1
|
Abstract
Epidemiological studies have reported an inverse correlation between cancer and neurodegenerative disorders, and increasing evidence shows that similar genes and pathways are dysregulated in both diseases but in a contrasting manner. Given the genetic convergence of the neuronal ceroid lipofuscinoses (NCLs), a family of rare neurodegenerative disorders commonly known as Batten disease, and other neurodegenerative diseases, we sought to explore the relationship between cancer and the NCLs. In this review, we survey data from The Cancer Genome Atlas and available literature on the roles of NCL genes in different oncogenic processes to reveal links between all the NCL genes and cancer-related processes. We also discuss the potential contributions of NCL genes to cancer immunology. Based on our findings, we propose that further research on the relationship between cancer and the NCLs may help shed light on the roles of NCL genes in both diseases and possibly guide therapy development.
Collapse
|
2
|
Kooijman S, Brummelman J, van Els CACM, Marino F, Heck AJR, Mommen GPM, Metz B, Kersten GFA, Pennings JLA, Meiring HD. Novel identified aluminum hydroxide-induced pathways prove monocyte activation and pro-inflammatory preparedness. J Proteomics 2018; 175:144-155. [PMID: 29317357 DOI: 10.1016/j.jprot.2017.12.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 12/21/2017] [Accepted: 12/29/2017] [Indexed: 12/11/2022]
Abstract
Aluminum-based adjuvants are the most widely used adjuvants in human vaccines. A comprehensive understanding of the mechanism of action of aluminum adjuvants at the molecular level, however, is still elusive. Here, we unravel the effects of aluminum hydroxide Al(OH)3 by a systems-wide analysis of the Al(OH)3-induced monocyte response. Cell response analysis by cytokine release was combined with (targeted) transcriptome and full proteome analysis. Results from this comprehensive study revealed two novel pathways to become activated upon monocyte stimulation with Al(OH)3: the first pathway was IFNβ signaling possibly induced by DAMP sensing pathways like TLR or NOD1 activation, and second the HLA class I antigen processing and presentation pathway. Furthermore, known mechanisms of the adjuvant activity of Al(OH)3 were elucidated in more detail such as inflammasome and complement activation, homeostasis and HLA-class II upregulation, possibly related to increased IFNγ gene expression. Altogether, our study revealed which immunological pathways are activated upon stimulation of monocytes with Al(OH)3, refining our knowledge on the adjuvant effect of Al(OH)3 in primary monocytes. SIGNIFICANCE Aluminum salts are the most used adjuvants in human vaccines but a comprehensive understanding of the working mechanism of alum adjuvants at the molecular level is still elusive. Our Systems Vaccinology approach, combining complementary molecular biological, immunological and mass spectrometry-based techniques gave a detailed insight in the molecular mechanisms and pathways induced by Al(OH)3 in primary monocytes. Several novel immunological relevant cellular pathways were identified: type I interferon secretion potentially induced by TLR and/or NOD like signaling, the activation of the inflammasome and the HLA Class-I and Class-II antigen presenting pathways induced by IFNγ. This study highlights the mechanisms of the most commonly used adjuvant in human vaccines by combing proteomics, transcriptomics and cytokine analysis revealing new potential mechanisms of action for Al(OH)3.
Collapse
Affiliation(s)
- Sietske Kooijman
- Intravacc, Bilthoven, The Netherlands; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Science Faculty, Utrecht University, The Netherlands
| | - Jolanda Brummelman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Fabio Marino
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Science Faculty, Utrecht University, The Netherlands; Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Science Faculty, Utrecht University, The Netherlands; Netherlands Proteomics Centre, Utrecht, The Netherlands
| | | | | | - Gideon F A Kersten
- Intravacc, Bilthoven, The Netherlands; Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Jeroen L A Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | |
Collapse
|
3
|
Pichugin A, Steers N, De La Vega P, Zarling S, Chalom I, Krzych U. TAP-mediated processing of exoerythrocytic antigens is essential for protection induced with radiation-attenuated Plasmodium sporozoites. Eur J Immunol 2016; 46:885-96. [PMID: 26703789 DOI: 10.1002/eji.201545748] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 11/25/2015] [Accepted: 12/18/2015] [Indexed: 02/01/2023]
Abstract
MHC class I dependent CD8(+) T cells are essential for protection induced by radiation-attenuated Plasmodium sporozoites (RAS) in murine malaria models. Apart from the mechanism of activation of CD8(+) T cells specific for the circumsporozoite protein, the major sporozoite antigen (Ag), CD8(+) T cells specific for other exoerythrocytic Ags that have been shown to mediate protection have not been thoroughly investigated. Specifically, mechanisms of processing and presentation of exoerythrocytic Ags, which includes liver stage (LS) Ags, remain poorly understood. We hypothesize that as exogenous proteins, LS Ags are processed by mechanisms involving either the TAP-dependent phagosomal-to-cytosol or TAP-independent vacuolar pathway of cross-presentation. We used TAP-deficient mice to investigate whether LS Ag mediated induction of naïve CD8(+) T cells and their recall during sporozoite challenge occur by the TAP-dependent or TAP-independent pathways. On the basis of functional attributes, CD8(+) T cells were activated via the TAP-independent pathway during immunizations with Plasmodium berghei RAS; however, IFN-γ(+) CD8(+) T cells previously induced by P. berghei RAS in TAP-deficient mice failed to be recalled against sporozoite challenge and the mice became parasitemic. On the basis of these observations, we propose that TAP-associated Ag processing is indispensable for sterile protection induced with P. berghei RAS.
Collapse
Affiliation(s)
- Alexander Pichugin
- Department of Cellular Immunology, Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Nick Steers
- Department of Cellular Immunology, Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Patricia De La Vega
- Department of Cellular Immunology, Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Stasya Zarling
- Department of Cellular Immunology, Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Isaac Chalom
- Department of Cellular Immunology, Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Urszula Krzych
- Department of Cellular Immunology, Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| |
Collapse
|
4
|
Fiegl D, Kägebein D, Liebler-Tenorio EM, Weisser T, Sens M, Gutjahr M, Knittler MR. Amphisomal route of MHC class I cross-presentation in bacteria-infected dendritic cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:2791-806. [PMID: 23418629 DOI: 10.4049/jimmunol.1202741] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dendritic cells (DCs) are among the first professional APCs encountered by the obligate intracellular bacterium Chlamydia during infection. Using an established mouse bone marrow-derived DC line, we show that DCs control chlamydial infection in multiple small inclusions characterized by restricted bacterial growth, impaired cytosolic export of the virulence factor chlamydial protease-like activity factor, and interaction with guanylate-binding protein 1, a host cell factor involved in the initiation of autophagy. During maturation of infected DCs, chlamydial inclusions disintegrate, likely because they lack chlamydial protease-like activity factor-mediated protection. Released cytosolic Chlamydia are taken up by autophagosomes and colocalize with cathepsin-positive amphisomal vacuoles, to which peptide transporter TAP and upregulated MHC class I (MHC I) are recruited. Chlamydial Ags are subsequently generated through routes involving preprocessing in amphisomes via cathepsins and entry into the cytosol for further processing by the proteasome. Finally, bacterial peptides are reimported into the endosomal pathway for loading onto recycling MHC I. Thus, we unravel a novel pathway of MHC I-mediated cross-presentation that is initiated with a host cellular attack physically disrupting the parasitophorous vacuole, involves autophagy to collect cytosolic organisms into autophagosomes, and concludes with complex multistep antigenic processing in separate cellular compartments.
Collapse
Affiliation(s)
- Dorothee Fiegl
- Institute of Immunology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, 17493 Greifswald-Isle of Riems, Germany
| | | | | | | | | | | | | |
Collapse
|