1
|
Alqahtani T, Alsubait A, Aloumi M, Alamer A, Alomari G, Alwassil OI, Obaidullah AJ, Alghamdi SS. A novel role for nonactin: interfering with G-quadruplex in RET-driven medullary thyroid cancer. BMC Cancer 2024; 24:1569. [PMID: 39716145 DOI: 10.1186/s12885-024-13345-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/15/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Medullary Thyroid Carcinoma (MTC) is closely associated with mutations in the RET proto-oncogene, placing the activated RET protein at the center of MTC pathogenesis. Existing therapeutic solutions, primarily tyrosine kinase inhibitors such as selpercatinib, vandetanib, and cabozantinib, have shown moderate efficacy but are accompanied by increased risks of side effects and resistance. This study unveils a promising avenue using nonactin, a compound historically recognized for its antibacterial properties, targeting the G-quadruplex interactions within the RET proto-oncogene. METHOD In this research, high-throughput screening was conducted using a luciferase reporter-based cellular assay. The MTC TT cell line was treated with nonactin for 24 and 48 h. Immunoblotting and RT-PCR were employed to measure the protein and RNA levels of RET and its downstream stream proteins. Binding to the G-Quadruplex was assessed using melting curves and Circular Dichroism. The cell cycle was analyzed using FACS, and caspase activity was measured to indicate the activation of apoptosis. RESULTS Nonactin was identified to significantly reduce luciferase activity driven by the RET promoter. A deeper exploration revealed nonactin's remarkable selectivity against tumor cell lines harboring RET mutations, effectively inducing apoptosis. Nonactin was also found to bind to the G-quadruplex region on RET. CONCLUSION The findings highlight the compound's therapeutic potential, emphasizing its mechanism of inducing apoptosis in active mutant RET cell lines by interacting with G-quadruplex structures. This novel insight opens avenues for a potentially effective treatment for MTC, potentially bypassing the challenges associated with current TKIs.
Collapse
Affiliation(s)
- Tariq Alqahtani
- Department of Pharmaceutical Sciences, College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.
| | - Arwa Alsubait
- Medical Research Core Facility and Platforms Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Meshari Aloumi
- Department of Pharmaceutical Sciences, College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Abdulrahman Alamer
- Department of Pharmaceutical Sciences, College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Ghala Alomari
- Department of Pharmaceutical Sciences, College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Osama I Alwassil
- Department of Pharmaceutical Sciences, College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Sahar S Alghamdi
- Department of Pharmaceutical Sciences, College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Teixeira MR, Alievi AL, da Costa VR, Kerkis I, Araldi RP. Exploring the Therapeutic Potential of Extracellular Vesicles Derived from Human Immature Dental Pulp Cells on Papillary Thyroid Cancer. Int J Mol Sci 2024; 25:8178. [PMID: 39125748 PMCID: PMC11311836 DOI: 10.3390/ijms25158178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Mesenchymal stem-cell-derived extracellular vesicles (MSC-EVs) have been increasingly investigated for cancer therapy and drug delivery, and they offer an advanced cell-free therapeutic option. However, their overall effects and efficacy depend on various factors, including the MSC source and cargo content. In this study, we isolated EVs from the conditioned medium of human immature dental pulp stem cells (hIDPSC-EVs) and investigated their effects on two papillary thyroid cancer (PTC) cell lines (BCPAP and TPC1). We observed efficient uptake of hIDPSC-EVs by both PTC cell lines, with a notable impact on gene regulation, particularly in the Wnt signaling pathway in BCPAP cells. However, no significant effects on cell proliferation were observed. Conversely, hIDPSC-EVs significantly reduced the invasive capacity of both PTC cell lines after 120 h of treatment. These in vitro findings suggest the therapeutic potential of hIDPSC-EVs in cancer management and emphasize the need for further research to develop novel and effective treatment strategies. Furthermore, the successful internalization of hIDPSC-EVs by PTC cell lines underscores their potential use as nanocarriers for anti-cancer agents.
Collapse
Affiliation(s)
- Michelli Ramires Teixeira
- Postgraduate Program in Endocrinology and Metabology, Escola Paulista de Medicina of the Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo 04022-001, SP, Brazil; (M.R.T.); (A.L.A.)
- Genetics Laboratory, Instituto Butantan, São Paulo 05503-100, SP, Brazil; (V.R.d.C.); (I.K.)
| | - Anderson Lucas Alievi
- Postgraduate Program in Endocrinology and Metabology, Escola Paulista de Medicina of the Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo 04022-001, SP, Brazil; (M.R.T.); (A.L.A.)
- Genetics Laboratory, Instituto Butantan, São Paulo 05503-100, SP, Brazil; (V.R.d.C.); (I.K.)
| | - Vitor Rodrigues da Costa
- Genetics Laboratory, Instituto Butantan, São Paulo 05503-100, SP, Brazil; (V.R.d.C.); (I.K.)
- Postgraduate Program in Structural and Functional Biology, Escola Paulista de Medicina of the Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo 04023-062, SP, Brazil
| | - Irina Kerkis
- Genetics Laboratory, Instituto Butantan, São Paulo 05503-100, SP, Brazil; (V.R.d.C.); (I.K.)
- Postgraduate Program in Structural and Functional Biology, Escola Paulista de Medicina of the Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo 04023-062, SP, Brazil
| | - Rodrigo Pinheiro Araldi
- Postgraduate Program in Endocrinology and Metabology, Escola Paulista de Medicina of the Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo 04022-001, SP, Brazil; (M.R.T.); (A.L.A.)
- Postgraduate Program in Structural and Functional Biology, Escola Paulista de Medicina of the Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo 04023-062, SP, Brazil
- BioDecision Analytics Ltda., São Paulo 05713-510, SP, Brazil
| |
Collapse
|
3
|
Silvestri R, Zallocco L, Corrado A, Ronci M, Aceto R, Ricci B, Cipollini M, Dell’Anno I, De Simone C, De Marco G, Ferrarini E, Beghelli D, Mazzoni MR, Lucacchini A, Gemignani F, Giusti L, Landi S. Polymorphism Pro64His within galectin-3 has functional consequences at proteome level in thyroid cells. Front Genet 2024; 15:1380495. [PMID: 38933925 PMCID: PMC11199678 DOI: 10.3389/fgene.2024.1380495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction The single nucleotide polymorphism (SNP) rs4644 at codon 64 of galectin-3 (gal-3, gene name: LGALS3), specifying the variant proline (P64) to histidine (H64), is known to affect the protein's functions and has been associated with the risk of several types of cancer, including differentiated thyroid carcinoma (DTC). Materials and methods To deepen our understanding of the biological effects of this SNP, we analyzed the proteome of two isogenic cell lines (NC-P64 vs. NA-H64) derived from the immortalized non-malignant thyrocyte cell line Nthy-Ori, generated through the CRISPR-Cas9 technique to differ by rs4644 genotype. We compared the proteome of these cells to detect differentially expressed proteins and studied their proteome in relation to their transcriptome. Results Firstly, we found, consistently with previous studies, that gal-3-H64 could be detected as a monomer, homodimer, and heterodimer composed of one cleaved and one uncleaved monomer, whereas gal-3-P64 could be found only as a monomer or uncleaved homodimer. Moreover, results indicate that rs4644 influences the expression of several proteins, predominantly upregulated in NA-H64 cells. Overall, the differential protein expression could be attributed to the altered mRNA expression, suggesting that rs4644 shapes the function of gal-3 as a transcriptional co-regulator. However, this SNP also appeared to affect post-transcriptional regulatory mechanisms for proteins whose expression was oppositely regulated compared to mRNA expression. It is conceivable that the rs4644-dependent activities of gal-3 could be ascribed to the different modalities of self-dimerization. Conclusion Our study provided further evidence that rs4644 could affect the gal-3 functions through several routes, which could be at the base of differential susceptibility to diseases, as reported in case-control association studies.
Collapse
Affiliation(s)
- Roberto Silvestri
- Department of Biology, Genetic Unit, University of Pisa, Pisa, Italy
| | - Lorenzo Zallocco
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alda Corrado
- Department of Biology, Genetic Unit, University of Pisa, Pisa, Italy
| | - Maurizio Ronci
- Department of Medical, Oral and Biotechnological Sciences, University “G.D’Annunzio” of Chieti-Pescara, Chieti, Italy
- COIIM, Interuniversitary Consortium for Engineering and Medicine, Campobasso, Italy
| | - Romina Aceto
- Department of Biology, Genetic Unit, University of Pisa, Pisa, Italy
| | - Benedetta Ricci
- Department of Biology, Genetic Unit, University of Pisa, Pisa, Italy
| | - Monica Cipollini
- Department of Biology, Genetic Unit, University of Pisa, Pisa, Italy
| | - Irene Dell’Anno
- Department of Biology, Genetic Unit, University of Pisa, Pisa, Italy
| | - Chiara De Simone
- Department of Medical, Oral and Biotechnological Sciences, University “G.D’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Giuseppina De Marco
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Ferrarini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Daniela Beghelli
- School of Biosciences and Veterinary Medicine, Via Gentile III da Varano, University of Camerino, Camerino, Italy
| | | | - Antonio Lucacchini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Laura Giusti
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Stefano Landi
- Department of Biology, Genetic Unit, University of Pisa, Pisa, Italy
| |
Collapse
|
4
|
Gunjača I, Benzon B, Pleić N, Babić Leko M, Pešutić Pisac V, Barić A, Kaličanin D, Punda A, Polašek O, Vukojević K, Zemunik T. Role of ST6GAL1 in Thyroid Cancers: Insights from Tissue Analysis and Genomic Datasets. Int J Mol Sci 2023; 24:16334. [PMID: 38003522 PMCID: PMC10671354 DOI: 10.3390/ijms242216334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Thyroid cancer is the predominant endocrine-related malignancy. ST6 β-galactoside α2,6-sialyltransferase 1 (ST6GAL1) has been studied in various types of cancers; however, the expression and function of ST6GAL1 in thyroid cancer has not been investigated so far. Previously, we conducted two genome-wide association studies and have identified the association of the ST6GAL1 gene with plasma thyroglobulin (Tg) levels. Since Tg levels are altered in thyroid pathologies, in the current study, we wanted to evaluate the expression of ST6GAL1 in thyroid cancer tissues. We performed an immunohistochemical analysis using human thyroid tissue from 89 patients and analyzed ST6GAL1 protein expression in papillary thyroid cancer (including follicular variant and microcarcinoma) and follicular thyroid cancer in comparison to normal thyroid tissue. Additionally, ST6GAL1 mRNA levels from The Cancer Genome Atlas (TCGA, n = 572) and the Genotype-Tissue Expression (GTEx) project (n = 279) were examined. The immunohistochemical analysis revealed higher ST6GAL1 protein expression in all thyroid tumors compared to normal thyroid tissue. TCGA data revealed increased ST6GAL1 mRNA levels in both primary and metastatic tumors versus controls. Notably, the follicular variant of papillary thyroid cancer exhibited significantly higher ST6GAL1 mRNA levels than classic papillary thyroid cancer. High ST6GAL1 mRNA levels significantly correlated with lymph node metastasis status, clinical stage, and reduced survival rate. ST6GAL1 emerges as a potential cancer-associated glycosyltransferase in thyroid malignancies, offering valuable insights into its diagnostic and prognostic significance.
Collapse
Affiliation(s)
- Ivana Gunjača
- Department of Medical Biology, School of Medicine, University of Split, 21000 Split, Croatia; (N.P.); (M.B.L.); (D.K.)
| | - Benjamin Benzon
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (B.B.); (K.V.)
| | - Nikolina Pleić
- Department of Medical Biology, School of Medicine, University of Split, 21000 Split, Croatia; (N.P.); (M.B.L.); (D.K.)
| | - Mirjana Babić Leko
- Department of Medical Biology, School of Medicine, University of Split, 21000 Split, Croatia; (N.P.); (M.B.L.); (D.K.)
| | - Valdi Pešutić Pisac
- Clinical Department of Pathology, Forensic Medicine and Cytology, University Hospital of Split, 21000 Split, Croatia;
| | - Ana Barić
- Department of Nuclear Medicine, University Hospital of Split, 21000 Split, Croatia; (A.B.); (A.P.)
| | - Dean Kaličanin
- Department of Medical Biology, School of Medicine, University of Split, 21000 Split, Croatia; (N.P.); (M.B.L.); (D.K.)
| | - Ante Punda
- Department of Nuclear Medicine, University Hospital of Split, 21000 Split, Croatia; (A.B.); (A.P.)
| | - Ozren Polašek
- Department of Public Health, School of Medicine, University of Split, 21000 Split, Croatia;
| | - Katarina Vukojević
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (B.B.); (K.V.)
| | - Tatijana Zemunik
- Department of Medical Biology, School of Medicine, University of Split, 21000 Split, Croatia; (N.P.); (M.B.L.); (D.K.)
| |
Collapse
|
5
|
Zhang L, Li Z, Zhang M, Zou H, Bai Y, Liu Y, Lv J, Lv L, Liu P, Deng Z, Liu C. Advances in the molecular mechanism and targeted therapy of radioactive-iodine refractory differentiated thyroid cancer. Med Oncol 2023; 40:258. [PMID: 37524925 DOI: 10.1007/s12032-023-02098-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/21/2023] [Indexed: 08/02/2023]
Abstract
Most patients with differentiated thyroid cancer have a good prognosis after radioactive iodine-131 treatment, but there are still a small number of patients who are not sensitive to radioiodine treatment and may subsequently show disease progression. Therefore, radioactive-iodine refractory differentiated thyroid cancer treated with radioiodine usually shows reduced radioiodine uptake. Thus, when sodium iodine symporter expression, basolateral membrane localization and recycling degradation are abnormal, radioactive-iodine refractory differentiated thyroid cancer may occur. In recent years, with the deepening of research into the pathogenesis of this disease, an increasing number of molecules have become or are expected to become therapeutic targets. The application of corresponding inhibitors or combined treatment regimens for different molecular targets may be effective for patients with advanced radioactive-iodine refractory differentiated thyroid cancer. Currently, some targeted drugs that can improve the progression-free survival of patients with radioactive-iodine refractory differentiated thyroid cancer, such as sorafenib and lenvatinib, have been approved by the FDA for the treatment of radioactive-iodine refractory differentiated thyroid cancer. However, due to the adverse reactions and drug resistance caused by some targeted drugs, their application is limited. In response to targeted drug resistance and high rates of adverse reactions, research into new treatment combinations is being carried out; in addition to kinase inhibitor therapy, gene therapy and rutin-assisted iodine-131 therapy for radioactive-iodine refractory thyroid cancer have also made some progress. Thus, this article mainly focuses on sodium iodide symporter changes leading to the main molecular mechanisms in radioactive-iodine refractory differentiated thyroid cancer, some targeted drug resistance mechanisms and promising new treatments.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Zhi Li
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Meng Zhang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Huangren Zou
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Yuke Bai
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Yanlin Liu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Juan Lv
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Ling Lv
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Pengjie Liu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Zhiyong Deng
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China.
| | - Chao Liu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| |
Collapse
|
6
|
Natale G, Fini E, Calabrò PF, Carli M, Scarselli M, Bocci G. Valproate and lithium: Old drugs for new pharmacological approaches in brain tumors? Cancer Lett 2023; 560:216125. [PMID: 36914086 DOI: 10.1016/j.canlet.2023.216125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
Beyond its use as an antiepileptic drug, over time valproate has been increasingly used for several other therapeutic applications. Among these, the antineoplastic effects of valproate have been assessed in several in vitro and in vivo preclinical studies, suggesting that this agent significantly inhibits cancer cell proliferation by modulating multiple signaling pathways. During the last years various clinical trials have tried to find out if valproate co-administration could enhance the antineoplastic activity of chemotherapy in glioblastoma patients and in patients suffering from brain metastases, demonstrating that the inclusion of valproate in the therapeutic schedule causes an improved median overall survival in some studies, but not in others. Thus, the effects of the use of concomitant valproate in brain cancer patients are still controversial. Similarly, lithium has been tested as an anticancer drug in several preclinical studies mainly using the unregistered formulation of lithium chloride salts. Although, there are no data showing that the anticancer effects of lithium chloride are superimposable to the registered lithium carbonate, this formulation has shown preclinical activity in glioblastoma and hepatocellular cancers. However, few but interesting clinical trials have been performed with lithium carbonate on a very small number of cancer patients. Based on published data, valproate could represent a potential complementary therapeutic approach to enhance the anticancer activity of brain cancer standard chemotherapy. Same advantageous characteristics are less convincing for lithium carbonate. Therefore, the planning of specific phase III studies is necessary to validate the repositioning of these drugs in present and future oncological research.
Collapse
Affiliation(s)
- Gianfranco Natale
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy; Museum of Human Anatomy "Filippo Civinini", University of Pisa, Italy
| | - Elisabetta Fini
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | | | - Marco Carli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Guido Bocci
- Department of Clinical and Experimental Medicine, University of Pisa, Italy.
| |
Collapse
|
7
|
Pleić N, Babić Leko M, Gunjača I, Boutin T, Torlak V, Matana A, Punda A, Polašek O, Hayward C, Zemunik T. Genome-Wide Association Analysis and Genomic Prediction of Thyroglobulin Plasma Levels. Int J Mol Sci 2022; 23:ijms23042173. [PMID: 35216288 PMCID: PMC8876738 DOI: 10.3390/ijms23042173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 02/05/2023] Open
Abstract
Thyroglobulin (Tg) is an iodoglycoprotein produced by thyroid follicular cells which acts as an essential substrate for thyroid hormone synthesis. To date, only one genome-wide association study (GWAS) of plasma Tg levels has been performed by our research group. Utilizing recent advancements in computation and modeling, we apply a Bayesian approach to the probabilistic inference of the genetic architecture of Tg. We fitted a Bayesian sparse linear mixed model (BSLMM) and a frequentist linear mixed model (LMM) of 7,289,083 variants in 1096 healthy European-ancestry participants of the Croatian Biobank. Meta-analysis with two independent cohorts (total n = 2109) identified 83 genome-wide significant single nucleotide polymorphisms (SNPs) within the ST6GAL1 gene (p<5×10-8). BSLMM revealed additional association signals on chromosomes 1, 8, 10, and 14. For ST6GAL1 and the newly uncovered genes, we provide physiological and pathophysiological explanations of how their expression could be associated with variations in plasma Tg levels. We found that the SNP-heritability of Tg is 17% and that 52% of this variation is due to a small number of 16 variants that have a major effect on Tg levels. Our results suggest that the genetic architecture of plasma Tg is not polygenic, but influenced by a few genes with major effects.
Collapse
Affiliation(s)
- Nikolina Pleić
- Department of Medical Biology, School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia; (N.P.); (M.B.L.); (I.G.); (A.M.)
| | - Mirjana Babić Leko
- Department of Medical Biology, School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia; (N.P.); (M.B.L.); (I.G.); (A.M.)
| | - Ivana Gunjača
- Department of Medical Biology, School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia; (N.P.); (M.B.L.); (I.G.); (A.M.)
| | - Thibaud Boutin
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK; (T.B.); (C.H.)
| | - Vesela Torlak
- Department of Nuclear Medicine, University Hospital Split, Spinčićeva 1, 21000 Split, Croatia; (V.T.); (A.P.)
| | - Antonela Matana
- Department of Medical Biology, School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia; (N.P.); (M.B.L.); (I.G.); (A.M.)
| | - Ante Punda
- Department of Nuclear Medicine, University Hospital Split, Spinčićeva 1, 21000 Split, Croatia; (V.T.); (A.P.)
| | - Ozren Polašek
- Department of Public Health, School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia;
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK; (T.B.); (C.H.)
| | - Tatijana Zemunik
- Department of Medical Biology, School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia; (N.P.); (M.B.L.); (I.G.); (A.M.)
- Correspondence: ; Tel.: +385-2155-7888
| |
Collapse
|
8
|
Corrado A, Aceto R, Silvestri R, Dell'Anno I, Ricci B, Miglietta S, Romei C, Giovannoni R, Poliseno L, Evangelista M, Vitiello M, Cipollini M, Garritano S, Giusti L, Zallocco L, Elisei R, Landi S, Gemignani F. Pro64His (rs4644) Polymorphism Within Galectin-3 Is a Risk Factor of Differentiated Thyroid Carcinoma and Affects the Transcriptome of Thyrocytes Engineered via CRISPR/Cas9 System. Thyroid 2021; 31:1056-1066. [PMID: 33308024 DOI: 10.1089/thy.2020.0366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background: Galectin-3 (LGALS3) is an important glycoprotein involved in the malignant transformation of thyrocytes acting in the extracellular matrix, cytoplasm, and nucleus where it regulates TTF-1 and TCF4 transcription factors. Within LGALS3 gene, a common single-nucleotide polymorphism (SNP) (c.191C>A, p.Pro64His; rs4644) encoding for the variant Proline to Histidine at codon 64 has been extensively studied. However, data on rs4644 in the context of thyroid cancer are lacking. Thus, the aim of the present work was to evaluate the role of the rs4644 SNP as risk factor for differentiated thyroid cancer (DTC) and to determine the effect on the transcriptome in thyrocytes. Methods: A case/control association study in 1223 controls and 1142 unrelated consecutive DTC patients was carried out to evaluate the association between rs4644-P64H and the risk of DTC. We used the nonmalignant cell line Nthy-Ori (rs4644-C/A) and the CRISPR/Cas9 technique to generate isogenic cells carrying either the rs4644-A/A or rs4644-C/C homozygosis. Then, the transcriptome of the derivative and unmodified parental cells was analyzed by RNA-seq. Genes differentially expressed were validated by quantitative reverse transcription PCR and further tested in the parental Nthy-Ori cells after LGALS3 gene silencing, to investigate whether the expression of target genes was dependent on galectin-3 levels. Results: rs4644 AA genotype was associated with a reduced risk of DTC (compared with CC, ORadj = 0.66; 95% confidence interval = 0.46-0.93; Pass = 0.02). We found that rs4644 affects galectin-3 as a transcriptional coregulator. Among 34 genes affected by rs4644, HES1, HSPA6, SPC24, and NHS were of particular interest since their expression was rs4644-dependent (CC>AA for the first and AA>CC for the others), also in 574 thyroid tissues of Genotype-Tissue Expression (GTEx) biobank. Moreover, the expression of these genes was regulated by LGALS3-silencing. Using the proximity ligation assay in Nthy-Ori cells, we found that the TTF-1 interaction was genotype dependent. Conclusions: Our data show that in thyroid, rs4644 is a trans-expression quantitative trait locus that can modify the transcriptional expression of downstream genes, through the modulation of TTF-1.
Collapse
Affiliation(s)
- Alda Corrado
- Genetic Unit, Department of Biology, University of Pisa, Pisa, Italy
| | - Romina Aceto
- Genetic Unit, Department of Biology, University of Pisa, Pisa, Italy
- Humanitas Clinical and Research Centre-IRCCS, Milan, Italy
| | - Roberto Silvestri
- Genetic Unit, Department of Biology, University of Pisa, Pisa, Italy
| | - Irene Dell'Anno
- Genetic Unit, Department of Biology, University of Pisa, Pisa, Italy
| | - Benedetta Ricci
- Fondazione I.R.C.C.S., Istituto Neurologico Carlo Besta, Milan, Italy
| | - Simona Miglietta
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Romei
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Laura Poliseno
- Institute of Clinical Physiology (IFC), CNR, Pisa, Italy
| | | | | | - Monica Cipollini
- Genetic Unit, Department of Biology, University of Pisa, Pisa, Italy
| | - Sonia Garritano
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Laura Giusti
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Lorenzo Zallocco
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Rossella Elisei
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefano Landi
- Genetic Unit, Department of Biology, University of Pisa, Pisa, Italy
| | | |
Collapse
|
9
|
Wang R, Cai J, Xie S, Zhao C, Wang Y, Cao D, Li G. T Cell Factor 4 Is Involved in Papillary Thyroid Carcinoma via Regulating Long Non-Coding RNA HCP5. Technol Cancer Res Treat 2020; 19:1533033820983290. [PMID: 33371788 PMCID: PMC7780308 DOI: 10.1177/1533033820983290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The annual incidence of papillary thyroid carcinoma has increased dramatically. T cell factor 4 (TCF4) is an important component of Wnt signaling pathway.However, the role of TCF4 in PTC remains unknown. In this study, TCF4 was observed to overexpress in PTC patients and cells by qRT-PCR assay. The colony formation assay, Edu staining and transwell assay indicated thatoverexpression of TCF4 promoted cell proliferation and invasion of TCP-1 cells, whereas knockdown of TCF4 inhibited cell proliferation and invasion of IHH-4 cells. To investigate the mechanism of TCF4 in PTC cells, the luciferase assay demonstrated that TCF4 could modulate HCP5 expression. Besides, GLuc-ON promoter reporter assayproved that TCF4 could bind to HCP5 promoter. Further, knockdown of HCP5 could significantly up-regulated miR-15a, miR-216a-5p, miR-22-3p, miR-139-5p, miR-203, miR-27a-3p and miR-320, and down-regulated miR-186-5p in IHH-4 cells, which might be potential downstream of TFC4/HCP5 axis. In conclusion, up-regulation TCF4 can promote HCP5 expression via binding to HCP5 promoter. It may be the first time to prove that TCF4 regulates HCP5 in PTC, which provides a novel sight for treatment of PTC.
Collapse
Affiliation(s)
- Rui Wang
- Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou City, Zhejiang Province, China
| | - Jidong Cai
- Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou City, Zhejiang Province, China
| | - Shangnao Xie
- Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou City, Zhejiang Province, China
| | - Chunlei Zhao
- Department of Nuclear Medicine, Hangzhou Cancer Hospital, Hangzhou City, Zhejiang Province, China
| | - Yi Wang
- Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou City, Zhejiang Province, China
| | - Deming Cao
- Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou City, Zhejiang Province, China
| | - Gang Li
- Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou City, Zhejiang Province, China
| |
Collapse
|
10
|
Fuziwara CS, Kimura ET. How does microRNA modulate Wnt/β-catenin signaling in thyroid oncogenesis? ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:266. [PMID: 32355710 PMCID: PMC7186644 DOI: 10.21037/atm.2020.02.152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Cesar Seigi Fuziwara
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Edna Teruko Kimura
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Thakur S, Tobey A, Klubo-Gwiezdzinska J. The Role of Lithium in Management of Endocrine Tumors-A Comprehensive Review. Front Oncol 2019; 9:1092. [PMID: 31750236 PMCID: PMC6842984 DOI: 10.3389/fonc.2019.01092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/04/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Epidemiological data reveal that treatment with lithium, a mood stabilizer, is associated with decreased incidence and mortality of certain cancer types, such as melanoma. Therefore, repositioning of lithium as an anticancer agent has emerged as a promising strategy in oncology. Since lithium affects the physiology of several endocrine tissues, the goal of this study was to analyze the role of lithium in the pathogenesis and treatment of tumors of the endocrine system. Methods: The databases of PubMed, EMBASE, MEDLINE, were searched from January 1970 through February 2019 for articles including the keywords "lithium and"-"thyroid cancer," "thyroid nodule," "parathyroid adenoma," "parathyroid carcinoma," "pituitary adenoma," "pituitary neuroendocrine tumor," "neuroendocrine tumor," "carcinoid," "adrenal adenoma," "adrenal carcinoma," "pheochromocytoma/paraganglioma." Preclinical in vitro and in vivo studies as well as case series, retrospective cohort studies and prospective trials were selected for the analysis. Results: Treatment with lithium has been associated with a higher prevalence of thyroid enlargement, hypothyroidism and increased calcium levels due to parathyroid adenoma or hyperplasia, as one of the mechanisms of its action is to stimulate proliferation of normal follicular thyroid and parathyroid cells via activation of the Wnt signaling pathway. Supratherapeutic concentrations of lithium decrease the activity of glycogen synthase kinase-3β (GSK-3β), leading to cell cycle arrest in several in vitro cancer models including medullary thyroid cancer (TC), pheochromocytoma/paraganglioma and carcinoid. Growth inhibitory effects of lithium in vivo have been documented in medullary TC xenograft mouse models. Clinically, lithium has been used as an adjuvant agent to therapy with radioactive iodine (RAI), as it increases the residence time of RAI in TC. Conclusion: Patients chronically treated with lithium need to be screened for hypothyroidism, goiter, and hyperparathyroidism, as the prevalence of these endocrine abnormalities is higher in lithium-treated patients than in the general population. The growth inhibitory effects of lithium in medullary TC, pheochromocytoma/paraganglioma and carcinoid were achieved with supratherapeutic concentrations of lithium thus limiting its translational perspective. Currently available clinical data on the efficacy of lithium in the therapy of endocrine tumors in human is limited and associated with conflicting results.
Collapse
Affiliation(s)
- Shilpa Thakur
- Metabolic Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Andrew Tobey
- Metabolic Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Joanna Klubo-Gwiezdzinska
- Metabolic Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
12
|
Phelps CA, Lindsey-Boltz L, Sancar A, Mu D. Mechanistic Study of TTF-1 Modulation of Cellular Sensitivity to Cisplatin. Sci Rep 2019; 9:7990. [PMID: 31142791 PMCID: PMC6541604 DOI: 10.1038/s41598-019-44549-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 05/17/2019] [Indexed: 11/08/2022] Open
Abstract
The lung lineage master regulator gene, Thyroid Transcription Factor-1 (TTF-1, also known as NKX2-1), is used as a marker by pathologists to identify lung adenocarcinomas since TTF-1 is expressed in 60 ~ 70% of lung ADs. Much research has been conducted to investigate roles of TTF-1 in lung cancer biology. But, how it modulates cellular chemosensitivity remains poorly characterized. Our study shows that TTF-1 sensitizes the KRAS-mutated A549 and NCI-H460 lung cancer cells to cisplatin, a common chemotherapy used to treat lung cancer. This chemosensitization activity does not appear to be mediated by a TTF-1-imposed alteration on nucleotide excision repair. Mechanistically, TTF-1 induced a reduction in p-AKT (S473), which in turn activated glycogen synthase kinase 3 (GSK3) and reduced β-catenin. Intriguingly, in the EGFR-mutated NCI-H1975 and HCC827 cells, TTF-1 desensitized these cells to cisplatin; concomitantly, TTF-1 conferred an increase in p-AKT. Finally, the conditioned media of TTF-1-transefected cells sensitized TTF-1- cells to cisplatin, implicating that the TTF-1-driven chemosensitization activity may be dually pronged in both intracellular and extracellular compartments. In short, this study highlights the enigmatic activities of TTF-1 in lung cancer, and calls for future research to optimally manage chemotherapy of patients with TTF-1+ lung ADs.
Collapse
Affiliation(s)
- Cody A Phelps
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, 23501, USA
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23501, USA
- Carter Immunology Center, University of Virginia, Charlottesville, VA, 22903, USA
| | - Laura Lindsey-Boltz
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - David Mu
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, 23501, USA.
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23501, USA.
| |
Collapse
|
13
|
Downregulation of c-Myc and p21 expression and induction of S phase arrest by naphthalene diimide derivative in gastric adenocarcinoma cells. Chem Biol Interact 2019; 304:106-123. [PMID: 30840857 DOI: 10.1016/j.cbi.2019.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/23/2019] [Accepted: 02/14/2019] [Indexed: 12/13/2022]
Abstract
Naphthalene diimide (NDI) derivatives have been shown to exhibit promising antineoplastic properties. In the current study, we assessed the anticancer and anti-bacterial properties of di-substituted NDI derivative. The naphthalene-bis-hydrazimide, 1, negatively affected the cell viability of three cancer cell lines (AGS, HeLa and PC3) and induced S phase cell cycle arrest along with SubG0/G1 accumulation. Amongst three cell lines, gastric cancer cell line, AGS, showed the highest sensitivity towards the NDI derivative 1. Compound 1 induced extensive DNA double strand breaks causing p53 activation leading to transcription of p53 target gene p21 in AGS cells. Reduction in protein levels of p21 and BRCA1 suggested that 1 treated AGS cells underwent cell death due to accumulation of DNA damage as a result of impaired DNA damage repair. β-catenin downregulation and consequently decrease in levels of c-Myc may have led to 1 induced AGS cell proliferation inhibition.1 induced AGS cell S phase arrest was mediated through CylinA/CDK2 downregulation. The possible mechanisms involved in anticancer activity of 1 includes ROS upregulation, induction of DNA damage, disruption of mitochondrial membrane potential causing ATP depletion, inhibition of cell proliferation and downregulation of antiapoptotic factors ultimately leading to mitochondria mediated apoptosis. Further compound 1 also inhibited H. pylori proliferation as well as H. pylori induced morphological changes in AGS cells. These findings suggest that NDI derivative 1 exhibits two-pronged anticancer activity, one by directly inhibiting cancer cell growth and inducing apoptosis and the other by inhibiting H. pylori.
Collapse
|
14
|
TTF-1/Nkx2.1 functional connection with mutated EGFR relies on LRIG1 and β-catenin pathways in lung cancer cells. Biochem Biophys Res Commun 2018; 505:1027-1031. [PMID: 30314701 DOI: 10.1016/j.bbrc.2018.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 11/22/2022]
Abstract
In non-small lung cancer, the expression of the transcription factor TTF-1/Nkx2.1 correlates with the presence of EGFR mutations, therefore TTF-1/Nkx2.1 expression is used to optimize an EGFR testing strategy and to guide clinical treatment. We investigate the molecular mechanisms underlying the functional connection between EGFR and TTF-1/Nkx2.1 gene expression in lung adenocarcinoma. Using the H1975 cell line as a non-small cell lung cancer model system and short hairpin RNA, we have selected clones with TTF-1/Nkx2.1 silenced expression. We have found that Leucine-rich immunoglobulin repeats-1 (LRIG1) gene is a direct target of TTF-1/Nkx2.1 and the transcription factor binding to the LRIG1 genomic sequence inhibits its gene expression. In TTF-1/Nkx2.1 depleted clones, we have found high levels of LRIG1 and decreased presence of EGFR protein. Furthermore, in TTF-1/Nkx2.1 depleted clones we detected a reduced β-catenin level and we provide experimental evidence indicating that TTF-1/Nkx2.1 gene expression is regulated by β-catenin. Published studies indicate that LRIG1 triggers EGFR degradation and that mutated EGFR induces β-catenin activity. Hence, with the present study we show that mutated EGFR, enhancing β-catenin, stimulates TTF-1/Nkx2.1 gene expression and, at the same time, TTF-1/Nkx2.1, down-regulating LRIG1, sustains EGFR pathway. Therefore, LRIG1 and β-catenin mediate the functional connection between TTF-1/Nkx2.1 and mutated EGFR.
Collapse
|
15
|
Ao ZX, Chen YC, Lu JM, Shen J, Peng LP, Lin X, Peng C, Zeng CP, Wang XF, Zhou R, Chen Z, Xiao HM, Deng HW. Identification of potential functional genes in papillary thyroid cancer by co-expression network analysis. Oncol Lett 2018; 16:4871-4878. [PMID: 30250553 PMCID: PMC6144229 DOI: 10.3892/ol.2018.9306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022] Open
Abstract
Interactions between multiple genes are involved in the development of complex diseases. However, there are few analyses of gene interactions associated with papillary thyroid cancer (PTC). Weighted gene co-expression network analysis (WGCNA) is a novel and powerful method that detects gene interactions according to their co-expression similarities. In the present study, WGCNA was performed in order to identify functional genes associated with PTC using R package. First, differential gene expression analysis was conducted in order to identify the differentially expressed genes (DEGs) between PTC and normal samples. Subsequently, co-expression networks of the DEGs were constructed for the two sample groups, respectively. The two networks were compared in order to identify a poorly preserved module. Concentrating on the significant module, validation analysis was performed to confirm the identified genes and combined functional enrichment analysis was conducted in order to identify more functional associations of these genes with PTC. As a result, 1062 DEGs were identified for network construction. A brown module containing 118 highly related genes was selected as it exhibited the lowest module preservation. After validation analysis, 61 genes in the module were confirmed to be associated with PTC. Following the enrichment analysis, two PTC-related pathways were identified: Wnt signal pathway and transcriptional misregulation in cancer. LRP4, KLK7, PRICKLE1, ETV4 and ETV5 were predicted to be candidate genes regulating the pathogenesis of PTC. These results provide novel insights into the etiology of PTC and the identification of potential functional genes.
Collapse
Affiliation(s)
- Zeng-Xin Ao
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Yuan-Cheng Chen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Jun-Min Lu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Jie Shen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Lin-Ping Peng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Xu Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Cheng Peng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Chun-Ping Zeng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Xia-Fang Wang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Rou Zhou
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Zhi Chen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Hong-Mei Xiao
- School of Basic Medical Sciences, Central South University, Changsha, Hunan 410000, P.R. China
| | - Hong-Wen Deng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
- School of Basic Medical Sciences, Central South University, Changsha, Hunan 410000, P.R. China
- Department of Biostatistics and Bioinformatics, Center for Bioinformatics and Genomics, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
16
|
Chen LL, Gao GX, Shen FX, Chen X, Gong XH, Wu WJ. SDC4 Gene Silencing Favors Human Papillary Thyroid Carcinoma Cell Apoptosis and Inhibits Epithelial Mesenchymal Transition via Wnt/β-Catenin Pathway. Mol Cells 2018; 41:853-867. [PMID: 30165731 PMCID: PMC6182223 DOI: 10.14348/molcells.2018.0103] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/10/2018] [Accepted: 07/29/2018] [Indexed: 01/06/2023] Open
Abstract
As the most common type of endocrine malignancy, papillary thyroid cancer (PTC) accounts for 85-90% of all thyroid cancers. In this study, we presented the hypothesis that SDC4 gene silencing could effectively attenuate epithelial mesenchymal transition (EMT), and promote cell apoptosis via the Wnt/β-catenin signaling pathway in human PTC cells. Bioinformatics methods were employed to screen the determined differential expression levels of SDC4 in PTC and adjacent normal samples. PTC tissues and adjacent normal tissues were prepared and their respective levels of SDC4 protein positive expression, in addition to the mRNA and protein levels of SDC4, Wnt/β-catenin signaling pathway, EMT and apoptosis related genes were all detected accordingly. Flow cytometry was applied in order to detect cell cycle entry and apoptosis. Finally, analyses of PTC migration and invasion abilities were assessed by using a Transwell assay and scratch test. In PTC tissues, activated Wnt/β-catenin signaling pathway, increased EMT and repressed cell apoptosis were determined. Moreover, the PTC K1 and TPC-1 cell lines exhibiting the highest SDC4 expression were selected for further experiments. In vitro experiments revealed that SDC4 gene silencing could suppress cell migration, invasion and EMT, while acting to promote the apoptosis of PTC cells by inhibiting the activation of the Wnt/β-catenin signaling pathway. Besides, si-β-catenin was observed to inhibit the promotion of PTC cell migration and invasion caused by SDC4 overexpression. Our study revealed that SDC4 gene silencing represses EMT, and enhances cell apoptosis by suppressing the activation of the Wnt/β-catenin signaling pathway in human PTC.
Collapse
Affiliation(s)
- Liang-Liang Chen
- Department of Surgical Oncology, Ningbo No.2 Hospital, Ningbo 315010,
P.R. China
| | - Ge-Xin Gao
- School of Nursing, Wenzhou Medical University, Wenzhou 325000,
P.R. China
| | - Fei-Xia Shen
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015,
P.R. China
| | - Xiong Chen
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015,
P.R. China
| | - Xiao-Hua Gong
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015,
P.R. China
| | - Wen-Jun Wu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015,
P.R. China
| |
Collapse
|
17
|
Qiu J, Zhang W, Xia Q, Liu F, Zhao S, Zhang K, Chen M, Zang C, Ge R, Liang D, Sun Y. Investigating the mechanisms of papillary thyroid carcinoma using transcriptome analysis. Mol Med Rep 2017; 16:5954-5964. [PMID: 28849102 PMCID: PMC5865774 DOI: 10.3892/mmr.2017.7346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 06/12/2017] [Indexed: 01/29/2023] Open
Abstract
As the predominant thyroid cancer, papillary thyroid cancer (PTC) accounts for 75–85% of thyroid cancer cases. This research aimed to investigate transcriptomic changes and key genes in PTC. Using RNA-sequencing technology, the transcriptional profiles of 5 thyroid tumor tissues and 5 adjacent normal tissues were obtained. The single nucleotide polymorphisms (SNPs) were identified by SAMtools software and then annotated by ANNOVAR software. After differentially expressed genes (DEGs) were selected by edgR software, they were further investigated by enrichment analysis, protein domain analysis, and protein-protein interaction (PPI) network analysis. Additionally, the potential gene fusion events were predicted using FusionMap software. A total of 70,172 SNPs and 2,686 DEGs in the tumor tissues, as well as 83,869 SNPs in the normal tissues were identified. In the PPI network, fibronectin 1 (FN1; degree=31) and transforming growth factor β receptor 1 (TGFβR1; degree=22) had higher degrees. A total of 7 PPI pairs containing the non-synonymous risk SNP loci in the interaction domains were identified. Particularly, the interaction domains involved in the interactions of FN1 and 5 other proteins (such as FN1-tenascin C, TNC) had non-synonymous risk SNP loci. Furthermore, 11 and 4 gene fusion events were identified in all of the tumor tissues and normal tissues, respectively. Additionally, the NK2 homeobox 1-surfactant associated 3 (NKX2-1-SFTA3) gene fusion was identified in both tumor and normal tissues. These results indicated that TGFβR1 and the NKX2-1-SFTA3 gene fusion may be involved in PTC. Furthermore, FN1 and TNC containing the non-synonymous risk SNP loci might serve a role in PTC by interacting with each other.
Collapse
Affiliation(s)
- Jie Qiu
- Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Wenwei Zhang
- Radiology Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Qingsheng Xia
- Otolaryngology Head and Neck Surgery, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Fuxue Liu
- Otolaryngology Head and Neck Surgery, Shaoxing Municipal Hospital, Shaoxing, Zhejiang 312000, P.R. China
| | - Shuwei Zhao
- Otolaryngology Head and Neck Surgery, Shanghai Chang Zheng Hospital, Shanghai 200003, P.R. China
| | - Kailing Zhang
- Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Min Chen
- Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Chuanshan Zang
- Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Ruifeng Ge
- Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Dapeng Liang
- Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yan Sun
- Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
18
|
Dong T, Zhang Z, Zhou W, Zhou X, Geng C, Chang LK, Tian X, Liu S. WNT10A/β-catenin pathway in tumorigenesis of papillary thyroid carcinoma. Oncol Rep 2017; 38:1287-1294. [DOI: 10.3892/or.2017.5777] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/31/2017] [Indexed: 11/06/2022] Open
|
19
|
Kuman Tunçel Ö, Akdeniz F, Özbek SS, Kavukçu G, Ünal Kocabaş G. Thyroid Function and Ultrasonography Abnormalities in Lithium-Treated Bipolar Patients: A Cross-sectional Study with Healthy Controls. Noro Psikiyatr Ars 2017; 54:108-115. [PMID: 28680307 DOI: 10.5152/npa.2017.12457] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 03/30/2016] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Lithium has many effects on thyroid physiology. Although these side effects have been known for a long time, large sample studies of lithium-treated patients using ultrasonography are lacking. The aim of this study is to investigate the detailed thyroid morphologies, hormone levels, and antibodies of lithium-treated patients compared with healthy controls. METHODS This cross-sectional study involved 84 lithium-treated patients with bipolar disorder and 65 gender and age similar controls who had never been exposed to lithium. Subjects between 18 and 65 years of age were eligible for the study. Venous blood samples were acquired to determine the levels of free thyroxine (fT4), thyroid stimulating hormone (TSH), and thyroid antibodies; also, ultrasonographic examinations of the patients' thyroid glands were performed. RESULTS There were no statistically significant differences in smoking habits, known thyroid disease, thyroid medication use, familial thyroid disease, fT4 level, autoimmunity, thyroid nodule presence, or Hashimoto's thyroiditis between the lithium and control groups. The median TSH level and thyroid volume were significantly higher in the lithium group. In the lithium group, 14 cases (16.7%) of hypothyroidism, seven cases (8.3%) of subclinical hypothyroidism, and one case (1.2%) of subclinical hyperthyroidism were defined; in the control group, seven cases (10.8%) of hypothyroidism and two cases (3.1%) of subclinical hyperthyroidism were defined. Thyroid dysfunction, goiter, parenchymal abnormality, ultrasonographically defined thyroid abnormality, and thyroid disorder were found to be more prevalent in the lithium group. 90% of patients with goiter and 74.3% of patients with ultrasonographic pathologies were euthyroid. CONCLUSION It is important to note that 90% of the patients with goiter were euthyroid. This indicates that monitoring by blood test alone is insufficient. The prevalence rates of 47.6% for goiter and 83.3% for ultrasonographic pathology demonstrate that ultasonographic follow-up may be useful in lithium-treated patients. To determine whether routine ultrasonographic examination is necessary, large sample prospective studies are necessary due to the limitations of this study.
Collapse
Affiliation(s)
- Özlem Kuman Tunçel
- Department of Psychiatry, İzmir Katip Çelebi University Atatürk Training and Research Hospital, İzmir, Turkey
| | | | - Süha Süreyya Özbek
- Department of Radiology, Ege University School of Medicine, İzmir, Turkey
| | - Gülgün Kavukçu
- Department of Radiology, Ege University School of Medicine, İzmir, Turkey
| | - Gökçen Ünal Kocabaş
- Department of Endocrinology, İzmir Bozyaka Training and Research Hospital, İzmir, Turkey
| |
Collapse
|
20
|
Vega OA, Lucero CM, Araya HF, Jerez S, Tapia JC, Antonelli M, Salazar‐Onfray F, Las Heras F, Thaler R, Riester SM, Stein GS, van Wijnen AJ, Galindo MA. Wnt/β‐Catenin Signaling Activates Expression of the Bone‐Related Transcription Factor RUNX2 in Select Human Osteosarcoma Cell Types. J Cell Biochem 2017; 118:3662-3674. [DOI: 10.1002/jcb.26011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Oscar A. Vega
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of MedicineUniversity of ChileSantiago8380453Chile
- Millennium Institute on Immunology and ImmunotherapyFaculty of Medicine, University of ChileSantiago 8380453Chile
| | - Claudia M.J. Lucero
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of MedicineUniversity of ChileSantiago8380453Chile
- Millennium Institute on Immunology and ImmunotherapyFaculty of Medicine, University of ChileSantiago 8380453Chile
| | - Hector F. Araya
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of MedicineUniversity of ChileSantiago8380453Chile
- Millennium Institute on Immunology and ImmunotherapyFaculty of Medicine, University of ChileSantiago 8380453Chile
| | - Sofia Jerez
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of MedicineUniversity of ChileSantiago8380453Chile
- Millennium Institute on Immunology and ImmunotherapyFaculty of Medicine, University of ChileSantiago 8380453Chile
| | - Julio C. Tapia
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of MedicineUniversity of ChileSantiago8380453Chile
| | - Marcelo Antonelli
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of MedicineUniversity of ChileSantiago8380453Chile
| | - Flavio Salazar‐Onfray
- Millennium Institute on Immunology and ImmunotherapyFaculty of Medicine, University of ChileSantiago 8380453Chile
- Program of Immunology, Institute of Biomedical Sciences (ICBM)Faculty of Medicine, University of ChileSantiago 8380453Chile
| | - Facundo Las Heras
- Department of Anatomical PathologyUniversity of Chile Clinical HospitalSantiago 8380456Chile
- Department of PathologyClinica Las CondesSantiago 7591018Chile
| | - Roman Thaler
- Departments of Orthopedic Surgery and Biochemistry and Molecular BiologyMayo ClinicRochester 55905Minnesota
| | - Scott M. Riester
- Departments of Orthopedic Surgery and Biochemistry and Molecular BiologyMayo ClinicRochester 55905Minnesota
| | - Gary S. Stein
- Department of Biochemistry and University of Vermont Cancer CenterThe Robert Larner College of Medicine, University of VermontBurlington 05405Vermont
| | - Andre J. van Wijnen
- Departments of Orthopedic Surgery and Biochemistry and Molecular BiologyMayo ClinicRochester 55905Minnesota
| | - Mario A. Galindo
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of MedicineUniversity of ChileSantiago8380453Chile
- Millennium Institute on Immunology and ImmunotherapyFaculty of Medicine, University of ChileSantiago 8380453Chile
| |
Collapse
|
21
|
Ivanova K, Ananiev J, Aleksandrova E, Ignatova MM, Gulubova M. Expression of E-Cadherin/Beta-Catenin in Epithelial Carcinomas of the Thyroid Gland. Open Access Maced J Med Sci 2017; 5:155-159. [PMID: 28507620 PMCID: PMC5420766 DOI: 10.3889/oamjms.2017.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND The aberrant activation of Wnt signalling pathway may be a common denominator for the development of thyroid tumorigenesis. It was announced that the loss of E-cadherin rather than β-catenin mutation represents a crucial event in determining the degree of differentiation of thyroid carcinomas. AIM The aim of the study was to evaluate the expression of E-cadherin and β-catenin in the thyroid cancer tissue and to correlate these data with some histological and clinical parameters of the tumours. MATERIAL AND METHODS We investigated 112 patients, having thyroid tumours - papillary, follicular, anaplastic and oncocytic carcinomas immunohistochemically with antibodies against E-cadherin and β-catenin. Survival analyses were done. RESULTS E-cadherin expression was focally retained in the tumour cell membranes and the tumour cell cytoplasm of the papillary, follicular and oncocytic thyroid cancers, weather in anaplastic cancers it was almost lost (p = 0.0042, and p = 0.019, respectively, Fisher's Exact Test). The expression of β-catenin in tumour cytoplasm and membrane in papillary cancers was higher as compared to that in the other tumours (p = 0.111, and p = 0.0104, respectively). CONCLUSION Not surprisingly, the presence of aberrant expression of E-cadherin and β-catenin in thyroid cancer has been associated with better patients' prognosis and better differentiated tumour histology.
Collapse
Affiliation(s)
- Koni Ivanova
- Medical Faculty, Trakia University, General and Clinical Pathology, Stara Zagora, Bulgaria
| | - Julian Ananiev
- Medical Faculty, Trakia University, General and Clinical Pathology, Stara Zagora, Bulgaria
| | - Elina Aleksandrova
- Medical Faculty, Trakia University, General and Clinical Pathology, Stara Zagora, Bulgaria
| | | | - Maya Gulubova
- Medical Faculty, Trakia University, General and Clinical Pathology, Stara Zagora, Bulgaria
| |
Collapse
|
22
|
Zhao J, Wu C, Luo Y, Jiang Y. Short hairpin RNA directed against β-catenin inhibits prostate cancer growth and invasion in vitro. Mol Med Rep 2016; 15:819-824. [PMID: 28035382 DOI: 10.3892/mmr.2016.6067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 10/25/2016] [Indexed: 11/06/2022] Open
Abstract
β-catenin protein exhibits a dual function in epithelial cells, depending on its intracellular localization. At the plasma membrane, β‑catenin is an important constituent of adherens junctions. However, when the Wnt/β‑catenin signaling pathway is activated, β‑catenin translocates to the nucleus to promote specific gene expression. To investigate the functional activity and examine the role of the Wnt/β‑catenin signaling pathway in various human prostate cancer cells, indirect immunofluorescence was performed to detect the expression and distribution of β‑catenin in the following prostate cancer cell lines: PC‑3, LNCaP, C4‑2, IA8‑ARCaP and IF11‑ARCaP. A marked difference was observed in the expression and distribution of β‑catenin in different prostate cancer cell lines. β‑catenin was observed in the nuclei of IA8-ARCaP and IF11‑ARCaP cell lines, whereas it was present on the membrane of LNCaP and C4‑2 cell lines. There was a low expression of β‑catenin in the PC‑3 cell line. Furthermore, short hairpin RNA (shRNA) targeting human β‑catenin was constructed to investigate the effect of β‑catenin shRNA on the proliferation and invasive potency of prostate cancer cells. The IA8/β‑catenin(‑) cell line exhibited a reduced potency for invasion and proliferation compared with the IA8 and IA8‑shControl groups. The present study demonstrated that suppressing activity of Wnt/β‑catenin signal pathway via β‑catenin shRNA results in an inhibition of prostate cancer proliferation and invasion.
Collapse
Affiliation(s)
- Jiahui Zhao
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Chunting Wu
- Department of Respiratory and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Yong Luo
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Yongguang Jiang
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| |
Collapse
|
23
|
Dupain C, Ali HM, Mouhoub TA, Urbinati G, Massaad-Massade L. Induction of TTF-1 or PAX-8 expression on proliferation and tumorigenicity in thyroid carcinomas. Int J Oncol 2016; 49:1248-58. [DOI: 10.3892/ijo.2016.3617] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/04/2016] [Indexed: 11/06/2022] Open
|
24
|
Zhou L, Patel KN. The management of thyroid nodules and cancer in the molecular era. INTERNATIONAL JOURNAL OF ENDOCRINE ONCOLOGY 2015. [DOI: 10.2217/ije.15.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The incidence of thyroid cancer is increasing worldwide. Current standards in the diagnosis and management of thyroid cancer are limited by the uncertainty of fine-needle aspiration samples that are indeterminate in nature. Molecular markers have the potential to improve the accuracy of thyroid fine-needle aspiration and to aid the physician in giving a more accurate diagnosis and prognosis. This paper summarizes the various molecular markers currently available.
Collapse
Affiliation(s)
- Ling Zhou
- Division of Endocrine Surgery, Department of Surgery, Biochemistry & Otolaryngology, Thyroid Cancer Interdisciplinary Program, NYU Langone Medical Center, 530 First Avenue, Suite 6H, NY 10016, USA
| | - Kepal N Patel
- Division of Endocrine Surgery, Department of Surgery, Biochemistry & Otolaryngology, Thyroid Cancer Interdisciplinary Program, NYU Langone Medical Center, 530 First Avenue, Suite 6H, NY 10016, USA
| |
Collapse
|
25
|
Utrilla JC, Gordillo-Martínez F, Gómez-Pascual A, Fernández-Santos JM, Garnacho C, Vázquez-Román V, Morillo-Bernal J, García-Marín R, Jiménez-García A, Martín-Lacave I. Comparative study of the primary cilia in thyrocytes of adult mammals. J Anat 2015; 227:550-60. [PMID: 26228270 DOI: 10.1111/joa.12360] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2015] [Indexed: 11/29/2022] Open
Abstract
Since their discovery in different human tissues by Zimmermann in 1898, primary cilia have been found in the vast majority of cell types in vertebrates. Primary cilia are considered to be cellular antennae that occupy an ideal cellular location for the interpretation of information both from the environment and from other cells. To date, in mammalian thyroid gland, primary cilia have been found in the thyrocytes of humans and dogs (fetuses and adults) and in rat embryos. The present study investigated whether the existence of this organelle in follicular cells is a general event in the postnatal thyroid gland of different mammals, using both immunolabeling by immunofluorescence and electron microscopy. Furthermore, we aimed to analyse the presence of primary cilia in various thyroid cell lines. According to our results, primary cilia are present in the adult thyroid gland of most mammal species we studied (human, pig, guinea pig and rabbit), usually as a single copy per follicular cell. Strikingly, they were not found in rat or mouse thyroid tissues. Similarly, cilia were also observed in all human thyroid cell lines tested, both normal and neoplastic follicular cells, but not in cultured thyrocytes of rat origin. We hypothesize that primary cilia could be involved in the regulation of normal thyroid function through specific signaling pathways. Nevertheless, further studies are needed to shed light on the permanence of these organelles in the thyroid gland of most species during postnatal life.
Collapse
Affiliation(s)
- J C Utrilla
- Department of Normal and Pathological Cytology and Histology, University of Seville, School of Medicine, Seville, Spain
| | - F Gordillo-Martínez
- Department of Normal and Pathological Cytology and Histology, University of Seville, School of Medicine, Seville, Spain
| | - A Gómez-Pascual
- Department of Normal and Pathological Cytology and Histology, University of Seville, School of Medicine, Seville, Spain
| | - J M Fernández-Santos
- Department of Normal and Pathological Cytology and Histology, University of Seville, School of Medicine, Seville, Spain
| | - C Garnacho
- Department of Normal and Pathological Cytology and Histology, University of Seville, School of Medicine, Seville, Spain
| | - V Vázquez-Román
- Department of Normal and Pathological Cytology and Histology, University of Seville, School of Medicine, Seville, Spain
| | - J Morillo-Bernal
- Department of Normal and Pathological Cytology and Histology, University of Seville, School of Medicine, Seville, Spain
| | - R García-Marín
- Department of Normal and Pathological Cytology and Histology, University of Seville, School of Medicine, Seville, Spain
| | - A Jiménez-García
- Endocrine Surgery Unit of 'Virgen Macarena' University Hospital, Seville, Spain
| | - I Martín-Lacave
- Department of Normal and Pathological Cytology and Histology, University of Seville, School of Medicine, Seville, Spain
| |
Collapse
|
26
|
Bełdowski M. Assessment Of Plasma B-Catenin Concentration As Biomarker Of Thyroid Cancer. POLISH JOURNAL OF SURGERY 2015; 87:340-5. [PMID: 26351788 DOI: 10.1515/pjs-2015-0067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Indexed: 11/15/2022]
Abstract
UNLABELLED New diagnostic methods for thyroid diseases are still being searched for. Immunohistochemical diagnosis is expanded by the introduction of new biomarkers including ß-catenin (B-Cat). Associations are indicated between the cellular expression of this biomarker and tumor stage, nodal metastases and the degree of tumor cell differentiation. Reports are scarce regarding the plasma level of this biomarker in malignant neoplastic diseases. The aim of the study was to analyze the plasma B-Cat concentration and the possibility of it use in the diagnostics of patients with nodular goiter and papillary thyroid carcinoma. MATERIAL AND METHODS Plasma B-Cat concentration was determined in 64 patients with goiter and 15 healthy volunteers. The final histopathological examination revealed 41 cases of papillary thyroid carcinoma (PTC) and 13 cases of nodular goiter (NG). RESULTS A significant increase in B-Cat (p <0.05) in both groups compared to the control group. No differences in the concentrations of biomarker was demonstrated between the PTC and NG groups. After determining the AUC for the tested biomarker, the B-Cat ratio of the area value 0.721 was the strong diagnostic test. CONCLUSIONS Changes in the plasma B-Cat concentration can be the biomarker of thyroid cancer but it cannot be used for the detection of papillary thyroid carcinoma because of concomitant tumor-like lesions in the thyroid gland.
Collapse
|
27
|
Nie X, Arend LJ. Novel roles of Pkd2 in male reproductive system development. Differentiation 2014; 87:161-71. [PMID: 24951251 DOI: 10.1016/j.diff.2014.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/28/2014] [Accepted: 04/30/2014] [Indexed: 01/26/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common inherited genetic diseases, caused by mutations in PKD1 and/ or PKD2. Infertility and reproductive tract abnormalities in male ADPKD patients are very common and have higher incidence than in the general population. In this work, we reveal novel roles of Pkd2 for male reproductive system development. Disruption of Pkd2 caused dilation of mesonephric tubules/efferent ducts, failure of epididymal coiling, and defective testicular development. Deletion of Pkd2 in the epithelia alone was sufficient to cause reproductive tract defects seen in Pkd2(-/-) mice, suggesting that epithelial Pkd2 plays a pivotal role for development and maintenance of the male reproductive tract. In the testis, Pkd2 also plays a role in interstitial tissue and testicular cord development. In-depth analysis of epithelial-specific knockout mice revealed that Pkd2 is critical to maintain cellular phenotype and developmental signaling in the male reproductive system. Taken together, our data for the first time reveal novel roles for Pkd2 in male reproductive system development and provide new insights in male reproductive system abnormality and infertility in ADPKD patients.
Collapse
Affiliation(s)
- Xuguang Nie
- Department of Pathology, Johns Hopkins University, Ross 632 E, 720 Rutland Ave, Baltimore, MD 21205, USA.
| | - Lois J Arend
- Department of Pathology, Johns Hopkins University, Ross 632 E, 720 Rutland Ave, Baltimore, MD 21205, USA.
| |
Collapse
|
28
|
Cantile M, Scognamiglio G, La Sala L, La Mantia E, Scaramuzza V, Valentino E, Tatangelo F, Losito S, Pezzullo L, Chiofalo MG, Fulciniti F, Franco R, Botti G. Aberrant expression of posterior HOX genes in well differentiated histotypes of thyroid cancers. Int J Mol Sci 2013; 14:21727-40. [PMID: 24189220 PMCID: PMC3856031 DOI: 10.3390/ijms141121727] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 10/14/2013] [Accepted: 10/17/2013] [Indexed: 12/23/2022] Open
Abstract
Molecular etiology of thyroid cancers has been widely studied, and several molecular alterations have been identified mainly associated with follicular and papillary histotypes. However, the molecular bases of the complex pathogenesis of thyroid carcinomas remain poorly understood. HOX genes regulate normal embryonic development, cell differentiation and other critical processes in eukaryotic cell life. Several studies have shown that HOX genes play a role in neoplastic transformation of several human tissues. In particular, the genes belonging to HOX paralogous group 13 seem to hold a relevant role in both tumor development and progression. We have identified a significant prognostic role of HOX D13 in pancreatic cancer and we have recently showed the strong and progressive over-expression of HOX C13 in melanoma metastases and deregulation of HOX B13 expression in bladder cancers. In this study we have investigated, by immunohistochemisty and quantitative Real Time PCR, the HOX paralogous group 13 genes/proteins expression in thyroid cancer evolution and progression, also evaluating its ability to discriminate between main histotypes. Our results showed an aberrant expression, both at gene and protein level, of all members belonging to paralogous group 13 (HOX A13, HOX B13, HOX C13 and HOX D13) in adenoma, papillary and follicular thyroid cancers samples. The data suggest a potential role of HOX paralogous group 13 genes in pathogenesis and differential diagnosis of thyroid cancers.
Collapse
Affiliation(s)
- Monica Cantile
- Pathology Unit, National Cancer Institute “G. Pascale” Foundation, via Mariano Semmola 80131, Napoli, Italy; E-Mails: (M.C.); (G.S.); (L.L.S.); (E.L.M.); (V.S.); (E.V.); (F.T.); (S.L.); (F.F.); (G.B.)
| | - Giosuè Scognamiglio
- Pathology Unit, National Cancer Institute “G. Pascale” Foundation, via Mariano Semmola 80131, Napoli, Italy; E-Mails: (M.C.); (G.S.); (L.L.S.); (E.L.M.); (V.S.); (E.V.); (F.T.); (S.L.); (F.F.); (G.B.)
| | - Lucia La Sala
- Pathology Unit, National Cancer Institute “G. Pascale” Foundation, via Mariano Semmola 80131, Napoli, Italy; E-Mails: (M.C.); (G.S.); (L.L.S.); (E.L.M.); (V.S.); (E.V.); (F.T.); (S.L.); (F.F.); (G.B.)
| | - Elvira La Mantia
- Pathology Unit, National Cancer Institute “G. Pascale” Foundation, via Mariano Semmola 80131, Napoli, Italy; E-Mails: (M.C.); (G.S.); (L.L.S.); (E.L.M.); (V.S.); (E.V.); (F.T.); (S.L.); (F.F.); (G.B.)
| | - Veronica Scaramuzza
- Pathology Unit, National Cancer Institute “G. Pascale” Foundation, via Mariano Semmola 80131, Napoli, Italy; E-Mails: (M.C.); (G.S.); (L.L.S.); (E.L.M.); (V.S.); (E.V.); (F.T.); (S.L.); (F.F.); (G.B.)
| | - Elena Valentino
- Pathology Unit, National Cancer Institute “G. Pascale” Foundation, via Mariano Semmola 80131, Napoli, Italy; E-Mails: (M.C.); (G.S.); (L.L.S.); (E.L.M.); (V.S.); (E.V.); (F.T.); (S.L.); (F.F.); (G.B.)
| | - Fabiana Tatangelo
- Pathology Unit, National Cancer Institute “G. Pascale” Foundation, via Mariano Semmola 80131, Napoli, Italy; E-Mails: (M.C.); (G.S.); (L.L.S.); (E.L.M.); (V.S.); (E.V.); (F.T.); (S.L.); (F.F.); (G.B.)
| | - Simona Losito
- Pathology Unit, National Cancer Institute “G. Pascale” Foundation, via Mariano Semmola 80131, Napoli, Italy; E-Mails: (M.C.); (G.S.); (L.L.S.); (E.L.M.); (V.S.); (E.V.); (F.T.); (S.L.); (F.F.); (G.B.)
| | - Luciano Pezzullo
- Thyroid and Parathyroid Surgery Unit, National Cancer Institute “G. Pascale” Foundation, via Mariano Semmola 80131, Napoli, Italy; E-Mails: (L.P.); (M.G.C.)
| | - Maria Grazia Chiofalo
- Thyroid and Parathyroid Surgery Unit, National Cancer Institute “G. Pascale” Foundation, via Mariano Semmola 80131, Napoli, Italy; E-Mails: (L.P.); (M.G.C.)
| | - Franco Fulciniti
- Pathology Unit, National Cancer Institute “G. Pascale” Foundation, via Mariano Semmola 80131, Napoli, Italy; E-Mails: (M.C.); (G.S.); (L.L.S.); (E.L.M.); (V.S.); (E.V.); (F.T.); (S.L.); (F.F.); (G.B.)
| | - Renato Franco
- Pathology Unit, National Cancer Institute “G. Pascale” Foundation, via Mariano Semmola 80131, Napoli, Italy; E-Mails: (M.C.); (G.S.); (L.L.S.); (E.L.M.); (V.S.); (E.V.); (F.T.); (S.L.); (F.F.); (G.B.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-081-5903-471; Fax: +39-081-5903-718
| | - Gerardo Botti
- Pathology Unit, National Cancer Institute “G. Pascale” Foundation, via Mariano Semmola 80131, Napoli, Italy; E-Mails: (M.C.); (G.S.); (L.L.S.); (E.L.M.); (V.S.); (E.V.); (F.T.); (S.L.); (F.F.); (G.B.)
| |
Collapse
|
29
|
Alvarez JI, Katayama T, Prat A. Glial influence on the blood brain barrier. Glia 2013; 61:1939-58. [PMID: 24123158 PMCID: PMC4068281 DOI: 10.1002/glia.22575] [Citation(s) in RCA: 407] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/13/2013] [Accepted: 08/19/2013] [Indexed: 12/14/2022]
Abstract
The Blood Brain Barrier (BBB) is a specialized vascular structure tightly regulating central nervous system (CNS) homeostasis. Endothelial cells are the central component of the BBB and control of their barrier phenotype resides on astrocytes and pericytes. Interactions between these cells and the endothelium promote and maintain many of the physiological and metabolic characteristics that are unique to the BBB. In this review we describe recent findings related to the involvement of astroglial cells, including radial glial cells, in the induction of barrier properties during embryogenesis and adulthood. In addition, we describe changes that occur in astrocytes and endothelial cells during injury and inflammation with a particular emphasis on alterations of the BBB phenotype. GLIA 2013;61:1939–1958
Collapse
Affiliation(s)
- Jorge Ivan Alvarez
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | | | | |
Collapse
|
30
|
Li C, Li A, Xing Y, Li M, Chan B, Ouyang R, Taketo MM, Kucherlapati R, Borok Z, Minoo P. Apc deficiency alters pulmonary epithelial cell fate and inhibits Nkx2.1 via triggering TGF-beta signaling. Dev Biol 2013; 378:13-24. [PMID: 23562608 DOI: 10.1016/j.ydbio.2013.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/04/2013] [Accepted: 03/25/2013] [Indexed: 12/21/2022]
Abstract
Wnt signaling is critical for cell fate specification and cell differentiation in many organs, but its function in pulmonary neuroendocrine cell (PNEC) differentiation has not been fully addressed. In this study, we examined the role of canonical Wnt signaling by targeting the gene for Adenomatous Polyposis Coli (Apc), which controls Wnt signaling activity via mediating phosphorylation of beta-catenin (Ctnnb). Targeting the Apc gene in lung epithelial progenitors by Nkx2.1-cre stabilized Ctnnb and activated canonical Wnt signaling. Apc deficiency altered lung epithelial cell fate by inhibiting Clara and ciliated cell differentiation and activating Uchl1, a marker of neuroendocrine cells. Similar to PNEC in normal lung, Uchl1(positive) cells were innervated. In mice with targeted inactivation of Ctnnb by Nkx2.1-cre, PNEC differentiation was not interrupted. These indicate that, after lung primordium formation, Wnt signaling is not essential for PNEC differentiation; however, its over-activation promotes PNEC features. Interestingly, Nkx2.1 was extinguished in Apc deficient epithelial progenitors before activation of Uchl1. Examination of Nkx2.1 null lungs suggested that early deletion of Nkx2.1 inhibits PNEC differentiation, while late repression does not. Nkx2.1 was specifically inhibited in Apc deficient lungs but not in Ctnnb gain-of-function lungs indicating a functional difference between Apc deletion and Ctnnb stabilization, both of which activate Wnt signaling. Further analysis revealed that Apc deficiency led to increased TGF-beta signaling, which inhibited Nkx2.1 in cultured lung endodermal explants. In contrast, TGF-beta activity was not increased in Ctnnb gain-of-function lungs. Therefore, our studies revealed an important mechanism involving Apc and TGF-beta signaling in regulating the key transcriptional factor, Nkx2.1, for lung epithelial progenitor cell fate determination.
Collapse
Affiliation(s)
- Changgong Li
- Department of Pediatrics, USC Keck School of Medicine & Childrens Hospital Los Angeles, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Cho SW, Lee EJ, Kim H, Kim SH, Ahn HY, Kim YA, Yi KH, Park DJ, Shin CS, Ahn SH, Cho BY, Park YJ. Dickkopf-1 inhibits thyroid cancer cell survival and migration through regulation of β-catenin/E-cadherin signaling. Mol Cell Endocrinol 2013; 366:90-8. [PMID: 23261982 DOI: 10.1016/j.mce.2012.12.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 11/21/2012] [Accepted: 12/10/2012] [Indexed: 01/15/2023]
Abstract
Wnt/β-catenin signaling plays a role in tumorigenesis of human papillary thyroid cancer (PTC). Dickkopf-1 (Dkk-1) is an inhibitor of Wnt/β-catenin signaling. We investigated the therapeutic potential of Dkk-1 in human PTC cell lines, SNU-790, B-CPAP, and BHP10-3. Dkk-1 reversed the aberrant expression of β-catenin from nucleus to membrane and inhibited basal levels of TCF/LEF-dependent transcriptional activities. Furthermore, Dkk-1 inhibited cell viability in a dose-dependent manner and adenoviral transduction of constitutively active β-catenin blocked these effects, thus suggesting that the Dkk-1 anti-tumoral effect is mediated by Wnt/β-catenin signaling. Bromodeoxyuridine assay showed minimal effects of Dkk-1 on cell proliferation. Flow cytometric analysis with Annexin V staining showed marked induction of cell apoptosis by Dkk-1 treatment. Dkk-1 also restored the loss of membranous E-cadherin expression with consequent inhibition of cell migration and invasion. In conclusion, Dkk-1 inhibited the survival and migration of human PTC cells by regulating Wnt/β-catenin signaling and E-cadherin expression.
Collapse
Affiliation(s)
- Sun Wook Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Rankin SA, Gallas AL, Neto A, Gómez-Skarmeta JL, Zorn AM. Suppression of Bmp4 signaling by the zinc-finger repressors Osr1 and Osr2 is required for Wnt/β-catenin-mediated lung specification in Xenopus. Development 2012; 139:3010-20. [PMID: 22791896 DOI: 10.1242/dev.078220] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Embryonic development of the respiratory system is regulated by a series of mesenchymal-epithelial interactions that are only partially understood. Mesenchymal FGF and Wnt2/Wnt2b signaling are implicated in specification of mammalian pulmonary progenitors from the ventral foregut endoderm, but their epistatic relationship and downstream targets are largely unknown. In addition, how wnt2 and wnt2b are regulated in the developing foregut mesenchyme is unknown. We show that the Odd-skipped-related (Osr) zinc-finger transcriptional repressors Osr1 and Osr2 are redundantly required for Xenopus lung specification in a molecular pathway linking foregut pattering by FGFs to Wnt-mediated lung specification and RA-regulated lung bud growth. FGF and RA signals are required for robust osr1 and osr2 expression in the foregut endoderm and surrounding lateral plate mesoderm (lpm) prior to respiratory specification. Depletion of both Osr1 and Osr2 (Osr1/Osr2) results in agenesis of the lungs, trachea and esophagus. The foregut lpm of Osr1/Osr2-depleted embryos fails to express wnt2, wnt2b and raldh2, and consequently Nkx2.1(+) progenitors are not specified. Our data suggest that Osr1/Osr2 normally repress bmp4 expression in the lpm, and that BMP signaling negatively regulates the wnt2b domain. These results significantly advance our understanding of early lung development and may impact strategies to differentiate respiratory tissue from stem cells.
Collapse
Affiliation(s)
- Scott A Rankin
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
33
|
Ultrastructural studies of cilia formation during thyroid gland differentiation in grass snake embryos. Micron 2012; 44:228-37. [PMID: 22819992 DOI: 10.1016/j.micron.2012.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/23/2012] [Accepted: 06/24/2012] [Indexed: 12/17/2022]
Abstract
The process of ciliogenesis that accompanies the differentiation of the thyroid gland in grass snake Natrix natrix L. embryos was studied ultrastructurally. Based on this study, it can be concluded that the ciliogenesis occurred in two waves and that new centrioles duplicated via centriolar pathways. The first wave of ciliogenesis started in the post-mitotic thyrocytes before their polarisation. It ended approximately halfway through the developmental period. The second wave of ciliogenesis took place after the polarization of thyrocytes and before the resting phase of the embryonic thyroid. This wave of ciliogenesis stopped shortly before hatching when fully differentiated thyrocytes restarted their activity. During the first half of thyroid differentiation, the cilia were formed "intracellularly" but during the second half, they differentiated "extracellularly" In the differentiating thyrocytes one cilium per cell was found; however, it could not be excluded that more than one cilium per cell may be formed. These cilia lacked central fibres and therefore they had a 9+0 formula that suggested that they were immotile.
Collapse
|