1
|
Jaiswal S, He Y, Lu HP. Probing functional conformation-state fluctuation dynamics in recognition binding between calmodulin and target peptide. J Chem Phys 2022; 156:055102. [DOI: 10.1063/5.0074277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sunidhi Jaiswal
- Department of Chemistry and Center for Photochemical Science, Bowling Green State University, Bowling Green, Ohio 43403, USA
| | - Yufan He
- Department of Chemistry and Center for Photochemical Science, Bowling Green State University, Bowling Green, Ohio 43403, USA
| | - H. Peter Lu
- Department of Chemistry and Center for Photochemical Science, Bowling Green State University, Bowling Green, Ohio 43403, USA
| |
Collapse
|
2
|
Shepherd JW, Payne-Dwyer AL, Lee JE, Syeda A, Leake MC. Combining single-molecule super-resolved localization microscopy with fluorescence polarization imaging to study cellular processes. JPHYS PHOTONICS 2021. [DOI: 10.1088/2515-7647/ac015d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Super-resolution microscopy has catalyzed valuable insights into the sub-cellular, mechanistic details of many different biological processes across a wide range of cell types. Fluorescence polarization spectroscopy tools have also enabled important insights into cellular processes through identifying orientational changes of biological molecules typically at an ensemble level. Here, we combine these two biophysical methodologies in a single home-made instrument to enable the simultaneous detection of orthogonal fluorescence polarization signals from single fluorescent protein molecules used as common reporters on the localization of proteins in cellular processes. These enable measurement of spatial location to a super-resolved precision better than the diffraction-limited optical resolution, as well as estimation of molecular stoichiometry based on the brightness of individual fluorophores. In this innovation we have adapted a millisecond timescale microscope used for single-molecule detection to enable splitting of fluorescence polarization emissions into two separate imaging channels for s- and p-polarization signals, which are imaged onto separate halves of the same high sensitivity back-illuminated CMOS camera detector. We applied this fluorescence polarization super-resolved imaging modality to a range of test fluorescent samples relevant to the study of biological processes, including purified monomeric green fluorescent protein, single combed DNA molecules, and protein assemblies and complexes from live Escherichia coli and Saccharomyces cerevisiae cells. Our findings are qualitative but demonstrate promise in showing how fluorescence polarization and super-resolved localization microscopy can be combined on the same sample to enable simultaneous measurements of polarization and stoichiometry of tracked molecular complexes, as well as the translational diffusion coefficient.
Collapse
|
3
|
Yamamoto YY, Tsuchida K, Noguchi K, Ogawa N, Sekiguchi H, Sasaki YC, Yohda M. Characterization of group II chaperonins from an acidothermophilic archaeon Picrophilus torridus. FEBS Open Bio 2016; 6:751-64. [PMID: 27398315 PMCID: PMC4932455 DOI: 10.1002/2211-5463.12090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 05/14/2016] [Accepted: 05/16/2016] [Indexed: 12/20/2022] Open
Abstract
Chaperonins are a type of molecular chaperone that assist in the folding of proteins. Group II chaperonins play an important role in the proteostasis in the cytosol of archaea and eukarya. In this study, we expressed, purified, and characterized group II chaperonins from an acidothermophilic archaeon Picrophilus torridus. Two genes exist for group II chaperonins, and both of the gene products assemble to form double‐ring complexes similar to other archaeal group II chaperonins. One of the Picrophilus chaperonins, PtoCPNα, was able to refold denatured GFP at 50 °C. As expected, PtoCPNα exhibited an ATP‐dependent conformational change that is observed by the change in fluorescence and diffracted X‐ray tracking (DXT). In contrast, PtoCPNα lost its protein folding ability at moderate temperatures, becoming unable to interact with unfolded proteins. At lower temperatures, the release rate of the captured GFP from PtoCPNα was accelerated, and the affinity of denatured protein to PtoCPNα was weakened at the lower temperatures. Unexpectedly, in the DXT experiment, the fine motions were enhanced at the lower temperatures. Taken together, the results suggest that the fine tilting motions of the apical domain might correlate with the affinity of group II chaperonins for denatured proteins.
Collapse
Affiliation(s)
- Yohei Y Yamamoto
- Department of Biotechnology and Life Science Tokyo University of Agriculture and Technology Koganei Japan; Research Fellow of Japan Society for the Promotion of Science Chiyoda, Tokyo Japan
| | - Kanako Tsuchida
- Department of Biotechnology and Life Science Tokyo University of Agriculture and Technology Koganei Japan
| | - Keiichi Noguchi
- Instrumentation Analysis Center Tokyo University of Agriculture and Technology Koganei Japan
| | - Naoki Ogawa
- Department of Integrated Science in Physics and Biology College of Humanities and Sciences Nihon University Setagaya-ku Japan
| | | | - Yuji C Sasaki
- Graduate School of Frontier Sciences University of Tokyo Kashiwa Japan
| | - Masafumi Yohda
- Department of Biotechnology and Life Science Tokyo University of Agriculture and Technology Koganei Japan
| |
Collapse
|
4
|
Rezgui R, Lestini R, Kühn J, Fave X, McLeod L, Myllykallio H, Alexandrou A, Bouzigues C. Differential interaction kinetics of a bipolar structure-specific endonuclease with DNA flaps revealed by single-molecule imaging. PLoS One 2014; 9:e113493. [PMID: 25412080 PMCID: PMC4239081 DOI: 10.1371/journal.pone.0113493] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/23/2014] [Indexed: 11/18/2022] Open
Abstract
As DNA repair enzymes are essential for preserving genome integrity, understanding their substrate interaction dynamics and the regulation of their catalytic mechanisms is crucial. Using single-molecule imaging, we investigated the association and dissociation kinetics of the bipolar endonuclease NucS from Pyrococcus abyssi (Pab) on 5′ and 3′-flap structures under various experimental conditions. We show that association of the PabNucS with ssDNA flaps is largely controlled by diffusion in the NucS-DNA energy landscape and does not require a free 5′ or 3′ extremity. On the other hand, NucS dissociation is independent of the flap length and thus independent of sliding on the single-stranded portion of the flapped DNA substrates. Our kinetic measurements have revealed previously unnoticed asymmetry in dissociation kinetics from these substrates that is markedly modulated by the replication clamp PCNA. We propose that the replication clamp PCNA enhances the cleavage specificity of NucS proteins by accelerating NucS loading at the ssDNA/dsDNA junctions and by minimizing the nuclease interaction time with its DNA substrate. Our data are also consistent with marked reorganization of ssDNA and nuclease domains occurring during NucS catalysis, and indicate that NucS binds its substrate directly at the ssDNA-dsDNA junction and then threads the ssDNA extremity into the catalytic site. The powerful techniques used here for probing the dynamics of DNA-enzyme binding at the single-molecule have provided new insight regarding substrate specificity of NucS nucleases.
Collapse
Affiliation(s)
- Rachid Rezgui
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS (Centre National pour la Recherche Scientifique) UMR (Unité Mixte de Recherche) 7645, Inserm (Institut national de la santé et de la recherche médicale) U696, Palaiseau, France
| | - Roxane Lestini
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS (Centre National pour la Recherche Scientifique) UMR (Unité Mixte de Recherche) 7645, Inserm (Institut national de la santé et de la recherche médicale) U696, Palaiseau, France
| | - Joëlle Kühn
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS (Centre National pour la Recherche Scientifique) UMR (Unité Mixte de Recherche) 7645, Inserm (Institut national de la santé et de la recherche médicale) U696, Palaiseau, France
| | - Xenia Fave
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS (Centre National pour la Recherche Scientifique) UMR (Unité Mixte de Recherche) 7645, Inserm (Institut national de la santé et de la recherche médicale) U696, Palaiseau, France
| | - Lauren McLeod
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS (Centre National pour la Recherche Scientifique) UMR (Unité Mixte de Recherche) 7645, Inserm (Institut national de la santé et de la recherche médicale) U696, Palaiseau, France
| | - Hannu Myllykallio
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS (Centre National pour la Recherche Scientifique) UMR (Unité Mixte de Recherche) 7645, Inserm (Institut national de la santé et de la recherche médicale) U696, Palaiseau, France
| | - Antigoni Alexandrou
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS (Centre National pour la Recherche Scientifique) UMR (Unité Mixte de Recherche) 7645, Inserm (Institut national de la santé et de la recherche médicale) U696, Palaiseau, France
| | - Cedric Bouzigues
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS (Centre National pour la Recherche Scientifique) UMR (Unité Mixte de Recherche) 7645, Inserm (Institut national de la santé et de la recherche médicale) U696, Palaiseau, France
- * E-mail:
| |
Collapse
|
5
|
Sekiguchi H, Nakagawa A, Moriya K, Makabe K, Ichiyanagi K, Nozawa S, Sato T, Adachi SI, Kuwajima K, Yohda M, Sasaki YC. ATP dependent rotational motion of group II chaperonin observed by X-ray single molecule tracking. PLoS One 2013; 8:e64176. [PMID: 23734192 PMCID: PMC3666759 DOI: 10.1371/journal.pone.0064176] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 04/08/2013] [Indexed: 11/18/2022] Open
Abstract
Group II chaperonins play important roles in protein homeostasis in the eukaryotic cytosol and in Archaea. These proteins assist in the folding of nascent polypeptides and also refold unfolded proteins in an ATP-dependent manner. Chaperonin-mediated protein folding is dependent on the closure and opening of a built-in lid, which is controlled by the ATP hydrolysis cycle. Recent structural studies suggest that the ring structure of the chaperonin twists to seal off the central cavity. In this study, we demonstrate ATP-dependent dynamics of a group II chaperonin at the single-molecule level with highly accurate rotational axes views by diffracted X-ray tracking (DXT). A UV light-triggered DXT study with caged-ATP and stopped-flow fluorometry revealed that the lid partially closed within 1 s of ATP binding, the closed ring subsequently twisted counterclockwise within 2–6 s, as viewed from the top to bottom of the chaperonin, and the twisted ring reverted to the original open-state with a clockwise motion. Our analyses clearly demonstrate that the biphasic lid-closure process occurs with unsynchronized closure and a synchronized counterclockwise twisting motion.
Collapse
Affiliation(s)
- Hiroshi Sekiguchi
- CREST Sasaki Team, Japan Science and Technology Agency, The University of Tokyo, Kashiwa city, Chiba, Japan
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo, Japan
- Foundation Advanced Technology Institute, Tokyo, Japan
| | - Ayumi Nakagawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kazuki Moriya
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Koki Makabe
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institute of Natural Sciences, Okazaki, Japan
- Department of Functional Molecular Science, School of Physical Sciences, Graduate University for Advanced Studies (Sokendai), Okazaki, Japan
| | - Kouhei Ichiyanagi
- CREST Sasaki Team, Japan Science and Technology Agency, The University of Tokyo, Kashiwa city, Chiba, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa city, Chiba, Japan
| | - Shunsuke Nozawa
- High Energy Accelerator Research Organization, Tsukuba, Ibaraki, Japan
| | - Tokushi Sato
- High Energy Accelerator Research Organization, Tsukuba, Ibaraki, Japan
| | - Shin-ichi Adachi
- High Energy Accelerator Research Organization, Tsukuba, Ibaraki, Japan
- PREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Kunihiro Kuwajima
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institute of Natural Sciences, Okazaki, Japan
- Department of Functional Molecular Science, School of Physical Sciences, Graduate University for Advanced Studies (Sokendai), Okazaki, Japan
| | - Masafumi Yohda
- Foundation Advanced Technology Institute, Tokyo, Japan
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yuji C. Sasaki
- CREST Sasaki Team, Japan Science and Technology Agency, The University of Tokyo, Kashiwa city, Chiba, Japan
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo, Japan
- Foundation Advanced Technology Institute, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa city, Chiba, Japan
- * E-mail:
| |
Collapse
|