1
|
Echegaray N, Yilmaz B, Sharma H, Kumar M, Pateiro M, Ozogul F, Lorenzo JM. A novel approach to Lactiplantibacillus plantarum: From probiotic properties to the omics insights. Microbiol Res 2023; 268:127289. [PMID: 36571922 DOI: 10.1016/j.micres.2022.127289] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/24/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Lactiplantibacillus plantarum (previously known as Lactobacillus plantarum) strains are one of the lactic acid bacteria (LAB) commonly used in fermentation and their probiotic and functional properties along with their health-promoting roles come to the fore. Food-derived L. plantarum strains have shown good resistance and adhesion in the gastrointestinal tract (GI) and excellent antioxidant and antimicrobial properties. Furthermore, many strains of L. plantarum can produce bacteriocins with interesting antimicrobial activity. This probiotic properties of L. plantarum and existing in different niches give a great potential to have beneficial effects on health. It is also has been shown that L. plantarum can regulate the intestinal microbiota composition in a good way. Recently, omics approaches such as metabolomics, secretomics, proteomics, transcriptomics and genomics try to understand the roles and mechanisms of L. plantarum that are related to its functional characteristics. This review provides an overview of the probiotic properties, including the specific interactions between microbiota and host, and omics insights of L. plantarum.
Collapse
Affiliation(s)
- Noemí Echegaray
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Birsen Yilmaz
- Department of Nutrition and Dietetics, Cukurova University, Sarıcam, 01330 Adana, Turkey
| | - Heena Sharma
- Dairy Technology Division, ICAR-National Dairy Research Institute, Karnāl, Haryana, 132001, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330, Adana, Turkey
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Universidade de Vigo, Área de Tecnoloxía dos Alimentos, Facultade de Ciencias de Ourense, 32004 Ourense, Spain.
| |
Collapse
|
2
|
De Angelis M, Calasso M, Cavallo N, Di Cagno R, Gobbetti M. Functional proteomics within the genus Lactobacillus. Proteomics 2016; 16:946-62. [PMID: 27001126 DOI: 10.1002/pmic.201500117] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 11/24/2015] [Accepted: 01/11/2016] [Indexed: 12/13/2022]
Abstract
Lactobacillus are mainly used for the manufacture of fermented dairy, sourdough, meat, and vegetable foods or used as probiotics. Under optimal processing conditions, Lactobacillus strains contribute to food functionality through their enzyme portfolio and the release of metabolites. An extensive genomic diversity analysis was conducted to elucidate the core features of the genus Lactobacillus, and to provide a better comprehension of niche adaptation of the strains. However, proteomics is an indispensable "omics" science to elucidate the proteome diversity, and the mechanisms of regulation and adaptation of Lactobacillus strains. This review focuses on the novel and comprehensive knowledge of functional proteomics and metaproteomics of Lactobacillus species. A large list of proteomic case studies of different Lactobacillus species is provided to illustrate the adaptability of the main metabolic pathways (e.g., carbohydrate transport and metabolism, pyruvate metabolism, proteolytic system, amino acid metabolism, and protein synthesis) to various life conditions. These investigations have highlighted that lactobacilli modulate the level of a complex panel of proteins to growth/survive in different ecological niches. In addition to the general regulation and stress response, specific metabolic pathways can be switched on and off, modifying the behavior of the strains.
Collapse
Affiliation(s)
- Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Maria Calasso
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Noemi Cavallo
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Raffaella Di Cagno
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Marco Gobbetti
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
3
|
Pajarillo EAB, Kim SH, Lee JY, Valeriano VDV, Kang DK. Quantitative Proteogenomics and the Reconstruction of the Metabolic Pathway in Lactobacillus mucosae LM1. Korean J Food Sci Anim Resour 2015; 35:692-702. [PMID: 26761899 PMCID: PMC4670900 DOI: 10.5851/kosfa.2015.35.5.692] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/07/2015] [Accepted: 10/07/2015] [Indexed: 12/22/2022] Open
Abstract
Lactobacillus mucosae is a natural resident of the gastrointestinal tract of humans and animals and a potential probiotic bacterium. To understand the global protein expression profile and metabolic features of L. mucosae LM1 in the early stationary phase, the QExactiveTM Hybrid Quadrupole-Orbitrap Mass Spectrometer was used. Characterization of the intracellular proteome identified 842 proteins, accounting for approximately 35% of the 2,404 protein-coding sequences in the complete genome of L. mucosae LM1. Proteome quantification using QExactiveTM Orbitrap MS detected 19 highly abundant proteins (> 1.0% of the intracellular proteome), including CysK (cysteine synthase, 5.41%) and EF-Tu (elongation factor Tu, 4.91%), which are involved in cell survival against environmental stresses. Metabolic pathway annotation of LM1 proteome using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database showed that half of the proteins expressed are important for basic metabolic and biosynthetic processes, and the other half might be structurally important or involved in basic cellular processes. In addition, glycogen biosynthesis was activated in the early stationary phase, which is important for energy storage and maintenance. The proteogenomic data presented in this study provide a suitable reference to understand the protein expression pattern of lactobacilli in standard conditions.
Collapse
Affiliation(s)
| | - Sang Hoon Kim
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea
| | - Ji-Yoon Lee
- National Instrumentation Center for Environmental Management, Seoul National University, Seoul 08826, Korea
| | | | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
4
|
De Angelis M, Siragusa S, Campanella D, Di Cagno R, Gobbetti M. Comparative proteomic analysis of biofilm and planktonic cells of Lactobacillus plantarum DB200. Proteomics 2015; 15:2244-57. [PMID: 25728239 DOI: 10.1002/pmic.201400363] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/30/2014] [Accepted: 02/24/2015] [Indexed: 11/11/2022]
Abstract
This study investigated the relative abundance of extracellular and cell wall associated proteins (exoproteome), cytoplasmic proteins (proteome), and related phenotypic traits of Lactobacillus plantarum grown under planktonic and biofilm conditions. Lactobacillus plantarum DB200 was preliminarily selected due to its ability to form biofilms and to adhere to Caco2 cells. As shown by fluorescence microscope analysis, biofilm cells became longer and autoaggregated at higher levels than planktonic cells. The molar ratio between glucose consumed and lactate synthesised was markedly decreased under biofilm compared to planktonic conditions. DIGE analysis showed a differential exoproteome (115 protein spots) and proteome (44) between planktonic and biofilm L. plantarum DB200 cells. Proteins up- or downregulated by at least twofold (p < 0.05) were found to belong mainly to the following functional categories: cell wall and catabolic process, cell cycle and adhesion, transport, glycolysis and carbohydrate metabolism, exopolysaccharide metabolism, amino acid and protein metabolisms, fatty acid and lipid biosynthesis, purine and nucleotide metabolism, stress response, oxidation/reduction process, and energy metabolism. Many of the above proteins showed moonlighting behavior. In accordance with the high expression levels of stress proteins (e.g., DnaK, GroEL, ClpP, GroES, and catalase), biofilm cells demonstrated enhanced survival under conditions of environmental stress.
Collapse
Affiliation(s)
- Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Sonya Siragusa
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Daniela Campanella
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Raffaella Di Cagno
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Marco Gobbetti
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
5
|
Mohedano MDLL, Russo P, de Los Ríos V, Capozzi V, Fernández de Palencia P, Spano G, López P. A partial proteome reference map of the wine lactic acid bacterium Oenococcus oeni ATCC BAA-1163. Open Biol 2014; 4:130154. [PMID: 24573368 PMCID: PMC3938052 DOI: 10.1098/rsob.130154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Oenococcus oeni is the main lactic acid bacterium that carries out the malolactic fermentation in virtually all red wines and in some white and sparkling wines. Oenococcus oeni possesses an array of metabolic activities that can modify the taste and aromatic properties of wine. There is, therefore, industrial interest in the proteins involved in these metabolic pathways and related transport systems of this bacterium. In this work, we report the characterization of the O. oeni ATCC BAA-1163 proteome. Total and membrane protein preparations from O. oeni were standardized and analysed by two-dimensional gel electrophoresis. Using tandem mass spectrometry, we identified 224 different spots corresponding to 152 unique proteins, which have been classified by their putative function and subjected to bioinformatics analysis.
Collapse
Affiliation(s)
- María de la Luz Mohedano
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Calle Ramiro de Maeztu 9, Madrid 28040, Spain
| | | | | | | | | | | | | |
Collapse
|
6
|
Siragusa S, De Angelis M, Calasso M, Campanella D, Minervini F, Di Cagno R, Gobbetti M. Fermentation and proteome profiles of Lactobacillus plantarum strains during growth under food-like conditions. J Proteomics 2013; 96:366-80. [PMID: 24231110 DOI: 10.1016/j.jprot.2013.11.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 10/30/2013] [Accepted: 11/01/2013] [Indexed: 02/06/2023]
Abstract
UNLABELLED This study aimed at investigating the proteomic adaptation of Lactobacillus plantarum strains. Cultivation of L. plantarum strains under food-like conditions (wheat flour hydrolyzed, whey milk, tomato juice) affected some metabolic traits (e.g., consumption of carbohydrates and synthesis of organic acids) compared to de Man, Rogosa and Sharpe (MRS) broth. The analysis of the fermentation profile showed that the highest number of carbon sources metabolized by L. plantarum strains was found using cells cultivated in media containing low concentration of glucose or no glucose at all. The proteomic maps of the strains were comparatively determined after growth on MRS broth and under food-like conditions. The amount of proteins depended on strain and, especially, on culture conditions. Proteins showing decreased or increased amounts under food-like conditions were identified using MALDI-TOF-MS/MS or LC-nano-ESI-MS/MS. Changes of the proteome concerned proteins that are involved in carbohydrate transport and metabolism, energy metabolism, Sec-dependent secretion system, stress response, nucleotide metabolism, regulation of nitrogen metabolism, and protein biosynthesis. A catabolic repression by glucose on carbohydrate transport and metabolism was also found. The characterization of the proteomes in response to changing environmental conditions could be useful to get L. plantarum strains adapted for specific applications. BIOLOGICAL SIGNIFICANCE Microbial cell performance during food biotechnological processes has become one of the greatest concerns all over the world. L. plantarum is a lactic acid bacterium with a large industrial application for fermented foods or functional foods (e.g., probiotics). The present study compared the fermentation and proteomic profiling of L. plantarum strains during growth under food-like conditions and under optimal laboratory conditions (MRS broth). This study provides specific mechanisms of proteomic adaptation involved in the microbial performances (carbohydrates utilization, energy metabolism, stress resistance, etc.) affecting the main biotechnological tracts of L. plantarum strains. The finding of this study provides evidences that may be exploited to get strains adapted for specific applications in food biotechnology.
Collapse
Affiliation(s)
- Sonya Siragusa
- Department of Soil, Plant and Food Science, Via G. Amendola 165/a, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, Via G. Amendola 165/a, University of Bari Aldo Moro, 70126 Bari, Italy.
| | - Maria Calasso
- Department of Soil, Plant and Food Science, Via G. Amendola 165/a, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Daniela Campanella
- Department of Soil, Plant and Food Science, Via G. Amendola 165/a, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Fabio Minervini
- Department of Soil, Plant and Food Science, Via G. Amendola 165/a, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Raffaella Di Cagno
- Department of Soil, Plant and Food Science, Via G. Amendola 165/a, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Marco Gobbetti
- Department of Soil, Plant and Food Science, Via G. Amendola 165/a, University of Bari Aldo Moro, 70126 Bari, Italy
| |
Collapse
|
7
|
|
8
|
Xu S, Luo J, Pan X, Liang X, Wu J, Zheng W, Chen C, Hou Y, Ma H, Zhou M. Proteome analysis of the plant-pathogenic bacterium Xanthomonas oryzae pv. oryzae. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1660-70. [DOI: 10.1016/j.bbapap.2013.05.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/26/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
|
9
|
Effects of the peptide pheromone plantaricin A and cocultivation with Lactobacillus sanfranciscensis DPPMA174 on the exoproteome and the adhesion capacity of Lactobacillus plantarum DC400. Appl Environ Microbiol 2013; 79:2657-69. [PMID: 23396346 DOI: 10.1128/aem.03625-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This study aimed at investigating the extracellular and cell wall-associated proteins (exoproteome) of Lactobacillus plantarum DC400 when cultivated on modified chemically defined medium (CDM) supplemented with the chemically synthesized pheromone plantaricin A (PlnA) or cocultured with L. plantarum DPPMA20 or Lactobacillus sanfranciscensis DPPMA174. Compared to monoculture, two-dimensional gel electrophoresis (2-DE) analysis showed that the exoproteome of L. plantarum DC400 was affected by PlnA and cocultivation with strains DPPMA20 and, especially, DPPMA174. The highest similarity of the 2-DE maps was found between DC400 cells cultivated in monoculture and in coculture with strain DPPMA20. Almost all extracellular proteins (22 spots) and cell wall-associated proteins (40 spots) which showed decreased or increased levels of synthesis during growth in CDM supplemented with PlnA and/or in coculture with strain DPPMA20 or DPPMA174 were identified. On the basis of the sequences in the Kyoto Encyclopedia of Genes and Genomes database, changes to the exoproteome concerned proteins involved in quorum sensing (QS), the transport system, stress response, carbohydrate metabolism and glycolysis, oxidation/reduction processes, the proteolytic system, amino acid metabolism, cell wall and catabolic processes, and cell shape, growth, and division. Cultivation with PlnA and cocultivation with strains DPPMA20 and, especially, DPMMA174 markedly increased the capacity of L. plantarum DC400 to form biofilms, to adhere to human Caco-2 cells, and to prevent the adhesion of potential intestinal pathogens. These phenotypic traits were in part related to oversynthesized moonlighting proteins (e.g., DnaK and GroEL, pyruvate kinase, enolase, and glyceraldehyde-3-phosphate dehydrogenase) in response to QS mechanisms and interaction with L. plantarum DPPMA20 and, especially, L. sanfranciscensis DPPMA174.
Collapse
|
10
|
Comparative proteomic analysis of Lactobacillus plantarum WCFS1 and ΔctsR mutant strains under physiological and heat stress conditions. Int J Mol Sci 2012; 13:10680-10696. [PMID: 23109816 PMCID: PMC3472708 DOI: 10.3390/ijms130910680] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 07/31/2012] [Accepted: 08/16/2012] [Indexed: 11/17/2022] Open
Abstract
Among Gram-positive bacteria, CtsR (Class Three Stress gene Repressor) mainly regulates the expression of genes encoding the Clp ATPases and the ClpP protease. To gain a better understanding of the biological significance of the CtsR regulon in response to heat-shock conditions, we performed a global proteomic analysis of Lactobacillus plantarum WCFS1 and ΔctsR mutant strains under optimal or heat stress temperatures. Total protein extracts from bacterial cells were analyzed by two-dimensional gel fractionation. By comparing maps from different culture conditions and different L. plantarum strains, image analysis revealed 23 spots with altered levels of expression. The proteomic analysis of L. plantarum WCFS1 and ctsR mutant strains confirms at the translational level the CtsR-mediated regulation of some members of the Clp family, as well as the heat induction of typical stress response genes. Heat activation of the putative CtsR regulon genes at transcriptional and translational levels, in the ΔctsR mutant, suggests additional regulative mechanisms, as is the case of hsp1. Furthermore, isoforms of ClpE with different molecular mass were found, which might contribute to CtsR quality control. Our results could add new outlooks in order to determine the complex biological role of CtsR-mediated stress response in lactic acid bacteria.
Collapse
|
11
|
Mazzeo MF, Cacace G, Peluso A, Zotta T, Muscariello L, Vastano V, Parente E, Siciliano RA. Effect of inactivation of ccpA and aerobic growth in Lactobacillus plantarum: A proteomic perspective. J Proteomics 2012; 75:4050-61. [PMID: 22634038 DOI: 10.1016/j.jprot.2012.05.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 04/18/2012] [Accepted: 05/13/2012] [Indexed: 10/28/2022]
Abstract
Lactobacillus plantarum is a facultative heterofermentative lactic acid bacterium widely used in the production of most fermented food due to its ability to thrive in several environmental niches, including the human gut. In order to cope with different growth conditions, it has developed complex molecular response mechanisms, characterized by the induction of a large set of proteins mainly regulated by HrcA and CtsR repressors as well as by global regulators such as carbon catabolite control protein A (CcpA). In this study, the role of CcpA in the regulation of growth under anaerobiosis and aerobiosis, and the adaptation to aeration in L. plantarum WCFS1 were comprehensively investigated by differential proteomics. The inactivation of ccpA, in both growth conditions, significantly changed the expression level of 76 proteins, mainly associated with carbohydrate and energy metabolism, membrane transport, nucleotide metabolism, protein biosynthesis and folding. The role of CcpA as pleiotropic regulator was particularly evident at the shift from homolactic fermentation to mixed fermentation. Proteomic results also indicated that the mutant strain was more responsive to aerobic growth condition.
Collapse
Affiliation(s)
- Maria F Mazzeo
- Centro di Spettrometria di Massa Proteomica e Biomolecolare, Istituto di Scienze dell'Alimentazione, CNR, Avellino, Italy
| | | | | | | | | | | | | | | |
Collapse
|