1
|
Hagen WR. Low-frequency EPR of ferrimyoglobin fluoride and ferrimyoglobin cyanide: a case study on the applicability of broadband analysis to high-spin hemoproteins and to HALS hemoproteins. J Biol Inorg Chem 2022; 27:497-507. [PMID: 35802192 PMCID: PMC9399021 DOI: 10.1007/s00775-022-01948-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/04/2022] [Indexed: 11/29/2022]
Abstract
An EPR spectrometer has been developed that can be tuned to many frequencies in the range of ca 0.1–15 GHz. Applicability has been tested on ferrimyoglobin fluoride (MbF) and ferrimyoglobin cyanide (MbCN). MbF has a high-spin (S = 5/2) spectrum with 19F superhyperfine splitting that is only resolved in X-band along the heme normal. Low-frequency EPR also resolves the splitting in the heme plane. Measurement of linewidth as a function of frequency provides the basis for an analysis of inhomogeneous broadening in terms of g-strain, zero-field distribution, unresolved superhyperfine splittings and dipolar interaction. Rhombicity in the g tensor is found to be absent. MbCN (S = 1/2) has a highly anisotropic low spin (HALS) spectrum for which gx cannot be determined unequivocally in X-band. Low-frequency EPR allows for measurement of the complete spectrum and determination of the g-tensor.
Collapse
Affiliation(s)
- Wilfred R Hagen
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
2
|
Dai J, Knott GJ, Fu W, Lin TW, Furst AL, Britt RD, Francis MB. Protein-Embedded Metalloporphyrin Arrays Templated by Circularly Permuted Tobacco Mosaic Virus Coat Proteins. ACS NANO 2021; 15:8110-8119. [PMID: 33285072 DOI: 10.1021/acsnano.0c07165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bioenergetic processes in nature have relied on networks of cofactors for harvesting, storing, and transforming the energy from sunlight into chemical bonds. Models mimicking the structural arrangement and functional crosstalk of the cofactor arrays are important tools to understand the basic science of natural systems and to provide guidance for non-natural functional biomaterials. Here, we report an artificial multiheme system based on a circular permutant of the tobacco mosaic virus coat protein (cpTMV). The double disk assembly of cpTMV presents a gap region sandwiched by the two C2-symmetrically related disks. Non-native bis-his coordination sites formed by the mutation of the residues in this gap region were computationally screened and experimentally tested. A cpTMV mutant Q101H was identified to create a circular assembly of 17 protein-embedded hemes. Biophysical characterization using X-ray crystallography, cyclic voltammetry, and electron paramagnetic resonance (EPR) suggested both structural and functional similarity to natural multiheme cytochrome c proteins. This protein framework offers many further engineering opportunities for tuning the redox properties of the cofactors and incorporating non-native components bearing varied porphyrin structures and metal centers. Emulating the electron transfer pathways in nature using a tunable artificial system can contribute to the development of photocatalytic materials and bioelectronics.
Collapse
Affiliation(s)
- Jing Dai
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Gavin J Knott
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Wen Fu
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Tiffany W Lin
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Late Stage Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Ariel L Furst
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - R David Britt
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Matthew B Francis
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division and Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Sarewicz M, Pintscher S, Pietras R, Borek A, Bujnowicz Ł, Hanke G, Cramer WA, Finazzi G, Osyczka A. Catalytic Reactions and Energy Conservation in the Cytochrome bc1 and b6f Complexes of Energy-Transducing Membranes. Chem Rev 2021; 121:2020-2108. [PMID: 33464892 PMCID: PMC7908018 DOI: 10.1021/acs.chemrev.0c00712] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/16/2022]
Abstract
This review focuses on key components of respiratory and photosynthetic energy-transduction systems: the cytochrome bc1 and b6f (Cytbc1/b6f) membranous multisubunit homodimeric complexes. These remarkable molecular machines catalyze electron transfer from membranous quinones to water-soluble electron carriers (such as cytochromes c or plastocyanin), coupling electron flow to proton translocation across the energy-transducing membrane and contributing to the generation of a transmembrane electrochemical potential gradient, which powers cellular metabolism in the majority of living organisms. Cytsbc1/b6f share many similarities but also have significant differences. While decades of research have provided extensive knowledge on these enzymes, several important aspects of their molecular mechanisms remain to be elucidated. We summarize a broad range of structural, mechanistic, and physiological aspects required for function of Cytbc1/b6f, combining textbook fundamentals with new intriguing concepts that have emerged from more recent studies. The discussion covers but is not limited to (i) mechanisms of energy-conserving bifurcation of electron pathway and energy-wasting superoxide generation at the quinol oxidation site, (ii) the mechanism by which semiquinone is stabilized at the quinone reduction site, (iii) interactions with substrates and specific inhibitors, (iv) intermonomer electron transfer and the role of a dimeric complex, and (v) higher levels of organization and regulation that involve Cytsbc1/b6f. In addressing these topics, we point out existing uncertainties and controversies, which, as suggested, will drive further research in this field.
Collapse
Affiliation(s)
- Marcin Sarewicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Sebastian Pintscher
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Rafał Pietras
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Arkadiusz Borek
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Łukasz Bujnowicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Guy Hanke
- School
of Biological and Chemical Sciences, Queen
Mary University of London, London E1 4NS, U.K.
| | - William A. Cramer
- Department
of Biological Sciences, Purdue University, West Lafayette, Indiana 47907 United States
| | - Giovanni Finazzi
- Laboratoire
de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National Recherche Scientifique,
Commissariat Energie Atomique et Energies Alternatives, Institut National
Recherche l’agriculture, l’alimentation et l’environnement, 38054 Grenoble Cedex 9, France
| | - Artur Osyczka
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
4
|
Jawaharraj K, Sudha Dhiman S, Bedwell S, Vemuri B, Islam J, Sani RK, Gadhamshetty V. Electricity from methane by Methylococcus capsulatus (Bath) and Methylosinus trichosporium OB3b. BIORESOURCE TECHNOLOGY 2021; 321:124398. [PMID: 33257167 DOI: 10.1016/j.biortech.2020.124398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/31/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
Given the difficulties valorizing methane (CH4) via catalytic routes, this study explores use of CH4-oxidizing bacteria ("methanotrophs") for generating electricity directly from CH4. A preconditioned methanotrophic biofilm on 3D nickel foam with reduced graphene oxide (rGO/Ni) was used as the anode in two-compartment microbial fuel cells (MFCs). This study demonstrates a proof of concept for turning CH4 into electricity by two model methanotrophs including Methylosinus trichosposium OB3b and Methylococcus capsulatus (Bath). Both OB3b (205 mW.m-2) and Bath (110 mW.m-2) strains yielded a higher electricity from CH4 when grown on rGO/Ni compared to graphite felt electrodes. Based on electrochemistry tests, molecular dynamics simulations, genome annotations and interaction analysis, a mechanistic understanding of reasons behind enhanced performance of methanotrophs grown on rGO/Ni are presented.
Collapse
Affiliation(s)
- Kalimuthu Jawaharraj
- Department of Civil and Environmental Engineering, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, USA; BuG ReMeDEE Consortia, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, USA; 2D-materials for Biofilm Engineering, Science and Technology (2DBEST) Center, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD 57701, USA
| | - Saurabh Sudha Dhiman
- BuG ReMeDEE Consortia, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, USA; Chemical and Biological Engineering, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD 57701, USA; 2D-materials for Biofilm Engineering, Science and Technology (2DBEST) Center, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD 57701, USA
| | - Sierra Bedwell
- Department of Microbiology and Immunology, Montana State University, Culbertson Hall, 100, Bozeman, MT 59717, USA
| | - Bhuvan Vemuri
- Department of Civil and Environmental Engineering, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, USA; BuG ReMeDEE Consortia, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, USA
| | - Jamil Islam
- Department of Civil and Environmental Engineering, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, USA; BuG ReMeDEE Consortia, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, USA
| | - Rajesh Kumar Sani
- BuG ReMeDEE Consortia, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, USA; Chemical and Biological Engineering, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD 57701, USA; 2D-materials for Biofilm Engineering, Science and Technology (2DBEST) Center, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD 57701, USA
| | - Venkataramana Gadhamshetty
- Department of Civil and Environmental Engineering, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, USA; BuG ReMeDEE Consortia, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, USA; 2D-materials for Biofilm Engineering, Science and Technology (2DBEST) Center, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD 57701, USA.
| |
Collapse
|
5
|
Ponomarenko N, Niklas J, Pokkuluri PR, Poluektov O, Tiede DM. Electron Paramagnetic Resonance Characterization of the Triheme Cytochrome from Geobacter sulfurreducens. Biochemistry 2018; 57:1722-1732. [DOI: 10.1021/acs.biochem.7b00917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Ilcu L, Röther W, Birke J, Brausemann A, Einsle O, Jendrossek D. Structural and Functional Analysis of Latex Clearing Protein (Lcp) Provides Insight into the Enzymatic Cleavage of Rubber. Sci Rep 2017; 7:6179. [PMID: 28733658 PMCID: PMC5522427 DOI: 10.1038/s41598-017-05268-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/25/2017] [Indexed: 11/08/2022] Open
Abstract
Latex clearing proteins (Lcps) are rubber oxygenases that catalyse the extracellular cleavage of poly (cis-1,4-isoprene) by Gram-positive rubber degrading bacteria. Lcp of Streptomyces sp. K30 (LcpK30) is a b-type cytochrome and acts as an endo-type dioxygenase producing C20 and higher oligo-isoprenoids that differ in the number of isoprene units but have the same terminal functions, CHO-CH2- and -CH2-COCH3. Our analysis of the LcpK30 structure revealed a 3/3 globin fold with additional domains at the N- and C-termini and similarities to globin-coupled sensor proteins. The haem group of LcpK30 is ligated to the polypeptide by a proximal histidine (His198) and by a lysine residue (Lys167) as the distal axial ligand. The comparison of LcpK30 structures in a closed and in an open state as well as spectroscopic and biochemical analysis of wild type and LcpK30 muteins provided insights into the action of the enzyme during catalysis.
Collapse
Affiliation(s)
- Lorena Ilcu
- Institute for Biochemistry, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| | - Wolf Röther
- Institute of Microbiology, University of Stuttgart, Allmandring 31, 70550, Stuttgart, Germany
| | - Jakob Birke
- Institute of Microbiology, University of Stuttgart, Allmandring 31, 70550, Stuttgart, Germany
| | - Anton Brausemann
- Institute for Biochemistry, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| | - Oliver Einsle
- Institute for Biochemistry, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, Schänzlestrasse 1, 79104, Freiburg, Germany.
| | - Dieter Jendrossek
- Institute of Microbiology, University of Stuttgart, Allmandring 31, 70550, Stuttgart, Germany.
| |
Collapse
|