzheimer's disease (AD) research has grown exponentially over the past few decades, especially since the isolation and identification of amyloid-β from postmortem examination of the brains of AD patients. Recently, the Journal of Alzheimer's Disease (JAD) put forth approximately 300 research reports which were deemed to be the most influential research reports in the field of AD since 2010. JAD readers were asked to vote on these most influential reports. In this 3-part review, we review the results of the 300 most influential AD research reports to provide JAD readers with a readily accessible, yet comprehensive review of the state of contemporary research. Notably, this multi-part review identifies the "hottest" fields of AD research providing guidance for both senior investigators as well as investigators new to the field on what is the most pressing fields within AD research. Part 1 of this review covers pathogenesis, both on a molecular and macro scale. Part 2 review genetics and epidemiology, and part 3 covers diagnosis and treatment. This part of the review, pathology, reviews amyloid-β, tau, prions, brain structure, and functional changes with AD and the neuroimmune response of AD.
Collapse
Affiliation(s)
- Francis T Hane
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.,Department of Chemistry, Lakehead University, Thunder Bay, ON, Canada
| | - Brenda Y Lee
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Zoya Leonenko
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.,Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
12
|
Ren B, Hu R, Zhang M, Liu Y, Xu L, Jiang B, Ma J, Ma B, Nussinov R, Zheng J. Experimental and Computational Protocols for Studies of Cross-Seeding Amyloid Assemblies. Methods Mol Biol 2018; 1777:429-447. [PMID: 29744852 PMCID: PMC6456059 DOI: 10.1007/978-1-4939-7811-3_27] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) and type 2 diabetes (T2D) are two common protein aggregation diseases. Compelling evidence has shown a link between AD and T2D, which may derive from interspecies cross-sequence interactions between amyloid-β peptide (Aβ), associated with AD, and human islet amyloid polypeptide (hIAPP), associated with T2D. Herein, we present experimental and computational protocols and tools to study the aggregate structures and kinetics, conformational conversion, and molecular interactions of Aβ-hIAPP mixtures. These protocols could be generally applied to other cross-seeding behaviors of amyloid peptides.
Collapse
Affiliation(s)
- Baiping Ren
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, OH, USA
| | - Rundong Hu
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, OH, USA
| | - Mingzhen Zhang
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, OH, USA
| | - Yonglan Liu
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, OH, USA
| | - Lijian Xu
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, OH, USA
- College of Life Sciences and Chemistry Hunan University of Technology, Zhuzhou, China
| | - Binbo Jiang
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, OH, USA
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang, Hangzhou, China
| | - Jie Ma
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, OH, USA
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, USA
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, USA.
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, OH, USA.
| |
Collapse
|
13
|
Haspel N, Zheng J, Aleman C, Zanuy D, Nussinov R. A Protocol for the Design of Protein and Peptide Nanostructure Self-Assemblies Exploiting Synthetic Amino Acids. Methods Mol Biol 2017; 1529:323-352. [PMID: 27914060 PMCID: PMC7900906 DOI: 10.1007/978-1-4939-6637-0_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
In recent years there has been increasing interest in nanostructure design based on the self-assembly properties of proteins and polymers. Nanodesign requires the ability to predictably manipulate the properties of the self-assembly of autonomous building blocks, which can fold or aggregate into preferred conformational states. The design includes functional synthetic materials and biological macromolecules. Autonomous biological building blocks with available 3D structures provide an extremely rich and useful resource. Structural databases contain large libraries of protein molecules and their building blocks with a range of sizes, shapes, surfaces, and chemical properties. The introduction of engineered synthetic residues or short peptides into these building blocks can greatly expand the available chemical space and enhance the desired properties. Herein, we summarize a protocol for designing nanostructures consisting of self-assembling building blocks, based on our recent works. We focus on the principles of nanostructure design with naturally occurring proteins and synthetic amino acids, as well as hybrid materials made of amyloids and synthetic polymers.
Collapse
Affiliation(s)
- Nurit Haspel
- Department of Computer Science, The University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA, 02125, USA.
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Carlos Aleman
- Departament d'Enginyeria Química, E. T. S. d'Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona, Spain
- Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C', C/Pasqual i Vila s/n, E-08028, Barcelona, Spain
| | - David Zanuy
- Departament d'Enginyeria Química, E. T. S. d'Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona, Spain
| | - Ruth Nussinov
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Inst. of Molecular Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick, MD, 21702, USA
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, 21702, USA
| |
Collapse
|
14
|
Zhang M, Ren B, Chen H, Sun Y, Ma J, Jiang B, Zheng J. Molecular Simulations of Amyloid Structures, Toxicity, and Inhibition. Isr J Chem 2016. [DOI: 10.1002/ijch.201600075] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Mingzhen Zhang
- Department of Chemical and Biomolecular Engineering The University of Akron Akron OH 44325 USA
| | - Baiping Ren
- Department of Chemical and Biomolecular Engineering The University of Akron Akron OH 44325 USA
| | - Hong Chen
- Department of Chemical and Biomolecular Engineering The University of Akron Akron OH 44325 USA
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China
| | - Jie Ma
- Department of Chemical and Biomolecular Engineering The University of Akron Akron OH 44325 USA
- State Key Laboratory of Pollution Control and Resource Reuse School of Environmental Science and Engineering Tongji University Shanghai 200092 P. R. China
| | - Binbo Jiang
- Department of Chemical and Biomolecular Engineering The University of Akron Akron OH 44325 USA
- College of Chemical and Biological Engineering Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering The University of Akron Akron OH 44325 USA
| |
Collapse
|
15
|
Differential protein structural disturbances and suppression of assembly partners produced by nonsense GABRG2 epilepsy mutations: implications for disease phenotypic heterogeneity. Sci Rep 2016; 6:35294. [PMID: 27762395 PMCID: PMC5071880 DOI: 10.1038/srep35294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/14/2016] [Indexed: 12/01/2022] Open
Abstract
Mutations in GABAA receptor subunit genes are frequently associated with epilepsy, and nonsense mutations in GABRG2 are associated with several epilepsy syndromes including childhood absence epilepsy, generalized tonic clonic seizures and the epileptic encephalopathy, Dravet syndrome. The molecular basis for the phenotypic heterogeneity of mutations is unclear. Here we focused on three nonsense mutations in GABRG2 (GABRG2(R136*), GABRG2(Q390*) and GABRG2(W429*)) associated with epilepsies of different severities. Structural modeling and structure-based analysis indicated that the surface of the wild-type γ2 subunit was naturally hydrophobic, which is suitable to be buried in the cell membrane. Different mutant γ2 subunits had different stabilities and different interactions with their wild-type subunit binding partners because they adopted different conformations and had different surface hydrophobicities and different tendency to dimerize. We utilized flow cytometry and biochemical approaches in combination with lifted whole cell patch-clamp recordings. We demonstrated that the truncated subunits had no to minimal surface expression and unchanged or reduced surface expression of wild-type partnering subunits. The amplitudes of GABA-evoked currents from the mutant α1β2γ2(R136*), α1β2γ2(Q390*) and α1β2γ2(W429*) receptors were reduced compared to the currents from α1β2γ2 receptors but with differentially reduced levels. This thus suggests differential protein structure disturbances are correlated with disease severity.
Collapse
|
16
|
Yugay D, Goronzy DP, Kawakami LM, Claridge SA, Song TB, Yan Z, Xie YH, Gilles J, Yang Y, Weiss PS. Copper Ion Binding Site in β-Amyloid Peptide. NANO LETTERS 2016; 16:6282-6289. [PMID: 27616333 DOI: 10.1021/acs.nanolett.6b02590] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
β-Amyloid aggregates in the brain play critical roles in Alzheimer's disease, a chronic neurodegenerative condition. Amyloid-associated metal ions, particularly zinc and copper ions, have been implicated in disease pathogenesis. Despite the importance of such ions, the binding sites on the β-amyloid peptide remain poorly understood. In this study, we use scanning tunneling microscopy, circular dichroism, and surface-enhanced Raman spectroscopy to probe the interactions between Cu2+ ions and a key β-amyloid peptide fragment, consisting of the first 16 amino acids, and define the copper-peptide binding site. We observe that in the presence of Cu2+, this peptide fragment forms β-sheets, not seen without the metal ion. By imaging with scanning tunneling microscopy, we are able to identify the binding site, which involves two histidine residues, His13 and His14. We conclude that the binding of copper to these residues creates an interstrand histidine brace, which enables the formation of β-sheets.
Collapse
Affiliation(s)
- Diana Yugay
- California NanoSystems Institute, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Dominic P Goronzy
- California NanoSystems Institute, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Lisa M Kawakami
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Shelley A Claridge
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Tze-Bin Song
- Department of Materials Science and Engineering, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Zhongbo Yan
- Department of Materials Science and Engineering, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Ya-Hong Xie
- California NanoSystems Institute, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Jérôme Gilles
- Department of Mathematics and Statistics, San Diego State University , San Diego, California 92182, United States
| | - Yang Yang
- California NanoSystems Institute, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Paul S Weiss
- California NanoSystems Institute, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles , Los Angeles, California 90095, United States
| |
Collapse
|
17
|
Logovinsky V, Satlin A, Lai R, Swanson C, Kaplow J, Osswald G, Basun H, Lannfelt L. Safety and tolerability of BAN2401--a clinical study in Alzheimer's disease with a protofibril selective Aβ antibody. Alzheimers Res Ther 2016; 8:14. [PMID: 27048170 PMCID: PMC4822297 DOI: 10.1186/s13195-016-0181-2] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/25/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Several monoclonal antibodies for the treatment of Alzheimer's disease (AD) have been in development over the last decade. BAN2401 is a monoclonal antibody that selectively binds soluble amyloid β (Aβ) protofibrils. METHODS Here we describe the first clinical study with BAN2401. Safety and tolerability were investigated in mild to moderate AD. A study design was used with staggered parallel single and multiple ascending doses, from 0.1 mg/kg as a single dose to 10 mg/kg biweekly for four months. The presence of amyloid related imaging abnormalities (ARIA, E for edema, H for hemorrhage) was assessed with magnetic resonance imaging (MRI). Cerebrospinal fluid (CSF) and plasma samples were analyzed to investigate pharmacokinetics (PK) and effects on biomarkers. RESULTS The incidence of ARIA-E/H on MRI was comparable to that of placebo. BAN2401 exposure was approximately dose proportional, with a serum terminal elimination half-life of ~7 days. Only a slight increase of plasma Aβ(1-40) was observed but there were no measurable effects of BAN2401 on CSF biomarkers. On the basis of these findings Phase 2b efficacy study has been initiated in early AD. CONCLUSIONS BAN2401 was well-tolerated across all doses. The PK profile has guided us for selecting dose and dose regimens in the ongoing phase 2b study. There was no clear guidance for an effective dose based on biomarkers. TRIAL REGISTRATION NUMBER NCT01230853 ClinicalTrials.gov Registered October 27, 2010.
Collapse
Affiliation(s)
| | - Andrew Satlin
- />Eisai, Inc., 100 Tice Blvd, Woodcliff Lake, NJ 07677 USA
| | - Robert Lai
- />Eisai, Inc., 100 Tice Blvd, Woodcliff Lake, NJ 07677 USA
| | - Chad Swanson
- />Eisai, Inc., 100 Tice Blvd, Woodcliff Lake, NJ 07677 USA
| | - June Kaplow
- />Eisai, Inc., 100 Tice Blvd, Woodcliff Lake, NJ 07677 USA
| | - Gunilla Osswald
- />BioArctic Neuroscience AB, Warfvinges väg 35, 112 51 Stockholm, Sweden
| | - Hans Basun
- />BioArctic Neuroscience AB, Warfvinges väg 35, 112 51 Stockholm, Sweden
- />Department of Public Health/Geriatrics, Uppsala University, Dag Hammarskiölds väg 14 B, 751 85 Uppsala, Sweden
| | - Lars Lannfelt
- />BioArctic Neuroscience AB, Warfvinges väg 35, 112 51 Stockholm, Sweden
- />Department of Public Health/Geriatrics, Uppsala University, Dag Hammarskiölds väg 14 B, 751 85 Uppsala, Sweden
| |
Collapse
|
18
|
Hu R, Zhang M, Chen H, Jiang B, Zheng J. Cross-Seeding Interaction between β-Amyloid and Human Islet Amyloid Polypeptide. ACS Chem Neurosci 2015; 6:1759-68. [PMID: 26255739 DOI: 10.1021/acschemneuro.5b00192] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes (T2D) are two common protein misfolding diseases. Increasing evidence suggests that these two diseases may be correlated with each other via cross-sequence interactions between β-amyloid peptide (Aβ) associated with AD and human islet amyloid polypeptide (hIAPP) associated with T2D. However, little is known about how these two peptides work and how they interact with each other to induce amyloidogenesis. In this work, we study the effect of cross-sequence interactions between Aβ and hIAPP peptides on hybrid amyloid structures, conformational changes, and aggregation kinetics using combined experimental and simulation approaches. Experimental results confirm that Aβ and hIAPP can interact with each other to aggregate into hybrid amyloid fibrils containing β-sheet-rich structures morphologically similar to pure Aβ and hIAPP. The cross-seeding of Aβ and hIAPP leads to the coexistence of both a retarded process at the initial nucleation stage and an accelerated process at the fibrillization stage, in conjunction with a conformational transition from random structures to α-helix to β-sheet. Further molecular dynamics simulations reveal that Aβ and hIAPP oligomers can efficiently cross-seed each other via the association of two highly similar U-shaped β-sheet structures; thus, conformational compatibility between Aβ and hIAPP aggregates appears to play a key role in determining barriers to cross-seeding. The cross-seeding effects in this work may provide new insights into the molecular mechanisms of interactions between AD and T2D.
Collapse
Affiliation(s)
- Rundong Hu
- Department
of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Mingzhen Zhang
- Department
of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Hong Chen
- Department
of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Binbo Jiang
- Department
of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Jie Zheng
- Department
of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
19
|
Pachahara SK, Adicherla H, Nagaraj R. Self-Assembly of Aβ40, Aβ42 and Aβ43 Peptides in Aqueous Mixtures of Fluorinated Alcohols. PLoS One 2015; 10:e0136567. [PMID: 26308214 PMCID: PMC4550328 DOI: 10.1371/journal.pone.0136567] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/04/2015] [Indexed: 12/02/2022] Open
Abstract
Fluorinated alcohols such as hexafluoroisopropanol (HFIP) and trifluoroethanol (TFE) have the ability to promote α-helix and β-hairpin structure in proteins and peptides. HFIP has been used extensively to dissolve various amyloidogenic proteins and peptides including Aβ, in order to ensure their monomeric status. In this paper, we have investigated the self-assembly of Aβ40, Aβ42, and Aβ43 in aqueous mixtures of fluorinated alcohols from freshly dissolved stock solutions in HFIP. We have observed that formation of fibrillar and non-fibrillar structures are dependent on the solvent composition. Peptides form fibrils with ease when reconstituted in deionized water from freshly dissolved HFIP stocks. In aqueous mixtures of fluorinated alcohols, either predominant fibrillar structures or clustered aggregates were observed. Aqueous mixtures of 20% HFIP are more favourable for Aβ fibril formation as compared to 20% TFE. When Aβ40, Aβ42, and Aβ43 stocks in HFIP are diluted in 50% aqueous mixtures in phosphate buffer or deionized water followed by slow evaporation of HFIP, Aβ peptides form fibrils in phosphate buffer and deionized water. The clustered structures could be off-pathway aggregates. Aβ40, Aβ42, and Aβ43 showed significant α-helical content in freshly dissolved HFIP stocks. The α-helical conformational intermediate in Aβ40, Aβ42, and Aβ43 could favour the formation of both fibrillar and non-fibrillar aggregates depending on solvent conditions and rate of α-helical to β-sheet transition.
Collapse
Affiliation(s)
| | - Harikrishna Adicherla
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | - Ramakrishnan Nagaraj
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
- * E-mail:
| |
Collapse
|
20
|
Zhang M, Hu R, Chen H, Chang Y, Ma J, Liang G, Mi J, Wang Y, Zheng J. Polymorphic cross-seeding amyloid assemblies of amyloid-β and human islet amyloid polypeptide. Phys Chem Chem Phys 2015; 17:23245-56. [PMID: 26283068 DOI: 10.1039/c5cp03329b] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Epidemiological studies have shown that the development of Alzheimer's disease (AD) is associated with type 2 diabetes (T2D), but it still remains unclear how AD and T2D are connected. Heterologous cross-seeding between the causative peptides of Aβ and hIAPP may represent a molecular link between AD and T2D. Here, we computationally modeled and simulated a series of cross-seeding double-layer assemblies formed by Aβ and hIAPP peptides using all-atom and coarse-gained molecular dynamics (MD) simulations. The cross-seeding Aβ-hIAPP assemblies showed a wide range of polymorphic structures via a combination of four β-sheet-to-β-sheet interfaces and two packing orientations, focusing on a comparison of different matches of β-sheet layers. Two cross-seeding Aβ-hIAPP assemblies with different interfacial β-sheet packings exhibited high structural stability and favorable interfacial interactions in both oligomeric and fibrillar states. Both Aβ-hIAPP assemblies displayed interfacial dehydration to different extents, which in turn promoted Aβ-hIAPP association depending on interfacial polarity and geometry. Furthermore, computational mutagenesis studies revealed that disruption of interfacial salt bridges largely disfavor the β-sheet-to-β-sheet association, highlighting the importance of salt bridges in the formation of cross-seeding assemblies. This work provides atomic-level information on the cross-seeding interactions between Aβ and hIAPP, which may be involved in the interplay between these two disorders.
Collapse
Affiliation(s)
- Mingzhen Zhang
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhang M, Hu R, Chen H, Gong X, Zhou F, Zhang L, Zheng J. Polymorphic Associations and Structures of the Cross-Seeding of Aβ1–42 and hIAPP1–37 Polypeptides. J Chem Inf Model 2015; 55:1628-39. [DOI: 10.1021/acs.jcim.5b00166] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | | | | | | | - Feimeng Zhou
- Department
of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032, United States
| | - Li Zhang
- Department
of Geriatric Neurology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | | |
Collapse
|
22
|
Lipid insertion domain unfolding regulates protein orientational transition behavior in a lipid bilayer. Biophys Chem 2015; 206:22-39. [PMID: 26164502 DOI: 10.1016/j.bpc.2015.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 01/02/2023]
Abstract
We have used coarse-grained (CG) and united atom (UA) molecular dynamics simulations to explore the mechanisms of protein orientational transition of a model peptide (Aβ42) in a phosphatidylcholine/cholesterol (PC/CHO) lipid bilayer. We started with an inserted state of Aβ42 containing a folded (I) or unfolded (II) K28-A42 lipid insertion domain (LID), which was stabilized by the K28-snorkeling and A42-anchoring to the PC polar groups in the lipid bilayer. After a UA-to-CG transformation and a 1000ns-CG simulation for enhancing the sampling of protein orientations, we discovered two transitions: I-to-"deep inserted" state with disrupted K28-snorkeling and II-to-"deep surface" state with disrupted A42-anchoring. The new states remained stable after a CG-to-UA transformation and a 200ns-UA simulation relaxation. Significant changes in the cholesterol-binding domain of Aβ42 and protein-induced membrane disruptions were evident after the transitions. We propose that the conformation of the LID regulates protein orientational transitions in the lipid membrane.
Collapse
|
23
|
Xu L, Shan S, Chen Y, Wang X, Nussinov R, Ma B. Coupling of Zinc-Binding and Secondary Structure in Nonfibrillar Aβ40 Peptide Oligomerization. J Chem Inf Model 2015; 55:1218-30. [PMID: 26017140 PMCID: PMC6407634 DOI: 10.1021/acs.jcim.5b00063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nonfibrillar neurotoxic amyloid β (Aβ) oligomer structures are typically rich in β-sheets, which could be promoted by metal ions like Zn(2+). Here, using molecular dynamics (MD) simulations, we systematically examined combinations of Aβ40 peptide conformations and Zn(2+) binding modes to probe the effects of secondary structure on Aβ dimerization energies and kinetics. We found that random conformations do not contribute to dimerization either thermodynamically or kinetically. Zn(2+) couples with preformed secondary structures (α-helix and β-hairpin) to speed dimerization and stabilize the resulting dimer. Partial α-helices increase the dimerization speed, and dimers with α-helix rich conformations have the lowest energy. When Zn(2+) coordinates with residues D1, H6, H13, and H14, Aβ40 β-hairpin monomers have the fastest dimerization speed. Dimers with experimentally observed zinc coordination (E11, H6, H13, and H14) form with slower rate but have lower energy. Zn(2+) cannot stabilize fibril-like β-arch dimers. However, Zn(2+)-bound β-arch tetramers have the lowest energy. Collectively, zinc-stabilized β-hairpin oligomers could be important in the nucleation-polymerization of cross-β structures. Our results are consistent with experimental findings that α-helix to β-structural transition should accompany Aβ aggregation in the presence of zinc ions and that Zn(2+) stabilizes nonfibrillar Aβ oligomers and, thus, inhibits formation of less toxic Aβ fibrils.
Collapse
Affiliation(s)
- Liang Xu
- School of Chemistry, Dalian University of Technology, Dalian, China
| | - Shengsheng Shan
- School of Chemistry, Dalian University of Technology, Dalian, China
| | - Yonggang Chen
- Network and Information Center, Dalian University of Technology, Dalian, China
| | - Xiaojuan Wang
- School of Chemical Machinery, Dalian University of Technology, Dalian, China
| | - Ruth Nussinov
- Sackler Inst. of Molecular Medicine Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702
| |
Collapse
|
24
|
Verma M, Vats A, Taneja V. Toxic species in amyloid disorders: Oligomers or mature fibrils. Ann Indian Acad Neurol 2015; 18:138-45. [PMID: 26019408 PMCID: PMC4445186 DOI: 10.4103/0972-2327.144284] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 09/05/2014] [Accepted: 09/21/2014] [Indexed: 11/04/2022] Open
Abstract
Protein aggregation is the hallmark of several neurodegenerative disorders. These protein aggregation (fibrillization) disorders are also known as amyloid disorders. The mechanism of protein aggregation involves conformation switch of the native protein, oligomer formation leading to protofibrils and finally mature fibrils. Mature fibrils have long been considered as the cause of disease pathogenesis; however, recent evidences suggest oligomeric intermediates formed during fibrillization to be toxic. In this review, we have tried to address the ongoing debate for these toxic amyloid species. We did an extensive literature search and collated information from Pubmed (http://www.ncbi.nlm.nih.gov) and Google search using various permutations and combinations of the following keywords: Neurodegeneration, amyloid disorders, protein aggregation, fibrils, oligomers, toxicity, Alzheimer's Disease, Parkinson's Disease. We describe different instances showing the toxicity of mature fibrils as well as oligomers in Alzheimer's Disease and Parkinson's Disease. Distinct structural framework and morphology of amyloid oligomers suggests difference in toxic effect between oligomers and fibrils. We highlight the difference in structure and proposed toxicity pathways for fibrils and oligomers. We also highlight the evidences indicating that intermediary oligomeric species can act as potential diagnostic biomarker. Since the formation of these toxic species follow a common structural switch among various amyloid disorders, the protein aggregation events can be targeted for developing broad-range therapeutics. The therapeutic trials based on the understanding of different protein conformers (monomers, oligomers, protofibrils and fibrils) in amyloid cascade are also described.
Collapse
Affiliation(s)
- Meenakshi Verma
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research-Institute of Genomics and Integrated Biology, Sir Ganga Ram Hospital, New Delhi, India
| | - Abhishek Vats
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India ; Department of Biotechnology, Jamia Hamdard University, New Delhi, India
| | - Vibha Taneja
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| |
Collapse
|
25
|
Chang PT, Talekar RS, Kung FL, Chern TR, Huang CW, Ye QQ, Yang MY, Yu CW, Lai SY, Deore RR, Lin JH, Chen CS, Chen GS, Chern JW. A newly designed molecule J2326 for Alzheimer's disease disaggregates amyloid fibrils and induces neurite outgrowth. Neuropharmacology 2015; 92:146-57. [DOI: 10.1016/j.neuropharm.2015.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/25/2014] [Accepted: 01/07/2015] [Indexed: 01/23/2023]
|
26
|
Nasica-Labouze J, Nguyen PH, Sterpone F, Berthoumieu O, Buchete NV, Coté S, De Simone A, Doig AJ, Faller P, Garcia A, Laio A, Li MS, Melchionna S, Mousseau N, Mu Y, Paravastu A, Pasquali S, Rosenman DJ, Strodel B, Tarus B, Viles JH, Zhang T, Wang C, Derreumaux P. Amyloid β Protein and Alzheimer's Disease: When Computer Simulations Complement Experimental Studies. Chem Rev 2015; 115:3518-63. [PMID: 25789869 DOI: 10.1021/cr500638n] [Citation(s) in RCA: 499] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jessica Nasica-Labouze
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Phuong H Nguyen
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Fabio Sterpone
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Olivia Berthoumieu
- ‡LCC (Laboratoire de Chimie de Coordination), CNRS, Université de Toulouse, Université Paul Sabatier (UPS), Institut National Polytechnique de Toulouse (INPT), 205 route de Narbonne, BP 44099, Toulouse F-31077 Cedex 4, France
| | | | - Sébastien Coté
- ∥Département de Physique and Groupe de recherche sur les protéines membranaires (GEPROM), Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec H3C 3T5, Canada
| | - Alfonso De Simone
- ⊥Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Andrew J Doig
- #Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Peter Faller
- ‡LCC (Laboratoire de Chimie de Coordination), CNRS, Université de Toulouse, Université Paul Sabatier (UPS), Institut National Polytechnique de Toulouse (INPT), 205 route de Narbonne, BP 44099, Toulouse F-31077 Cedex 4, France
| | | | - Alessandro Laio
- ○The International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Mai Suan Li
- ◆Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland.,¶Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Simone Melchionna
- ⬠Instituto Processi Chimico-Fisici, CNR-IPCF, Consiglio Nazionale delle Ricerche, 00185 Roma, Italy
| | | | - Yuguang Mu
- ▲School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Anant Paravastu
- ⊕National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Samuela Pasquali
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | - Birgit Strodel
- △Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Bogdan Tarus
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - John H Viles
- ▼School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Tong Zhang
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France.,▲School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | | | - Philippe Derreumaux
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France.,□Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
27
|
Tsigelny IF, Sharikov Y, Kouznetsova VL, Greenberg JP, Wrasidlo W, Overk C, Gonzalez T, Trejo M, Spencer B, Kosberg K, Masliah E. Molecular determinants of α-synuclein mutants' oligomerization and membrane interactions. ACS Chem Neurosci 2015; 6:403-416. [PMID: 25561023 PMCID: PMC4944825 DOI: 10.1021/cn500332w] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is associated with the formation of toxic α-synuclein oligomers that can penetrate the cell membrane. Familial forms of PD are caused by the point mutations A53T, A30P, E46K, and H50Q. Artificial point mutations E35K and E57K also increase oligomerization and pore formation. We generated structural conformations of α-synuclein and the above-mentioned mutants using molecular dynamics. We elucidated four main regions in these conformers contacting the membrane and found that the region including residues 39-45 (Zone2) may have maximum membrane penetration. E57K mutant had the highest rate of interaction with the membrane, followed by A53T, E46K, and E35K mutants and wild type (wt) α-synuclein. The mutant A30P had the smallest percentage of conformers that contact the membrane by Zone 2 than all other mutants and wt α-synuclein. These results were confirmed experimentally in vitro. We identified the key amino acids that can interact with the membrane (Y38, E62, and N65 (first hydrophilic layer); E104, E105, and D115 (second hydrophilic layer), and V15 and V26 (central hydrophobic layer)) and the residues that are involved in the interprotein contacts (L38, V48, V49, Q62, and T64). Understanding the molecular interactions of α-synuclein mutants is important for the design of compounds blocking the formation of toxic oligomers.
Collapse
Affiliation(s)
- Igor F. Tsigelny
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093
| | - Yuriy Sharikov
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093
| | - Valentina L. Kouznetsova
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| | - Jerry P. Greenberg
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093
| | - Wolf Wrasidlo
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| | - Cassia Overk
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093
| | - Tania Gonzalez
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093
| | - Margarita Trejo
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093
| | - Brian Spencer
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093
| | - Kori Kosberg
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093
| | - Eliezer Masliah
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093
- Department of Pathology, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
28
|
Zhang M, Hu R, Chen H, Chang Y, Gong X, Liu F, Zheng J. Interfacial interaction and lateral association of cross-seeding assemblies between hIAPP and rIAPP oligomers. Phys Chem Chem Phys 2015; 17:10373-82. [DOI: 10.1039/c4cp05658b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cross-sequence interactions between different amyloid peptides are important not only for fundamental understanding of amyloid aggregation and polymorphism mechanisms, but also for probing a potential molecular link between different amyloid diseases.
Collapse
Affiliation(s)
- Mingzhen Zhang
- Department of Chemical and Biomolecular Engineering
- The University of Akron
- Akron
- USA
| | - Rundong Hu
- Department of Chemical and Biomolecular Engineering
- The University of Akron
- Akron
- USA
| | - Hong Chen
- Department of Chemical and Biomolecular Engineering
- The University of Akron
- Akron
- USA
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering
- Chung Yuan University
- Taoyuan 320
- Taiwan
| | - Xiong Gong
- College of Polymer Science and Polymer Engineering
- The University of Akron
- Akron
- USA
| | - Fufeng Liu
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering (Ministry of Education)
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering
- The University of Akron
- Akron
- USA
| |
Collapse
|
29
|
Zhang M, Zhao J, Zheng J. Molecular understanding of a potential functional link between antimicrobial and amyloid peptides. SOFT MATTER 2014; 10:7425-7451. [PMID: 25105988 DOI: 10.1039/c4sm00907j] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Antimicrobial and amyloid peptides do not share common sequences, typical secondary structures, or normal biological activity but both the classes of peptides exhibit membrane-disruption ability to induce cell toxicity. Different membrane-disruption mechanisms have been proposed for antimicrobial and amyloid peptides, individually, some of which are not exclusive to either peptide type, implying that certain common principles may govern the folding and functions of different cytolytic peptides and associated membrane disruption mechanisms. Particularly, some antimicrobial and amyloid peptides have been identified to have dual complementary amyloid and antimicrobial properties, suggesting a potential functional link between amyloid and antimicrobial peptides. Given that some similar structural and membrane-disruption characteristics exist between the two classes of peptides, this review summarizes major findings, recent advances, and future challenges related to antimicrobial and amyloid peptides and strives to illustrate the similarities, differences, and relationships in the sequences, structures, and membrane interaction modes between amyloid and antimicrobial peptides, with a special focus on direct interactions of the peptides with the membranes. We hope that this review will stimulate further research at the interface of antimicrobial and amyloid peptides - which has been studied less intensively than either type of peptides - to decipher a possible link between both amyloid pathology and antimicrobial activity, which can guide drug design and peptide engineering to influence peptide-membrane interactions important in human health and diseases.
Collapse
Affiliation(s)
- Mingzhen Zhang
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, USA.
| | | | | |
Collapse
|
30
|
Tsigelny IF, Sharikov Y, Kouznetsova VL, Greenberg JP, Wrasidlo W, Gonzalez T, Desplats P, Michael SE, Trejo-Morales M, Overk CR, Masliah E. Structural diversity of Alzheimer's disease amyloid-β dimers and their role in oligomerization and fibril formation. J Alzheimers Dis 2014; 39:583-600. [PMID: 24240640 DOI: 10.3233/jad-131589] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is associated with the formation of toxic amyloid-β (Aβ)42 oligomers, and recent evidence supports a role for Aβ dimers as building blocks for oligomers. Molecular dynamics simulation studies have identified clans for the dominant conformations of Aβ42 forming dimers; however, it is unclear if a larger spectrum of dimers is involved and which set(s) of dimers might evolve to oligomers verse fibrils. Therefore, for this study we generated multiple structural conformations of Aβ42, using explicit all-atom molecular dynamics, and then clustering the different structures based on key conformational similarities. Those matching a selection threshold were then used to model a process of oligomerization. Remarkably, we showed a greater diversity in Aβ dimers than previously described. Depending on the clan family, different types of Aβ dimers were obtained. While some had the tendency to evolve into oligomeric rings, others formed fibrils of diverse characteristics. Then we selected the dimers that would evolve to membranephilic annular oligomers. Nearly one third of the 28 evaluated annular oligomers had the dimer interfaces between the neighboring Aβ42 monomers with possible salt bridges between the residue K28 from one side and either residue E22 or D23 on the other. Based on these results, key amino acids were identified for point mutations that either enhanced or suppressed the formation and toxicity of oligomer rings. Our studies suggest a greater diversity of Aβ dimers. Understanding the structure of Aβ dimers might be important for the rationale design of small molecules that block formation of toxic oligomers.
Collapse
Affiliation(s)
- Igor F Tsigelny
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, USA Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Yuriy Sharikov
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, USA Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Valentina L Kouznetsova
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, USA Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Jerry P Greenberg
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, USA
| | - Wolfgang Wrasidlo
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Tania Gonzalez
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Paula Desplats
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Sarah E Michael
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | | | - Cassia R Overk
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
31
|
Energetic changes caused by antigenic module insertion in a virus-like particle revealed by experiment and molecular dynamics simulations. PLoS One 2014; 9:e107313. [PMID: 25215874 PMCID: PMC4162605 DOI: 10.1371/journal.pone.0107313] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/08/2014] [Indexed: 12/23/2022] Open
Abstract
The success of recombinant virus-like particles (VLPs) for human papillomavirus and hepatitis B demonstrates the potential of VLPs as safe and efficacious vaccines. With new modular designs emerging, the effects of antigen module insertion on the self-assembly and structural integrity of VLPs should be clarified so as to better enabling improved design. Previous work has revealed insights into the molecular energetics of a VLP subunit, capsomere, comparing energetics within various solution conditions known to drive or inhibit self-assembly. In the present study, molecular dynamics (MD) simulations coupled with the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method were performed to examine the molecular interactions and energetics in a modular capsomere of a murine polyomavirus (MPV) VLP designed to protect against influenza. Insertion of an influenza antigenic module is found to lower the binding energy within the capsomere, and a more active state is observed in Assembly Buffer as compared with that in Stabilization Buffer, which has been experimentally validated through measurements using differential scanning calorimetry. Further in-depth analysis based on free-energy decomposition indicates that destabilized binding can be attributed to electrostatic interaction induced by the chosen antigen module. These results provide molecular insights into the conformational stability of capsomeres and their abilities to be exploited for antigen presentation, and are expected to be beneficial for the biomolecular engineering of VLP vaccines.
Collapse
|
32
|
Zhao J, Hu R, Sciacca MFM, Brender JR, Chen H, Ramamoorthy A, Zheng J. Non-selective ion channel activity of polymorphic human islet amyloid polypeptide (amylin) double channels. Phys Chem Chem Phys 2014; 16:2368-77. [PMID: 24352606 DOI: 10.1039/c3cp53345j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fundamental understanding of ion channel formation by amyloid peptides, which is strongly linked to cell toxicity, is very critical for (pre)clinical treatment of neurodegenerative diseases. Here, we combine atomistic simulations and experiments to demonstrate a broad range of conformational states of hIAPP double channels in lipid membranes. All individual channels display high selectivity for Cl(-) ions over cations, but the co-existence of polymorphic double channels of different conformations and orientations with different populations determines the non-ionic selectivity nature of the channels, which is different from the typical amyloid-β channels that exhibit Ca(2+) selective ion-permeable characteristics. This work provides a more complete physicochemical mechanism of amyloid-channel-induced toxicity.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Zhu L, Han Y, He C, Huang X, Wang Y. Disaggregation ability of different chelating molecules on copper ion-triggered amyloid fibers. J Phys Chem B 2014; 118:9298-305. [PMID: 25051063 DOI: 10.1021/jp503282m] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dysfunctional interaction of amyloid-β (Aβ) with excess metal ions is proved to be related to the etiology of Alzheimer's disease (AD). Using metal-binding compounds to reverse metal-triggered Aβ aggregation has become one of the potential therapies for AD. In this study, the ability of a carboxylic acid gemini surfactant (SDUC), a widely used metal chelator (EDTA), and an antifungal drug clioquinol (CQ) in reversing the Cu(2+)-triggered Aβ(1-40) fibers have been systematically studied by using turbidity essay, BCA essay, atomic force microscopy, transmission electron microscopy, and isothermal titration microcalorimetry. The results show that the binding affinity of Cu(2+) with CQ, SDUC, and EDTA is in the order of CQ > EDTA > SDUC, while the disaggregation ability to Cu(2+)-triggered Aβ(1-40) fibers is in the order of CQ > SDUC > EDTA. Therefore, the disaggregation ability of chelators to the Aβ(1-40) fibers does not only depend on the binding affinity of the chelators with Cu(2+). Strong self-assembly ability of SDUC and π-π interaction of the conjugate group of CQ also contributes toward the disaggregation of the Cu(2+)-triggered Aβ(1-40) fibers and result in the formation of mixed small aggregates.
Collapse
Affiliation(s)
- Linyi Zhu
- Key Laboratory of Colloid and Interface Science, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | | | | | | | | |
Collapse
|
34
|
Li Y, Liu X, Dong X, Zhang L, Sun Y. Biomimetic design of affinity peptide ligand for capsomere of virus-like particle. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:8500-8508. [PMID: 24976378 DOI: 10.1021/la5017438] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Virus-like particle (VLP) of murine polyomavirus (MPV) is a T = 7d icosahedral capsid that self-assembles from 72 capsomeres (Caps), each of which is a pentamer of major coat protein VP1. VLP has great potential in vaccinology, gene therapy, drug delivery, and materials science. However, its application is hindered by high cost downstream processes, leading to an urgent demand of a highly efficient affinity ligand for the separation and purification of Cap by affinity chromatography. Herein a biomimetic design strategy of an affinity peptide ligand of Cap has been developed on the basis of the binding structure of the C-terminus of minor coat protein (VP2-C) on the inner surface of Cap. The molecular interactions between VP2-C and Cap were first examined using all-atom molecular dynamics (MD) simulations coupled with the molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) method, where V283, P285, D286, W287, L289, and Y296 of VP2-C were identified as the hot spots. An affinity peptide library (DWXLXLXY, X denotes arbitrary amino acids except cysteine) was then constructed for virtual screening sequently by docking with AUTODOCK VINA, binding structure comparison, and final docking with ROSETTA FlexPepDock. Ten peptide candidates were selected and further confirmed by MD simulations and MM/PBSA, where DWDLRLLY was found to have the highest affinity to Cap. In DWDLRLLY, six residues are favorable for the binding, including W2, L4, L6 and Y8 inheriting from VP2-C, and R5 and L7 selected in the virtual screening. This confirms the high efficiency and accuracy of the biomimetic design strategy. DWDLRLLY was then experimentally validated by a one-step purification of Cap from crude cell lysate using affinity chromatography with the octapeptide immobilized on Sepharose gel. The purified Caps were observed to self-assemble into VLP with consistent structure of authentic MPV.
Collapse
Affiliation(s)
- Yanying Li
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | | | | | | | | |
Collapse
|
35
|
Effect of metals on kinetic pathways of amyloid-β aggregation. Biomolecules 2014; 4:101-16. [PMID: 24970207 PMCID: PMC4030978 DOI: 10.3390/biom4010101] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 01/04/2014] [Accepted: 01/07/2014] [Indexed: 12/22/2022] Open
Abstract
Metal ions, including copper and zinc, have been implicated in the pathogenesis of Alzheimer’s disease through a variety of mechanisms including increased amyloid-β affinity and redox effects. Recent reports have demonstrated that the amyloid-β monomer does not necessarily travel through a definitive intermediary en-route to a stable amyloid fibril structure. Rather, amyloid-β misfolding may follow a variety of pathways resulting in a fibrillar end-product or a variety of oligomeric end-products with a diversity of structures and sizes. The presence of metal ions has been demonstrated to alter the kinetic pathway of the amyloid-β peptide which may lead to more toxic oligomeric end-products. In this work, we review the contemporary literature supporting the hypothesis that metal ions alter the reaction pathway of amyloid-β misfolding leading to more neurotoxic species.
Collapse
|
36
|
Characterization of the polymorphic states of copper(II)-bound Aβ(1-16) peptides by computational simulations. J Comput Chem 2013; 34:2524-36. [DOI: 10.1002/jcc.23416] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/23/2013] [Accepted: 08/01/2013] [Indexed: 01/07/2023]
|
37
|
Yu X, Wang Q, Pan Q, Zhou F, Zheng J. Molecular interactions of Alzheimer amyloid-β oligomers with neutral and negatively charged lipid bilayers. Phys Chem Chem Phys 2013; 15:8878-89. [PMID: 23493873 DOI: 10.1039/c3cp44448a] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Interaction of p3 (Aβ(17-42)) peptides with cell membranes is crucial for the understanding of amyloid toxicity associated with Alzheimer's disease (AD). Such p3-membrane interactions are considered to induce the disruption of membrane permeability and integrity, but the exact mechanisms of how p3 aggregates, particularly small p3 oligomers, induce receptor-independent membrane disruption are not yet completely understood. Here, we investigate the adsorption, orientation, and surface interaction of the p3 pentamer with lipid bilayers composed of both pure zwitterionic POPC (palmitoyl-oleoyl-phosphatidylcholine) and mixed anionic POPC-POPG (palmitoyl-oleoyl-phosphatidylglycerol) (3 : 1) lipids using explicit-solvent molecular dynamics (MD) simulations. MD simulation results show that the p3 pentamer has much stronger interactions with mixed POPC-POPG lipids than pure POPC lipids, consistent with experimental observation that Aβ adsorption and fibrillation are enhanced on anionic lipid bilayers. Although electrostatic interactions are main attractive forces to drive the p3 pentamer to adsorb on the bilayer surface, the adsorption of the p3 pentamer on the lipid bilayer with C-terminal β-strands facing toward the bilayer surface is a net outcome of different competitions between p3 peptides-lipid bilayer and ions-p3-bilayer interactions. More importantly, Ca(2+) ions are found to form ionic bridges to associate negatively charged residues of p3 with anionic headgroups of the lipid bilayer, resulting in Aβ-Ca(2+)-PO4(-) complexes. Intensive Ca(2+) bound to the lipid bilayer and Ca(2+) ionic bridges may lead to Ca(2+) hemostasis responsible for neuronal dysfunction and death. This work provides insights into the mutual structure, dynamics, and interactions of both Aβ peptides and lipid bilayers at the atomic level, which expand our understanding of the complex behavior of amyloid-induced membrane disruption.
Collapse
Affiliation(s)
- Xiang Yu
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325, USA
| | | | | | | | | |
Collapse
|
38
|
Verma S, Singh A, Mishra A. The effect of fulvic acid on pre‐ and postaggregation state of Aβ17–42: Molecular dynamics simulation studies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:24-33. [DOI: 10.1016/j.bbapap.2012.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 07/25/2012] [Accepted: 08/20/2012] [Indexed: 11/25/2022]
|
39
|
Nag S, Sarkar B, Chandrakesan M, Abhyanakar R, Bhowmik D, Kombrabail M, Dandekar S, Lerner E, Haas E, Maiti S. A folding transition underlies the emergence of membrane affinity in amyloid-β. Phys Chem Chem Phys 2013; 15:19129-33. [DOI: 10.1039/c3cp52732h] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Gallion SL. Modeling amyloid-beta as homogeneous dodecamers and in complex with cellular prion protein. PLoS One 2012; 7:e49375. [PMID: 23145167 PMCID: PMC3493521 DOI: 10.1371/journal.pone.0049375] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 10/11/2012] [Indexed: 12/16/2022] Open
Abstract
Soluble amyloid beta (Aβ) peptide has been linked to the pathology of Alzheimer's disease. A variety of soluble oligomers have been observed to be toxic, ranging from dimers to protofibrils. No tertiary structure has been identified as a single biologically relevant form, though many models are comprised of highly ordered β-sheets. Evidence exists for much less ordered toxic oligomers. The mechanism of toxicity remains highly debated and probably involves multiple pathways. Interaction of Aβ oligomers with the N-terminus of the cellular form of the prion protein (PrP(c)) has recently been proposed. The intrinsically disordered nature of this protein and the highly polymorphic nature of Aβ oligomers make structural resolution of the complex exceptionally challenging. In this study, molecular dynamics simulations are performed for dodecameric assemblies of Aβ comprised of monomers having a single, short antiparallel β-hairpin at the C-terminus. The resulting models, devoid of any intermolecular hydrogen bonds, are shown to correlate well with experimental data and are found to be quite stable within the hydrophobic core, whereas the α-helical N-termini transform to a random coil state. This indicates that highly ordered assemblies are not required for stability and less ordered oligomers are a viable component in the population of soluble oligomers. In addition, a tentative model is proposed for the association of Aβ dimers with a double deletion mutant of the intrinsically disordered N-terminus of PrP(c). This may be useful as a conceptual working model for the binding of higher order oligomers and in the design of further experiments.
Collapse
|
41
|
Ma B, Nussinov R. Selective molecular recognition in amyloid growth and transmission and cross-species barriers. J Mol Biol 2012; 421:172-84. [PMID: 22119878 PMCID: PMC6407624 DOI: 10.1016/j.jmb.2011.11.023] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 11/10/2011] [Accepted: 11/13/2011] [Indexed: 11/23/2022]
Abstract
Mutual conformational selection and population shift followed by minor induced-fit optimization is the key mechanism in biomolecular recognition, and monomers and small oligomers binding to amyloid seeds in fibril growth is a molecular recognition event. Here, we describe amyloid aggregation, preferred species, cross-species barriers and transmission within the broad framework of molecular recognition. Cross-seeding of amyloid species is governed by conformational selection of compatible (complementary) states. If the dominant conformations of two species are similar, they can cross-seed each other; on the other hand, if they are sufficiently different, they will grow into different fibrils, reflecting species barriers. Such a scenario has recently been observed for the tau protein, which has four repeats. While a construct consisting of repeats 1, 3 and 4 can serve as a seed for the entire four-repeat tau segment, the inverse does not hold. On the other hand, the tau protein repeats with the characteristic U-turn shape can cross-seed Alzheimer's amyloid β and, similarly, the islet amyloid polypeptide. Within this framework, we suggest that the so-called "central dogma" of amyloid formation, where aggregation takes place through nonspecific backbone hydrogen bonding interactions, which are common to all peptides and proteins, is a simple reflection of the heterogeneous, polymorphic free-energy landscape of amyloid species. Here, we review available data and make some propositions addressing this key problem. In particular, we argue that recent theoretical and experimental observations support the key role of selective molecular recognition in amyloidosis and in determining cross-species barriers and transmission.
Collapse
Affiliation(s)
- Buyong Ma
- Basic Science Program, SAIC-Frederick, Inc. Center for Cancer Research Nanobiology Program NCI-Frederick, Frederick, MD 21702
| | - Ruth Nussinov
- Basic Science Program, SAIC-Frederick, Inc. Center for Cancer Research Nanobiology Program NCI-Frederick, Frederick, MD 21702
- Sackler Inst. of Molecular Medicine Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
42
|
Combining conformational sampling and selection to identify the binding mode of zinc-bound amyloid peptides with bifunctional molecules. J Comput Aided Mol Des 2012; 26:963-76. [PMID: 22829296 DOI: 10.1007/s10822-012-9588-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 07/05/2012] [Indexed: 01/12/2023]
Abstract
The pathogenesis of Alzheimer's disease (AD) has been suggested to be related with the aggregation of amyloid β (Aβ) peptides. Metal ions (e.g. Cu, Fe, and Zn) are supposed to induce the aggregation of Aβ. Recent development of bifunctional molecules that are capable of interacting with Aβ and chelating biometal ions provides promising therapeutics to AD. However, the molecular mechanism for how Aβ, metal ions, and bifunctional molecules interact with each other is still elusive. In this study, the binding mode of Zn(2+)-bound Aβ with bifunctional molecules was investigated by the combination of conformational sampling of full-length Aβ peptides using replica exchange molecular dynamics simulations (REMD) and conformational selection using molecular docking and classical MD simulations. We demonstrate that Zn(2+)-bound Aβ((1-40)) and Aβ((1-42)) exhibit different conformational ensemble. Both Aβ peptides can adopt various conformations to recognize typical bifunctional molecules with different binding affinities. The bifunctional molecules exhibit their dual functions by first preferentially interfering with hydrophobic residues 17-21 and/or 30-35 of Zn(2+)-bound Aβ. Additional interactions with residues surrounding Zn(2+) could possibly disrupt interactions between Zn(2+) and Aβ, which then facilitate these small molecules to chelate Zn(2+). The binding free energy calculations further demonstrate that the association of Aβ with bifunctional molecules is driven by enthalpy. Our results provide a feasible approach to understand the recognition mechanism of disordered proteins with small molecules, which could be helpful to the design of novel AD drugs.
Collapse
|
43
|
Corsale C, Carrotta R, Mangione MR, Vilasi S, Provenzano A, Cavallaro G, Bulone D, San Biagio PL. Entrapment of Aβ(1-40) peptide in unstructured aggregates. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:244103. [PMID: 22595421 DOI: 10.1088/0953-8984/24/24/244103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Recognizing the complexity of the fibrillogenesis process provides a solid ground for the development of therapeutic strategies aimed at preventing or inhibiting protein-protein aggregation. Under this perspective, it is meaningful to identify the possible aggregation pathways and their relative products. We found that Aβ-peptide dissolved in a pH 7.4 solution at small peptide concentration and low ionic strength forms globular aggregates without typical amyloid β-conformation. ThT binding kinetics was used to monitor aggregate formation. Circular dichroism spectroscopy, AFM imaging, static and dynamic light scattering were used for structural and morphological characterization of the aggregates. They appear stable or at least metastable with respect to fiber growth, therefore appearing as an incidental product in the pathway of fibrillogenesis.
Collapse
Affiliation(s)
- C Corsale
- Istituto di Biofisica at Palermo, CNR, Palermo, Italy
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Bemporad F, Chiti F. Protein Misfolded Oligomers: Experimental Approaches, Mechanism of Formation, and Structure-Toxicity Relationships. ACTA ACUST UNITED AC 2012; 19:315-27. [DOI: 10.1016/j.chembiol.2012.02.003] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/30/2012] [Accepted: 02/01/2012] [Indexed: 11/30/2022]
|