1
|
Zhang J, He L, Wang A, Wu B, Zhang P, Zhu Y, Jiang Y, Bai J, Xiao X. Responses of bitter melon saponins to oxidative stress and aging via the IIS pathway linked with sir-2.1 and hlh-30. J Food Biochem 2022; 46:e14456. [PMID: 36226991 DOI: 10.1111/jfbc.14456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/07/2022] [Accepted: 09/20/2022] [Indexed: 01/14/2023]
Abstract
Saponins from bitter melon (BMS) exert potential bioactivities and pharmacological activities, including anti-oxidation and lifespan extension. However, the exact mechanisms of BMS in response to oxidative stress remain unknown. Results demonstrated that bitter melon saponins could strengthen locomotive activities (body bend and head thrashing) accompanied by delaying the muscle fiber damage with age in Caenorhabditis elegans. In addition, BMS inhibited the ROS accumulation, improved the activities of antioxidant enzymes like SOD (by 57.90% and 94.34% for 100 μg/ml and 200 μg/ml BMS, respectively) and CAT (by 51.45% and 56.91% for 100 μg/ml and 200 μg/ml BMS, respectively), and extend the lifespan of N2 and CL2006 worms under paraquat-induced oxidative stress. Mechanism study suggested that BMS modulated the mRNA expressions of oxidation-related regulators, like the upregulation of cat-1, hsf-1, sir-2.1, and hlh-30. Furthermore, gene-deficient mutants verified that IIS (insulin/insulin-like growth factor-1 signaling) pathway linked with sir-2.1 and hlh-30 factors were involved in the BMS's lifespan-extension effects under oxidative stress. In general, this study supplemented the explanation of BMS in promoting oxidation-resistance and lifespan-extension activities, which could be served as a potential candidate for anti-aging. PRACTICAL APPLICATIONS: Our previous studies have suggested that saponins from bitter melon exhibited fat-lowering activity in C. elegans. However, little was known about the mechanism underlying the anti-oxidation effects of BMS in C. elegans. Current results indicated that the IIS pathway linked with sir-2.1 and hlh-30 transcriptional factors jointly to increase the lifespan in BMS' responses to oxidative stress. Our findings are beneficial to understand the main nutritional ingredients in bitter melon, which are ideal and expected in functional foods for aging.
Collapse
Affiliation(s)
- Jinfu Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Linzhao He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Anlin Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Beiqi Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Peixi Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ya Jiang
- Jiangsu Jiangnan Biotechnology Co. LTD, Zhenjiang, China
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Jiangsu Jiangnan Biotechnology Co. LTD, Zhenjiang, China
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Jiangsu Jiangnan Biotechnology Co. LTD, Zhenjiang, China
| |
Collapse
|
2
|
Jones LM, Chen Y, van Oosten-Hawle P. Redefining proteostasis transcription factors in organismal stress responses, development, metabolism, and health. Biol Chem 2020; 401:1005-1018. [DOI: 10.1515/hsz-2019-0385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/26/2020] [Indexed: 12/19/2022]
Abstract
AbstractEukaryotic organisms have evolved complex and robust cellular stress response pathways to ensure maintenance of proteostasis and survival during fluctuating environmental conditions. Highly conserved stress response pathways can be triggered and coordinated at the cell-autonomous and cell-nonautonomous level by proteostasis transcription factors, including HSF1, SKN-1/NRF2, HIF1, and DAF-16/FOXO that combat proteotoxic stress caused by environmental challenges. While these transcription factors are often associated with a specific stress condition, they also direct “noncanonical” transcriptional programs that serve to integrate a multitude of physiological responses required for development, metabolism, and defense responses to pathogen infections. In this review, we outline the established function of these key proteostasis transcription factors at the cell-autonomous and cell-nonautonomous level and discuss a newly emerging stress responsive transcription factor, PQM-1, within the proteostasis network. We look beyond the canonical stress response roles of proteostasis transcription factors and highlight their function in integrating different physiological stimuli to maintain cytosolic organismal proteostasis.
Collapse
Affiliation(s)
- Laura M. Jones
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Yannic Chen
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Patricija van Oosten-Hawle
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
3
|
MDT-15/MED15 permits longevity at low temperature via enhancing lipidostasis and proteostasis. PLoS Biol 2019; 17:e3000415. [PMID: 31408455 PMCID: PMC6692015 DOI: 10.1371/journal.pbio.3000415] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/16/2019] [Indexed: 11/30/2022] Open
Abstract
Low temperatures delay aging and promote longevity in many organisms. However, the metabolic and homeostatic aspects of low-temperature–induced longevity remain poorly understood. Here, we show that lipid homeostasis regulated by Caenorhabditis elegans Mediator 15 (MDT-15 or MED15), a transcriptional coregulator, is essential for low-temperature–induced longevity and proteostasis. We find that inhibition of mdt-15 prevents animals from living long at low temperatures. We show that MDT-15 up-regulates fat-7, a fatty acid desaturase that converts saturated fatty acids (SFAs) to unsaturated fatty acids (UFAs), at low temperatures. We then demonstrate that maintaining a high UFA/SFA ratio is essential for proteostasis at low temperatures. We show that dietary supplementation with a monounsaturated fatty acid, oleic acid (OA), substantially mitigates the short life span and proteotoxicity in mdt-15(-) animals at low temperatures. Thus, lipidostasis regulated by MDT-15 appears to be a limiting factor for proteostasis and longevity at low temperatures. Our findings highlight the crucial roles of lipid regulation in maintaining normal organismal physiology under different environmental conditions. Low temperatures delay aging and promote longevity in many organisms. This study shows that at low ambient temperatures, Mediator 15, a transcriptional coregulator, allows the nematode Caenorhabditis elegans to live longer by increasing the levels of unsaturated lipids, helping to maintain protein homeostasis.
Collapse
|
4
|
Shen P, Yue Y, Zheng J, Park Y. Caenorhabditis elegans: A Convenient In Vivo Model for Assessing the Impact of Food Bioactive Compounds on Obesity, Aging, and Alzheimer's Disease. Annu Rev Food Sci Technol 2018; 9:1-22. [DOI: 10.1146/annurev-food-030117-012709] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Peiyi Shen
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Yiren Yue
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
5
|
Shen P, Yue Y, Park Y. A living model for obesity and aging research:Caenorhabditis elegans. Crit Rev Food Sci Nutr 2017; 58:741-754. [DOI: 10.1080/10408398.2016.1220914] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Peiyi Shen
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Yiren Yue
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
6
|
Jones LM, Rayson SJ, Flemming AJ, Urwin PE. Adaptive and specialised transcriptional responses to xenobiotic stress in Caenorhabditis elegans are regulated by nuclear hormone receptors. PLoS One 2013; 8:e69956. [PMID: 23922869 PMCID: PMC3724934 DOI: 10.1371/journal.pone.0069956] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 06/13/2013] [Indexed: 02/02/2023] Open
Abstract
Characterisation of the pathways by which xenobiotics are metabolised and excreted in both target and non-target organisms is crucial for the rational design of effective and specific novel bioactive molecules. Consequently, we have investigated the induced responses of the model nematode Caenorhabditis elegans to a variety of xenobiotics which represent a range of putative modes of action. The majority of genes that were specifically induced in preliminary microarray analyses encoded enzymes from Phase I and II metabolism, including cytochrome P450s, short chain dehydrogenases, UDP-glucuronosyl transferases and glutathione transferases. Changes in gene expression were confirmed by quantitative PCR and GFP induction in reporter strains driven by promoters for transcription of twelve induced enzymes was investigated. The particular complement of metabolic genes induced was found to be highly contingent on the xenobiotic applied. The known regulators of responses to applied chemicals ahr-1, hif-1, mdt-15 and nhr-8 were not required for any of these inducible responses and skn-1 regulated GFP expression from only two of the promoters. Reporter strains were used in conjunction with systematic RNAi screens to identify transcription factors which drive expression of these genes under xenobiotic exposure. These transcription factors appeared to regulate specific xenobiotic responses and have no reported phenotypes under standard conditions. Focussing on nhr-176 we demonstrate the role of this transcription factor in mediating the resistance to thiabendazole.
Collapse
MESH Headings
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/genetics
- Animals
- Caenorhabditis elegans/drug effects
- Caenorhabditis elegans/enzymology
- Caenorhabditis elegans/genetics
- Caenorhabditis elegans/physiology
- Caenorhabditis elegans Proteins/metabolism
- Gene Knockdown Techniques
- Genes, Reporter
- Green Fluorescent Proteins/metabolism
- Metabolic Detoxication, Phase II/genetics
- Oviposition/drug effects
- Promoter Regions, Genetic/genetics
- RNA Interference/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/metabolism
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
- Thiabendazole/analogs & derivatives
- Thiabendazole/pharmacology
- Transcription Factors/metabolism
- Transcription, Genetic/drug effects
- Xenobiotics/pharmacology
Collapse
Affiliation(s)
- Laura M. Jones
- School of Biology, University of Leeds, Leeds, United Kingdom
| | | | - Anthony J. Flemming
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Peter E. Urwin
- School of Biology, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Sutphin GL, Bishop E, Yanos ME, Moller RM, Kaeberlein M. Caffeine extends life span, improves healthspan, and delays age-associated pathology in Caenorhabditis elegans. LONGEVITY & HEALTHSPAN 2012; 1:9. [PMID: 24764514 PMCID: PMC3922918 DOI: 10.1186/2046-2395-1-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 09/12/2012] [Indexed: 12/15/2022]
Abstract
BACKGROUND The longevity of an organism is influenced by both genetic and environmental factors. With respect to genetic factors, a significant effort is being made to identify pharmacological agents that extend life span by targeting pathways with a defined role in the aging process. On the environmental side, the molecular mechanisms responsible for the positive influence of interventions such as dietary restriction are being explored. The environment experienced by humans in modern societies already contains countless compounds that may influence longevity. Understanding the role played by common compounds that substantially affect the aging process will be critical for predicting and interpreting the outcome of introducing new interventions. Caffeine is the most widely used psychoactive drug worldwide. Prior studies in flies, worms, and mice indicate that caffeine may positively impact age-associated neurodegenerative pathology, such as that observed in Alzheimer's disease. RESULTS Here we report that caffeine is capable of extending life span and improving healthspan in Caenorhabditis elegans, a finding that is in agreement with a recently published screen looking for FDA-approved compounds capable of extending worm life span. Life span extension using caffeine displays epistatic interaction with two known longevity interventions: dietary restriction and reduced insulin signaling. Caffeine treatment also delays pathology in a nematode model of polyglutamine disease. CONCLUSIONS The identification of caffeine as a relevant factor in aging and healthspan in worms, combined with prior work in both humans and rodents linking caffeine consumption to reduced risk of age-associated disease, suggests that caffeine may target conserved longevity pathways. Further, it may be important to consider caffeine consumption when developing clinical interventions, particularly those designed to mimic dietary restriction or modulate insulin/IGF-1-like signaling. The positive impact of caffeine on a worm model of polyglutamine disease suggests that chronic caffeine consumption may generally enhance resistance to proteotoxic stress and may be relevant to assessing risk and developing treatments for human diseases like Alzheimer's and Huntington's disease. Future work addressing the relevant targets of caffeine in models of aging and healthspan will help to clarify the underlying mechanisms and potentially identify new molecular targets for disease intervention.
Collapse
Affiliation(s)
- George L Sutphin
- Department of Pathology, University of Washington, Box 357470, Seattle, 98195-7470, WA, USA ; Molecular and Cellular Biology Program, University of Washington, Box 357275, Seattle, 98195-7275, WA, USA
| | - Emma Bishop
- Department of Pathology, University of Washington, Box 357470, Seattle, 98195-7470, WA, USA
| | - Melana E Yanos
- Department of Pathology, University of Washington, Box 357470, Seattle, 98195-7470, WA, USA ; Department of Psychology, University of Washington, Box 351525, Seattle, 98195-1525, WA, USA
| | - Richard M Moller
- Department of Pathology, University of Washington, Box 357470, Seattle, 98195-7470, WA, USA
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Box 357470, Seattle, 98195-7470, WA, USA ; Institute of Aging Research, Guangdong Medical College, Dongguan, 523808, China
| |
Collapse
|