1
|
Genomic versus Plasmid-Borne Expression of Germinant Receptor Proteins in Bacillus cereus Strain 14579. Microorganisms 2022; 10:microorganisms10091774. [PMID: 36144376 PMCID: PMC9501216 DOI: 10.3390/microorganisms10091774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 12/05/2022] Open
Abstract
Germinant receptors (GRs) are proteins in the spore-forming bacteria of Bacillus species that are crucial in triggering spore germination by sensing nutrients in the spores' environment. In the Gram-positive bacterium Bacillus cereus strain ATCC 14579, the GerR GR initiates germination with L-alanine. While we have expressed GerR subunits fused to reporter proteins from genes under control of their native promoter on plasmids in this B. cereus strain, here we sought increased flexibility in this work by studying genome integration and plasmid-borne inducible high level (over) expression. However, construction of chromosomal integrants to visualize and localize the GerR B subunit fused to fluorescent reporter protein SGFP2 was not successful in this B. cereus strain using constructs with either shorter (~600 bp) or longer (~1200 bp) regions of homology to the gerR operon. This failure was in contrast to successful IPTG-inducible expression of GerRB-SGFP2 from plasmid pDG148 in vegetative cells and dormant spores, as fluorescent GerRB-SGFP2 foci were present in vegetative cells and the protein was detected by Western blot analysis. In dormant spores, the fluorescence intensity with IPTG-inducible expression from pDG148-gerRB-SGFP2 was significantly higher than in wild type spores. However, the full length GerRB-SGFP2 protein was not detected in spores using Western blots. Clearly, there are still challenges in the construction of B. cereus strains harboring fluorescent reporter proteins in which tagged proteins are encoded by genes incorporated in the chromosome or on extrachromosomal expression plasmids.
Collapse
|
2
|
Schneider J, Klein T, Mielich-Süss B, Koch G, Franke C, Kuipers OP, Kovács ÁT, Sauer M, Lopez D. Spatio-temporal remodeling of functional membrane microdomains organizes the signaling networks of a bacterium. PLoS Genet 2015; 11:e1005140. [PMID: 25909364 PMCID: PMC4409396 DOI: 10.1371/journal.pgen.1005140] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 03/11/2015] [Indexed: 11/18/2022] Open
Abstract
Lipid rafts are membrane microdomains specialized in the regulation of numerous cellular processes related to membrane organization, as diverse as signal transduction, protein sorting, membrane trafficking or pathogen invasion. It has been proposed that this functional diversity would require a heterogeneous population of raft domains with varying compositions. However, a mechanism for such diversification is not known. We recently discovered that bacterial membranes organize their signal transduction pathways in functional membrane microdomains (FMMs) that are structurally and functionally similar to the eukaryotic lipid rafts. In this report, we took advantage of the tractability of the prokaryotic model Bacillus subtilis to provide evidence for the coexistence of two distinct families of FMMs in bacterial membranes, displaying a distinctive distribution of proteins specialized in different biological processes. One family of microdomains harbors the scaffolding flotillin protein FloA that selectively tethers proteins specialized in regulating cell envelope turnover and primary metabolism. A second population of microdomains containing the two scaffolding flotillins, FloA and FloT, arises exclusively at later stages of cell growth and specializes in adaptation of cells to stationary phase. Importantly, the diversification of membrane microdomains does not occur arbitrarily. We discovered that bacterial cells control the spatio-temporal remodeling of microdomains by restricting the activation of FloT expression to stationary phase. This regulation ensures a sequential assembly of functionally specialized membrane microdomains to strategically organize signaling networks at the right time during the lifespan of a bacterium. Cellular membranes organize proteins related to signal transduction, protein sorting and membrane trafficking into the so-called lipid rafts. It has been proposed that the functional diversity of lipid rafts would require a heterogeneous population of raft domains with varying compositions. However, a mechanism for such diversification is not known due in part to the complexity that entails the manipulation of eukaryotic cells. The recent discovery that bacteria organize many cellular processes in membrane microdomains (FMMs), functionally similar to the eukaryotic lipid rafts, prompted us to explore FMMs diversity in the bacterial model Bacillus subtilis. We show that diversification of FMMs occurs in cells and gives rise to functionally distinct microdomains, which compartmentalize distinct signal transduction pathways and regulate the expression of different genetic programs. We discovered that FMMs diversification does not occur randomly. Cells sequentially regulate the specialization of the FMMs during cell growth to ensure an effective and diverse activation of signaling processes.
Collapse
Affiliation(s)
- Johannes Schneider
- Research Center for Infectious Diseases ZINF, University of Würzburg, Würzburg, Germany
| | - Teresa Klein
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Benjamin Mielich-Süss
- Research Center for Infectious Diseases ZINF, University of Würzburg, Würzburg, Germany
| | - Gudrun Koch
- Research Center for Infectious Diseases ZINF, University of Würzburg, Würzburg, Germany
| | - Christian Franke
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Oscar P. Kuipers
- Molecular Genetics Group,Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Ákos T. Kovács
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University of Jena, Jena, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Daniel Lopez
- Research Center for Infectious Diseases ZINF, University of Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
4
|
Fagerlund A, Granum PE, Håvarstein LS. Staphylococcus aureus competence genes: mapping of the SigH, ComK1 and ComK2 regulons by transcriptome sequencing. Mol Microbiol 2014; 94:557-79. [PMID: 25155269 DOI: 10.1111/mmi.12767] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2014] [Indexed: 01/17/2023]
Abstract
Staphylococcus aureus is a major human pathogen. Hospital infections caused by methicillin-resistant strains (MRSA), which have acquired resistance to a broad spectrum of antibiotics through horizontal gene transfer (HGT), are of particular concern. In S. aureus, virulence and antibiotic resistance genes are often encoded on mobile genetic elements that are disseminated by HGT. Conjugation and phage transduction have long been known to mediate HGT in this species, but it is unclear whether natural genetic transformation contributes significantly to the process. Recently, it was reported that expression of the alternative sigma factor SigH induces the competent state in S. aureus. The transformation efficiency obtained, however, was extremely low, indicating that the optimal conditions for competence development had not been found. We therefore used transcriptome sequencing to determine whether the full set of genes known to be required for competence in other naturally transformable bacteria is part of the SigH regulon. Our results show that several essential competence genes are not controlled by SigH. This presumably explains the low transformation efficiency previously reported, and demonstrates that additional regulating mechanisms must be involved. We found that one such mechanism involves ComK1, a transcriptional activator that acts synergistically with SigH.
Collapse
Affiliation(s)
- Annette Fagerlund
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | | | | |
Collapse
|
5
|
Benoit I, van den Esker MH, Patyshakuliyeva A, Mattern DJ, Blei F, Zhou M, Dijksterhuis J, Brakhage AA, Kuipers OP, de Vries RP, Kovács ÁT. Bacillus subtilis attachment to Aspergillus niger hyphae results in mutually altered metabolism. Environ Microbiol 2014; 17:2099-113. [PMID: 25040940 DOI: 10.1111/1462-2920.12564] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 07/06/2014] [Indexed: 02/06/2023]
Abstract
Interaction between microbes affects the growth, metabolism and differentiation of members of the microbial community. While direct and indirect competition, like antagonism and nutrient consumption have a negative effect on the interacting members of the population, microbes have also evolved in nature not only to fight, but in some cases to adapt to or support each other, while increasing the fitness of the community. The presence of bacteria and fungi in soil results in various interactions including mutualism. Bacilli attach to the plant root and form complex communities in the rhizosphere. Bacillus subtilis, when grown in the presence of Aspergillus niger, interacts similarly with the fungus, by attaching and growing on the hyphae. Based on data obtained in a dual transcriptome experiment, we suggest that both fungi and bacteria alter their metabolism during this interaction. Interestingly, the transcription of genes related to the antifungal and putative antibacterial defence mechanism of B. subtilis and A. niger, respectively, are decreased upon attachment of bacteria to the mycelia. Analysis of the culture supernatant suggests that surfactin production by B. subtilis was reduced when the bacterium was co-cultivated with the fungus. Our experiments provide new insights into the interaction between a bacterium and a fungus.
Collapse
Affiliation(s)
- Isabelle Benoit
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands.,Microbiology, Utrecht University, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands.,Kluyver Centre for Genomics of Industrial Fermentations, Netherlands Genomics Initiative/Netherlands Organization for Scientific Research, Delf, The Netherlands
| | - Marielle H van den Esker
- Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Aleksandrina Patyshakuliyeva
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Derek J Mattern
- Molecular and Applied Microbiology Department, Leibniz Institute for Natural Product Research and Infection Biology - HKI, Jena, Germany.,Department of Microbiology and Molecular Biology, Friedrich Schiller University of Jena, Jena, Germany
| | - Felix Blei
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University of Jena, Jena, Germany
| | - Miaomiao Zhou
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Jan Dijksterhuis
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands
| | - Axel A Brakhage
- Molecular and Applied Microbiology Department, Leibniz Institute for Natural Product Research and Infection Biology - HKI, Jena, Germany.,Department of Microbiology and Molecular Biology, Friedrich Schiller University of Jena, Jena, Germany
| | - Oscar P Kuipers
- Kluyver Centre for Genomics of Industrial Fermentations, Netherlands Genomics Initiative/Netherlands Organization for Scientific Research, Delf, The Netherlands.,Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Ronald P de Vries
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands.,Kluyver Centre for Genomics of Industrial Fermentations, Netherlands Genomics Initiative/Netherlands Organization for Scientific Research, Delf, The Netherlands
| | - Ákos T Kovács
- Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.,Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University of Jena, Jena, Germany
| |
Collapse
|
6
|
Expression of a cryptic secondary sigma factor gene unveils natural competence for DNA transformation in Staphylococcus aureus. PLoS Pathog 2012; 8:e1003003. [PMID: 23133387 PMCID: PMC3486894 DOI: 10.1371/journal.ppat.1003003] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 09/17/2012] [Indexed: 12/19/2022] Open
Abstract
It has long been a question whether Staphylococcus aureus, a major human pathogen, is able to develop natural competence for transformation by DNA. We previously showed that a novel staphylococcal secondary sigma factor, SigH, was a likely key component for competence development, but the corresponding gene appeared to be cryptic as its expression could not be detected during growth under standard laboratory conditions. Here, we have uncovered two distinct mechanisms allowing activation of SigH production in a minor fraction of the bacterial cell population. The first is a chromosomal gene duplication rearrangement occurring spontaneously at a low frequency [≤10−5], generating expression of a new chimeric sigH gene. The second involves post-transcriptional regulation through an upstream inverted repeat sequence, effectively suppressing expression of the sigH gene. Importantly, we have demonstrated for the first time that S. aureus cells producing active SigH become competent for transformation by plasmid or chromosomal DNA, which requires the expression of SigH-controlled competence genes. Additionally, using DNA from the N315 MRSA strain, we successfully transferred the full length SCCmecII element through natural transformation to a methicillin-sensitive strain, conferring methicillin resistance to the resulting S. aureus transformants. Taken together, we propose a unique model for staphylococcal competence regulation by SigH that could help explain the acquisition of antibiotic resistance genes through horizontal gene transfer in this important pathogen. Staphylococcus aureus is a major human pathogen responsible for a broad spectrum of infections, emphasized by the emergence of multiple antibiotic-resistant strains with up to 60% of strains worldwide resistant to methicillin (Methicillin Resistant Staphylococcus aureus or MRSA). Indeed, MRSA-related infections are now one of the leading causes of death in the USA, highlighting the growing threat this bacterium poses to human health. Many bacteria have the ability to acquire novel genetic characteristics, including antibiotic resistance, through the uptake of extracellular DNA, a phenomenon known as natural genetic transformation or competence. We have shown that the SigH staphylococcal sigma factor is a likely key component for competence development, but that its gene is not expressed under standard laboratory conditions. Here, we have uncovered two distinct mechanisms allowing activation of SigH production in S. aureus: a chromosomal gene duplication rearrangement and post-transcriptional regulation through an upstream inverted repeat sequence. Importantly, we have demonstrated for the first time that S. aureus cells producing active SigH become competent for natural transformation by plasmid or chromosomal DNA, and we were able to confer methicillin resistance to a methicillin-sensitive strain by transformation with chromosomal DNA. SigH-dependent competence development in S. aureus could help explain the acquisition of antibiotic resistance genes and the rise of the so-called “superbug."
Collapse
|