1
|
Heuss C, Rothhaar P, Burm R, Lee JY, Ralfs P, Haselmann U, Ströh LJ, Colasanti O, Tran CS, Schäfer N, Schnitzler P, Merle U, Bartenschlager R, Patel AH, Graw F, Krey T, Laketa V, Meuleman P, Lohmann V. A Hepatitis C virus genotype 1b post-transplant isolate with high replication efficiency in cell culture and its adaptation to infectious virus production in vitro and in vivo. PLoS Pathog 2022; 18:e1010472. [PMID: 35763545 PMCID: PMC9273080 DOI: 10.1371/journal.ppat.1010472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/11/2022] [Accepted: 05/29/2022] [Indexed: 12/23/2022] Open
Abstract
Hepatitis C virus (HCV) is highly diverse and grouped into eight genotypes (gts). Infectious cell culture models are limited to a few subtypes and isolates, hampering the development of prophylactic vaccines. A consensus gt1b genome (termed GLT1) was generated from an HCV infected liver-transplanted patient. GLT1 replicated to an outstanding efficiency in Huh7 cells upon SEC14L2 expression, by use of replication enhancing mutations or with a previously developed inhibitor-based regimen. RNA replication levels almost reached JFH-1, but full-length genomes failed to produce detectable amounts of infectious virus. Long-term passaging led to the adaptation of a genome carrying 21 mutations and concomitant production of high levels of transmissible infectivity (GLT1cc). During the adaptation, GLT1 spread in the culture even in absence of detectable amounts of free virus, likely due to cell-to-cell transmission, which appeared to substantially contribute to spreading of other isolates as well. Mechanistically, genome replication and particle production efficiency were enhanced by adaptation, while cell entry competence of HCV pseudoparticles was not affected. Furthermore, GLT1cc retained the ability to replicate in human liver chimeric mice, which was critically dependent on a mutation in domain 3 of nonstructural protein NS5A. Over the course of infection, only one mutation in the surface glycoprotein E2 consistently reverted to wildtype, facilitating assembly in cell culture but potentially affecting CD81 interaction in vivo. Overall, GLT1cc is an efficient gt1b infectious cell culture model, paving the road to a rationale-based establishment of new infectious HCV isolates and represents an important novel tool for the development of prophylactic HCV vaccines.
Collapse
Affiliation(s)
- Christian Heuss
- Department of Infectious Diseases, Molecular Virology, Section virus-host interactions, Heidelberg University, Heidelberg, Germany
| | - Paul Rothhaar
- Department of Infectious Diseases, Molecular Virology, Section virus-host interactions, Heidelberg University, Heidelberg, Germany
| | - Rani Burm
- Laboratory of Liver Infectious Diseases, Ghent University, Gent, Belgium
| | - Ji-Young Lee
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Philipp Ralfs
- Department of Infectious Diseases, Molecular Virology, Section virus-host interactions, Heidelberg University, Heidelberg, Germany
| | - Uta Haselmann
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Luisa J. Ströh
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Ombretta Colasanti
- Department of Infectious Diseases, Molecular Virology, Section virus-host interactions, Heidelberg University, Heidelberg, Germany
| | - Cong Si Tran
- Department of Infectious Diseases, Molecular Virology, Section virus-host interactions, Heidelberg University, Heidelberg, Germany
| | - Noemi Schäfer
- Department of Infectious Diseases, Molecular Virology, Section virus-host interactions, Heidelberg University, Heidelberg, Germany
| | - Paul Schnitzler
- Department of Infectious Diseases Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Uta Merle
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research, partner site Heidelberg, Heidelberg, Germany
- Division Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Arvind H. Patel
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Frederik Graw
- BioQuant – Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | - Thomas Krey
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Lübeck, Lübeck, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Vibor Laketa
- Department of Infectious Diseases Virology, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Infection Research, partner site Heidelberg, Heidelberg, Germany
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Ghent University, Gent, Belgium
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, Section virus-host interactions, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research, partner site Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
2
|
Chen Q, Coto-Llerena M, Suslov A, Teixeira RD, Fofana I, Nuciforo S, Hofmann M, Thimme R, Hensel N, Lohmann V, Ng CKY, Rosenberger G, Wieland S, Heim MH. Interferon lambda 4 impairs hepatitis C viral antigen presentation and attenuates T cell responses. Nat Commun 2021; 12:4882. [PMID: 34385466 PMCID: PMC8360984 DOI: 10.1038/s41467-021-25218-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/26/2021] [Indexed: 12/15/2022] Open
Abstract
Genetic variants of the interferon lambda (IFNL) gene locus are strongly associated with spontaneous and IFN treatment-induced clearance of hepatitis C virus (HCV) infections. Individuals with the ancestral IFNL4-dG allele are not able to clear HCV in the acute phase and have more than a 90% probability to develop chronic hepatitis C (CHC). Paradoxically, the IFNL4-dG allele encodes a fully functional IFNλ4 protein with antiviral activity against HCV. Here we describe an effect of IFNλ4 on HCV antigen presentation. Only minor amounts of IFNλ4 are secreted, because the protein is largely retained in the endoplasmic reticulum (ER) where it induces ER stress. Stressed cells are significantly weaker activators of HCV specific CD8+ T cells than unstressed cells. This is not due to reduced MHC I surface presentation or extracellular IFNλ4 effects, since T cell responses are restored by exogenous loading of MHC with HCV antigens. Rather, IFNλ4 induced ER stress impairs HCV antigen processing and/or loading onto the MHC I complex. Our results provide a potential explanation for the IFNλ4-HCV paradox.
Collapse
Affiliation(s)
- Qian Chen
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Aleksei Suslov
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Isabel Fofana
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Sandro Nuciforo
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Maike Hofmann
- Department of Medicine II, University Hospital Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, University Hospital Freiburg, Freiburg, Germany
| | - Nina Hensel
- Department of Medicine II, University Hospital Freiburg, Freiburg, Germany
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, Centre for Integrative Infectious Disease Research (CIID), University of Heidelberg, Heidelberg, Germany
| | - Charlotte K Y Ng
- Department for BioMedical Research (DBMR), Oncogenomics Lab, University of Bern, Bern, Switzerland
| | | | - Stefan Wieland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Markus H Heim
- Department of Biomedicine, University of Basel, Basel, Switzerland. .,Clarunis, University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland.
| |
Collapse
|
3
|
Ramirez S, Bukh J. Current status and future development of infectious cell-culture models for the major genotypes of hepatitis C virus: Essential tools in testing of antivirals and emerging vaccine strategies. Antiviral Res 2018; 158:264-287. [PMID: 30059723 DOI: 10.1016/j.antiviral.2018.07.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 02/08/2023]
Abstract
In this review, we summarize the relevant scientific advances that led to the development of infectious cell culture systems for hepatitis C virus (HCV) with the corresponding challenges and successes. We also provide an overview of how these systems have contributed to the study of antiviral compounds and their relevance for the development of a much-needed vaccine against this major human pathogen. An efficient infectious system to study HCV in vitro, using human hepatoma derived cells, has only been available since 2005, and was limited to a single isolate, named JFH1, until 2012. Successive developments have been slow and cumbersome, as each available system has been the result of a systematic effort for discovering adaptive mutations conferring culture replication and propagation to patient consensus clones that are inherently non-viable in vitro. High genetic heterogeneity is a paramount characteristic of this virus, and as such, it should preferably be reflected in basic, translational, and clinical studies. The limited number of efficient viral culture systems, in the context of the vast genetic diversity of HCV, continues to represent a major hindrance for the study of this virus, posing a significant barrier towards studies of antivirals (particularly of resistance) and for advancing vaccine development. Intensive research efforts, driven by isolate-specific culture adaptation, have only led to efficient full-length infectious culture systems for a few strains of HCV genotypes 1, 2, 3, and 6. Hence research aimed at identifying novel strategies that will permit universal culture of HCV will be needed to further our understanding of this unique virus causing 400 thousand deaths annually.
Collapse
Affiliation(s)
- Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
4
|
Blumer T, Coto-Llerena M, Duong FHT, Heim MH. SOCS1 is an inducible negative regulator of interferon λ (IFN-λ)-induced gene expression in vivo. J Biol Chem 2017; 292:17928-17938. [PMID: 28900038 PMCID: PMC5663890 DOI: 10.1074/jbc.m117.788877] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/04/2017] [Indexed: 01/08/2023] Open
Abstract
Type I (α and β) and type III (λ) IFNs are induced upon viral infection through host sensory pathways that activate IFN regulatory factors (IRFs) and nuclear factor κB. Secreted IFNs induce autocrine and paracrine signaling through the JAK-STAT pathway, leading to the transcriptional induction of hundreds of IFN-stimulated genes, among them sensory pathway components such as cGAS, STING, RIG-I, MDA5, and the transcription factor IRF7, which enhance the induction of IFN-αs and IFN-λs. This positive feedback loop enables a very rapid and strong host response that, at some point, has to be controlled by negative regulators to maintain tissue homeostasis. Type I IFN signaling is controlled by the inducible negative regulators suppressor of cytokine signaling 1 (SOCS1), SOCS3, and ubiquitin-specific peptidase 18 (USP18). The physiological role of these proteins in IFN-γ signaling has not been clarified. Here we used knockout cell lines and mice to show that IFN-λ signaling is regulated by SOCS1 but not by SOCS3 or USP18. These differences were the basis for the distinct kinetic properties of type I and III IFNs. We found that IFN-α signaling is transient and becomes refractory after hours, whereas IFN-λ provides a long-lasting IFN-stimulated gene induction.
Collapse
Affiliation(s)
- Tanja Blumer
- From the Department of Biomedicine, University of Basel, 4031 Basel, Switzerland and
- the University Hospital Basel, 4031 Basel, Switzerland
| | - Mairene Coto-Llerena
- From the Department of Biomedicine, University of Basel, 4031 Basel, Switzerland and
- the University Hospital Basel, 4031 Basel, Switzerland
| | - Francois H T Duong
- From the Department of Biomedicine, University of Basel, 4031 Basel, Switzerland and
- the University Hospital Basel, 4031 Basel, Switzerland
| | - Markus H Heim
- From the Department of Biomedicine, University of Basel, 4031 Basel, Switzerland and
- the University Hospital Basel, 4031 Basel, Switzerland
| |
Collapse
|
5
|
Coto-Llerena M, Koutsoudakis G, Boix L, López-Oliva JM, Caro-Pérez N, Fernández-Carrillo C, González P, Gastaminza P, Bruix J, Forns X, Pérez-Del-Pulgar S. Permissiveness of human hepatocellular carcinoma cell lines for hepatitis C virus entry and replication. Virus Res 2017; 240:35-46. [PMID: 28751105 DOI: 10.1016/j.virusres.2017.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 12/28/2022]
Abstract
Hepatitis C virus (HCV) is a globally prevalent pathogen and is associated with high death rates and morbidity. Since its discovery in 1989, HCV research has been impeded by the lack of a robust infectious cell culture system and thus in vitro studies on diverse genetic backgrounds are hampered because of the limited number of hepatoma cell lines which are able to support different aspects of the HCV life cycle. In the current study, we sought to expand the limited number of permissive cells capable of supporting the diverse phases of the HCV life cycle. Initially, we screened a panel of new hepatoma-derived cell lines, designated BCLC-1, -2, -3, -4, -5, -6, -9 and -10 cells, for their ability to express essential HCV receptors and subsequently to support HCV entry by using the well-characterized HCV pseudoparticle system (HCVpp). Apart from BCLC-9, all BCLC cell lines were permissive for HCVpp infection. Next, BCLC cells were subjected to short- and long-term HCV RNA replication studies using HCV subgenomic replicons. Interestingly, only BCLC-1, -5 and -9 cells, supported short-term HCV RNA replication, but the latter were excluded from further studies since they were refractory for HCV entry. BCLC-1, -5 were able to support long-term HCV replication too; yet BCLC-5 cells supported the highest long-term HCV RNA replication levels. Furthermore, cured BCLC-5 clones from HCV subgenomic replicon, showed increased permissiveness for HCV RNA replication. Strikingly, we were unable to detect endogenous BCLC-5 miR122 expression - an important HCV host factor- and as expected, the exogenous expression of miR122 in BCLC-5 cells increased their permissiveness for HCV RNA replication. However, this cell line was unable to produce HCV infectious particles despite ectopic expression of apolipoprotein E, which in other hepatoma cell lines has been shown to be sufficient to enable the HCV secretion process, suggesting a lack of other host cellular factor(s) and/or the presence of inhibitory factor(s). In conclusion, the establishment of these new permissive cell lines for HCV entry and replication, which possess a different genetic background compared to the well-established models, expands the current repertoire of hepatoma cell lines susceptible to the study of the HCV life cycle and also will aid to further elucidate the cellular determinants that modulate HCV replication, assembly and egress.
Collapse
Affiliation(s)
| | | | - Loreto Boix
- Barcelona Clínic Liver Cancer (BCLC) Group, Hospital Clínic, IDIBAPS, CIBERehd, Spain
| | | | | | | | | | - Pablo Gastaminza
- Centro Nacional De Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus Cantoblanco, Madrid, Spain
| | - Jordi Bruix
- Barcelona Clínic Liver Cancer (BCLC) Group, Hospital Clínic, IDIBAPS, CIBERehd, Spain
| | - Xavier Forns
- Liver Unit, Hospital Clínic, IDIBAPS, CIBERehd, Barcelona, Spain
| | | |
Collapse
|
6
|
Koutsoudakis G, Romero-Brey I, Berger C, Pérez-Vilaró G, Monteiro Perin P, Vondran FWR, Kalesse M, Harmrolfs K, Müller R, Martinez JP, Pietschmann T, Bartenschlager R, Brönstrup M, Meyerhans A, Díez J. Soraphen A: A broad-spectrum antiviral natural product with potent anti-hepatitis C virus activity. J Hepatol 2015; 63:813-21. [PMID: 26070407 DOI: 10.1016/j.jhep.2015.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/28/2015] [Accepted: 06/01/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Soraphen A (SorA) is a myxobacterial metabolite that inhibits the acetyl-CoA carboxylase, a key enzyme in lipid biosynthesis. We have previously identified SorA to efficiently inhibit the human immunodeficiency virus (HIV). The aim of the present study was to evaluate the capacity of SorA and analogues to inhibit hepatitis C virus (HCV) infection. METHODS SorA inhibition capacity was evaluated in vitro using cell culture derived HCV, HCV pseudoparticles and subgenomic replicons. Infection studies were performed in the hepatoma cell line HuH7/Scr and in primary human hepatocytes. The effects of SorA on membranous web formation were analysed by electron microscopy. RESULTS SorA potently inhibits HCV infection at nanomolar concentrations. Obtained EC50 values were 0.70 nM with a HCV reporter genome, 2.30 nM with wild-type HCV and 2.52 nM with subgenomic HCV replicons. SorA neither inhibited HCV RNA translation nor HCV entry, as demonstrated with subgenomic HCV replicons and HCV pseudoparticles, suggesting an effect on HCV replication. Consistent with this, evidence was obtained that SorA interferes with formation of the membranous web, the site of HCV replication. Finally, a series of natural and synthetic SorA analogues helped to establish a first structure-activity relationship. CONCLUSIONS SorA has a very potent anti-HCV activity. Since it also interferes with the membranous web formation, SorA is an excellent tool to unravel the mechanism of HCV replication.
Collapse
Affiliation(s)
- George Koutsoudakis
- Molecular Virology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Inés Romero-Brey
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Carola Berger
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Gemma Pérez-Vilaró
- Molecular Virology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Paula Monteiro Perin
- TWINCORE - Institute of Experimental Virology, Centre for Experimental and Clinical Infection Research, Hannover, Germany; German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Germany
| | - Florian Wolfgang Rudolf Vondran
- German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Germany; ReMediES, Department of General, Visceral and Transplantation Surgery, German Centre for Infection Research Hannover Medical School, Hannover, Germany
| | - Markus Kalesse
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Kirsten Harmrolfs
- Helmholtz Institut für Pharmazeutische Forschung Saarland, Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz Institut für Pharmazeutische Forschung Saarland, Saarbrücken, Germany
| | - Javier P Martinez
- Infection Biology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Thomas Pietschmann
- TWINCORE - Institute of Experimental Virology, Centre for Experimental and Clinical Infection Research, Hannover, Germany; German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; German Centre for Infection Research (DZIF), partner site Heidelberg, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andreas Meyerhans
- Infection Biology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Juana Díez
- Molecular Virology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
7
|
Arai M, Tokunaga Y, Takagi A, Tobita Y, Hirata Y, Ishida Y, Tateno C, Kohara M. Isolation and characterization of highly replicable hepatitis C virus genotype 1a strain HCV-RMT. PLoS One 2013; 8:e82527. [PMID: 24358200 PMCID: PMC3865021 DOI: 10.1371/journal.pone.0082527] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 10/24/2013] [Indexed: 01/28/2023] Open
Abstract
Multiple genotype 1a clones have been reported, including the very first hepatitis C virus (HCV) clone called H77. The replication ability of some of these clones has been confirmed in vitro and in vivo, although this ability is somehow compromised. We now report a newly isolated genotype 1a clone, designated HCV-RMT, which has the ability to replicate efficiently in patients, chimeric mice with humanized liver, and cultured cells. An authentic subgenomic replicon cell line was established from the HCV-RMT sequence with spontaneous introduction of three adaptive mutations, which were later confirmed to be responsible for efficient replication in HuH-7 cells as both subgenomic replicon RNA and viral genome RNA. Following transfection, the HCV-RMT RNA genome with three adaptive mutations was maintained for more than 2 months in HuH-7 cells. One clone selected from the transfected cells had a high copy number, and its supernatant could infect naïve HuH-7 cells. Direct injection of wild-type HCV-RMT RNA into the liver of chimeric mice with humanized liver resulted in vigorous replication, similar to inoculation with the parental patient's serum. A study of virus replication using HCV-RMT derivatives with various combinations of adaptive mutations revealed a clear inversely proportional relationship between in vitro and in vivo replication abilities. Thus, we suggest that HCV-RMT and its derivatives are important tools for HCV genotype 1a research and for determining the mechanism of HCV replication in vitro and in vivo.
Collapse
Affiliation(s)
- Masaaki Arai
- Advanced Medical Research Laboratory, Mitsubishi Tanabe Pharma Corporation, Kanagawa, Japan
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yuko Tokunaga
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Asako Takagi
- Advanced Medical Research Laboratory, Mitsubishi Tanabe Pharma Corporation, Kanagawa, Japan
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yoshimi Tobita
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yuichi Hirata
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- * E-mail:
| |
Collapse
|
8
|
Structural and antigenic definition of hepatitis C virus E2 glycoprotein epitopes targeted by monoclonal antibodies. Clin Dev Immunol 2013; 2013:450963. [PMID: 23935648 PMCID: PMC3722892 DOI: 10.1155/2013/450963] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/10/2013] [Indexed: 12/24/2022]
Abstract
Hepatitis C virus (HCV) is the major cause of chronic liver disease as well as the major indication for liver transplantation worldwide. Current standard of care is not completely effective, not administrable in grafted patients, and burdened by several side effects. This incomplete effectiveness is mainly due to the high propensity of the virus to continually mutate under the selective pressure exerted by the host immune response as well as currently administered antiviral drugs. The E2 envelope surface glycoprotein of HCV (HCV/E2) is the main target of the host humoral immune response and for this reason one of the major variable viral proteins. However, broadly cross-neutralizing monoclonal antibodies (mAbs) directed against HCV/E2 represent a promising tool for the study of virus-host interplay as well as for the development of effective prophylactic and therapeutic approaches. In the last few years many anti-HCV/E2 mAbs have been evaluated in preclinical and clinical trials as possible candidate antivirals, particularly for administration in pre- and post-transplant settings. In this review we summarize the antigenic and structural characteristics of HCV/E2 determined through the use of anti-HCV/E2 mAbs, which, given the absence of a crystal structure of this glycoprotein, represent currently the best tool available.
Collapse
|
9
|
Koutsoudakis G, Forns X, Pérez-Del-Pulgar S. [The molecular biology of hepatitis C virus]. GASTROENTEROLOGIA Y HEPATOLOGIA 2013; 36:280-93. [PMID: 23490024 DOI: 10.1016/j.gastrohep.2012.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 11/13/2012] [Indexed: 12/12/2022]
Abstract
Since the discovery of the hepatitis C virus (HCV), a plethora of experimental models have evolved, allowing the virus's life cycle and the pathogenesis of associated liver diseases to be investigated. These models range from inoculation of cultured cells with serum from patients with hepatitis C to the use of surrogate models for the study of specific stages of the HCV life cycle: retroviral pseudoparticles for the study of HCV entry, replicons for the study of HCV replication, and the HCV cell culture model, which reproduces the entire life cycle (replication and production of infectious particles). The use of these tools has been and remains crucial to identify potential therapeutic targets in the different stages of the virus's life cycle and to screen new antiviral drugs. A clear example is the recent approval of two viral protease inhibitors (boceprevir and telaprevir) in combination with pegylated interferon and ribavirin for the treatment of chronic hepatitis C. This review analyzes the advances made in the molecular biology of HCV and highlights possible candidates as therapeutic targets for the treatment of HCV infection.
Collapse
Affiliation(s)
- George Koutsoudakis
- Servicio de Hepatología, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, España
| | | | | |
Collapse
|
10
|
Abstract
Due to the obligatory intracellular lifestyle of viruses, cell culture systems for efficient viral propagation are crucial to obtain a detailed understanding of the virus-host cell interaction. For hepatitis C virus (HCV) the development of permissive and authentic culture models continues to be a challenging task. The first efforts to culture HCV had limited success and range back to before the virus was molecularly cloned in 1989. Since then several major breakthroughs have gradually overcome limitations in culturing the virus and sequentially permitted analysis of viral RNA replication, cell entry, and ultimately the complete replication cycle in cultured cells in 2005. Until today, basic and applied HCV research greatly benefit from these tremendous efforts which spurred multiple complementary cell-based model systems for distinct steps of the HCV replication cycle. When used in combination they now permit deep insights into the fascinating biology of HCV and its interplay with the host cell. In fact, drug development has been much facilitated and our understanding of the molecular determinants of HCV replication has grown in parallel to these advances. Building on this groundwork and further refining our cellular models to better mimic the architecture, polarization and differentiation of natural hepatocytes should reveal novel unique aspects of HCV replication. Ultimately, models to culture primary HCV isolates across all genotypes may teach us important new lessons about viral functional adaptations that have evolved in exchange with its human host and that may explain the variable natural course of hepatitis C.
Collapse
Affiliation(s)
- Eike Steinmann
- Helmholtz Centre for Infection Research, Hannover, Germany
| | | |
Collapse
|
11
|
Koutsoudakis G, Pérez-del-Pulgar S, González P, Crespo G, Navasa M, Forns X. A Gaussia luciferase cell-based system to assess the infection of cell culture- and serum-derived hepatitis C virus. PLoS One 2012; 7:e53254. [PMID: 23300900 PMCID: PMC3534054 DOI: 10.1371/journal.pone.0053254] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 11/27/2012] [Indexed: 02/05/2023] Open
Abstract
Robust replication of hepatitis C virus (HCV) in cell culture occurs only with the JFH-1 (genotype 2a) recombinant genome. The aim of this study was to develop a system for HCV infection quantification analysis and apply it for the selection of patient sera that may contain cell culture infectious viruses, particularly of the most clinically important genotype 1. Initially, a hepatoma cell line (designated Huh-7.5/EG(4A/4B)GLuc) was generated that stably expressed the enhanced green fluorescent protein (EGFP) fused in-frame to the secreted Gaussia luciferase via a recognition sequence of the viral NS3/4A protease. Upon HCV infection, NS3/4A cleaved at its signal and the Gaussia was secreted to the culture medium, thus facilitating the infection quantification. The Huh-7.5/EG(4A/4B)GLuc cell line provided a rapid and highly sensitive quantification of HCV infection in cell culture using JFH-1-derived viruses. Furthermore, the Huh-7.5/EG(4A/4B)GLuc cells were also shown to be a suitable host for the discovery of anti-HCV inhibitors by using known compounds that target distinct stages of the HCV life cycle; the Ź-factor of this assay ranged from 0.72 to 0.75. Additionally, eighty-six sera derived from HCV genotype 1b infected liver transplant recipients were screened for their in vitro infection and replication potential. Approximately 12% of the sera contained in vitro replication-competent viruses, as deduced by the Gaussia signal, real time quantitative PCR, immunofluorescence and capsid protein secretion. We conclude that the Huh-7.5/EG(4A/4B)GLuc cell line is an excellent system not only for the screening of in vitro replication-competent serum-derived viruses, but also for the subsequent cloning of recombinant isolates. Additionally, it can be utilized for high-throughput screening of antiviral compounds.
Collapse
Affiliation(s)
- George Koutsoudakis
- Liver Unit, Institut D'Investigacions Biomèdics August Pi i Sunyer, Centro de Investigación Biomédica en Red: Enfermedades Hepáticas y Digestivas, Hospital Clínic, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
12
|
Koutsoudakis G, Dragun J, Pérez-Del-Pulgar S, Coto-Llerena M, Mensa L, Crespo G, González P, Navasa M, Forns X. Interplay between basic residues of hepatitis C virus glycoprotein E2 with viral receptors, neutralizing antibodies and lipoproteins. PLoS One 2012; 7:e52651. [PMID: 23300734 PMCID: PMC3531341 DOI: 10.1371/journal.pone.0052651] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 11/19/2012] [Indexed: 12/30/2022] Open
Abstract
Positively-charged amino acids are located at specific positions in the envelope glycoprotein E2 of the hepatitis C virus (HCV): two histidines (H) and four arginines (R) in two conserved WHY and one RGERCDLEDRDR motifs, respectively. Additionally, the E2 hypervariable region 1 (HVR1) is rich in basic amino acids. To investigate the role(s) of these residues in HCV entry, we subjected to comparative infection and sedimentation analysis cell culture-produced (HCVcc, genotype 2a) wild type virus, a panel of alanine single-site mutants and a HVR1-deletion variant. Initially, we analyzed the effects of these mutations on E2-heparan sulfate (HS) interactions. The positive milieu of the HVR1, formulated by its basic amino acids (key residues the conserved H³⁸⁶ and R⁴⁰⁸), and the two highly conserved basic residues H⁴⁸⁸ and R⁶⁴⁸ contributed to E2-HS interactions. Mutations in these residues did not alter the HCVcc-CD81 entry, but they modified the HCVcc-scavenger receptor class B type I (SR-BI) dependent entry and the neutralization by anti-E2 or patients IgG. Finally, separation by density gradients revealed that mutant viruses abolished partially or completely the infectivity of low density particles, which are believed to be associated with lipoproteins. This study shows that there exists a complex interplay between the basic amino acids located in HVR1 and other conserved E2 motifs with the HS, the SR-BI, and neutralizing antibodies and suggests that HCV-associated lipoproteins are implicated in these interactions.
Collapse
Affiliation(s)
- George Koutsoudakis
- Liver Unit, Hospital Clínic, Institut D'Investigacions Biomèdics August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Tariq H, Manzoor S, Parvaiz F, Javed F, Fatima K, Qadri I. An overview: in vitro models of HCV replication in different cell cultures. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2012; 12:13-20. [PMID: 22061839 DOI: 10.1016/j.meegid.2011.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 09/21/2011] [Accepted: 10/12/2011] [Indexed: 01/14/2023]
Abstract
Although much of productive research has been conducted in the field of molecular virology of Hepatitis C virus (HCV) regarding its genes, gene functions and proteins, development of an efficient cell culture model for its replication remained a focused area. Focus has been directed to establish HCV in vitro replication system. This replication system should mimic its intrahepatic pathogenesis so that antivirals should be screened and in vitro gene profiling of HCV induced pathogenesis should be worked out. Since 1990 various experimental approaches and strategies have been utilized in phase of development of a robust replication model for HCV, and success has been reported for a few genotypes. Still the work is going on to have more success in availing such robust replication models for all the genotypes. This will help to have a common antiviral strategy against HCV induced pathogenesis involving any genotype or subtype.
Collapse
Affiliation(s)
- Huma Tariq
- NUST Center of Virology and Immunology (NCVI), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan.
| | | | | | | | | | | |
Collapse
|