1
|
Khan MA, Mishra D, Kumar R, Siddique HR. Revisiting epigenetic regulation in cancer: Evolving trends and translational implications. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 390:1-24. [PMID: 39864892 DOI: 10.1016/bs.ircmb.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Cancer is a leading cause of mortality worldwide. The evolving role of epigenetics and tumor microenvironments of cancer pose significant challenges to the management of cancer. Besides genetics, epigenetic changes play a crucial role in the alteration of cellular machinery, progression, metastasis, epithelial-mesenchymal transition, and chemoresistance. Epigenetic changes such as DNA and RNA methylation, histone modifications, and chromatin modeling directly or indirectly influence the different stages of cancer from initiation to chemoresistant phenotype. In addition, alterations in the epigenetic machinery, such as hypo- or hyperactivation of proteins involved in epigenetic modifications, can lead to different health complications, including cancer. Recently, epi-drugs or epigenetic drugs offer emerging hope for the treatment and management of this deadly disease. Various epigenetic drugs targeting factors responsible for epigenetic modifications in cancer are currently under clinical trials. This chapter provides an overview of epigenetic modifications, their clinical implications, and the potential of epigenetic drugs for cancer treatment.
Collapse
Affiliation(s)
- Mohammad Afsar Khan
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Dhruv Mishra
- Department of Zoology, DAV College (PG), Maa Shakumbhari University, Muzaffarnagar, India
| | - Ranjan Kumar
- School of Life Science, Jawaharlal Nehru University (JNU), New Delhi, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India.
| |
Collapse
|
2
|
Reshkin SJ, Cardone RA, Koltai T. Genetic Signature of Human Pancreatic Cancer and Personalized Targeting. Cells 2024; 13:602. [PMID: 38607041 PMCID: PMC11011857 DOI: 10.3390/cells13070602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Pancreatic cancer is a highly lethal disease with a 5-year survival rate of around 11-12%. Surgery, being the treatment of choice, is only possible in 20% of symptomatic patients. The main reason is that when it becomes symptomatic, IT IS the tumor is usually locally advanced and/or has metastasized to distant organs; thus, early diagnosis is infrequent. The lack of specific early symptoms is an important cause of late diagnosis. Unfortunately, diagnostic tumor markers become positive at a late stage, and there is a lack of early-stage markers. Surgical and non-surgical cases are treated with neoadjuvant and/or adjuvant chemotherapy, and the results are usually poor. However, personalized targeted therapy directed against tumor drivers may improve this situation. Until recently, many pancreatic tumor driver genes/proteins were considered untargetable. Chemical and physical characteristics of mutated KRAS are a formidable challenge to overcome. This situation is slowly changing. For the first time, there are candidate drugs that can target the main driver gene of pancreatic cancer: KRAS. Indeed, KRAS inhibition has been clinically achieved in lung cancer and, at the pre-clinical level, in pancreatic cancer as well. This will probably change the very poor outlook for this disease. This paper reviews the genetic characteristics of sporadic and hereditary predisposition to pancreatic cancer and the possibilities of a personalized treatment according to the genetic signature.
Collapse
Affiliation(s)
- Stephan J. Reshkin
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Tomas Koltai
- Oncomed, Via Pier Capponi 6, 50132 Florence, Italy
| |
Collapse
|
3
|
Hijazi MA, Gessner A, El-Najjar N. Repurposing of Chronically Used Drugs in Cancer Therapy: A Chance to Grasp. Cancers (Basel) 2023; 15:3199. [PMID: 37370809 DOI: 10.3390/cancers15123199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Despite the advancement in drug discovery for cancer therapy, drug repurposing remains an exceptional opportunistic strategy. This approach offers many advantages (faster, safer, and cheaper drugs) typically needed to overcome increased challenges, i.e., side effects, resistance, and costs associated with cancer therapy. However, not all drug classes suit a patient's condition or long-time use. For that, repurposing chronically used medications is more appealing. This review highlights the importance of repurposing anti-diabetic and anti-hypertensive drugs in the global fight against human malignancies. Extensive searches of all available evidence (up to 30 March 2023) on the anti-cancer activities of anti-diabetic and anti-hypertensive agents are obtained from multiple resources (PubMed, Google Scholar, ClinicalTrials.gov, Drug Bank database, ReDo database, and the National Institutes of Health). Interestingly, more than 92 clinical trials are evaluating the anti-cancer activity of 14 anti-diabetic and anti-hypertensive drugs against more than 15 cancer types. Moreover, some of these agents have reached Phase IV evaluations, suggesting promising official release as anti-cancer medications. This comprehensive review provides current updates on different anti-diabetic and anti-hypertensive classes possessing anti-cancer activities with the available evidence about their mechanism(s) and stage of development and evaluation. Hence, it serves researchers and clinicians interested in anti-cancer drug discovery and cancer management.
Collapse
Affiliation(s)
- Mohamad Ali Hijazi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Beirut Arab University, Beirut P.O. Box 11-5020, Lebanon
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Nahed El-Najjar
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
4
|
Aguirre-Vázquez A, Castorena-Torres F, Silva-Ramírez B, Peñuelas-Urquides K, Camacho-Moll ME, Salazar-Olivo LA, Velasco I, Bermúdez de León M. Cell-type dependent regulation of pluripotency and chromatin remodeling genes by hydralazine. Stem Cell Res Ther 2023; 14:42. [PMID: 36927767 PMCID: PMC10021945 DOI: 10.1186/s13287-023-03268-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND The generation of induced pluripotent stem cells has opened the field of study for stem cell research, disease modeling and drug development. However, the epigenetic signatures present in somatic cells make cell reprogramming still an inefficient process. This epigenetic memory constitutes an obstacle in cellular reprogramming. Here, we report the effect of hydralazine (HYD) and valproic acid (VPA), two small molecules with proven epigenetic activity, on the expression of pluripotency genes in adult (aHF) and neonatal (nbHF) human fibroblasts. METHODS aHF and nbHF were treated with HYD and/or VPA, and viability and gene expression assays for OCT4, NANOG, c-MYC, KLF4, DNMT1, TET3, ARID1A and ARID2 by quantitative PCR were performed. aHF and nbHF were transfected with episomal plasmid bearing Yamanaka factors (OCT4, SOX2, KLF4 and c-MYC) and exposed to HYD and VPA to determine the reprogramming efficiency. Methylation sensitive restriction enzyme (MSRE) qPCR assays were performed on OCT4 and NANOG promoter regions. Immunofluorescence assays were carried out for pluripotency genes on iPSC derived from aHF and nbHF. RESULTS HYD upregulated the expression of OCT4 (2.5-fold) and NANOG (fourfold) genes but not c-Myc or KLF4 in aHF and had no significant effect on the expression of all these genes in nbHF. VPA upregulated the expression of NANOG (twofold) in aHF and c-MYC in nbHF, while it downregulated the expression of NANOG in nbHF. The combination of HYD and VPA canceled the OCT4 and NANOG overexpression induced by HYD in aHF, while it reinforced the effects of VPA on c-Myc expression in nbHF. The HYD-induced overexpression of OCT4 and NANOG in aHDF was not dependent on demethylation of gene promoters, and no changes in the reprogramming efficiency were observed in both cell populations despite the downregulation of epigenetic genes DNMT1, ARID1A, and ARID2 in nbHF. CONCLUSIONS Our data provide evidence that HYD regulates the expression of OCT4 and NANOG pluripotency genes as well as ARID1A and ARID2 genes, two members of the SWI/SNF chromatin remodeling complex family, in normal human dermal fibroblasts.
Collapse
Affiliation(s)
- Alain Aguirre-Vázquez
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720, Monterrey, Nuevo León, Mexico.,Depto. de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, 78216, San Luis Potosí, S.L.P., Mexico
| | | | - Beatriz Silva-Ramírez
- Departamento de Inmunogenética, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720, Monterrey, Nuevo León, Mexico
| | - Katia Peñuelas-Urquides
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720, Monterrey, Nuevo León, Mexico
| | - María Elena Camacho-Moll
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720, Monterrey, Nuevo León, Mexico
| | - Luis A Salazar-Olivo
- Depto. de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, 78216, San Luis Potosí, S.L.P., Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.,Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", 14269, Mexico City, Mexico
| | - Mario Bermúdez de León
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720, Monterrey, Nuevo León, Mexico.
| |
Collapse
|
5
|
Zhang Z, Wang G, Li Y, Lei D, Xiang J, Ouyang L, Wang Y, Yang J. Recent progress in DNA methyltransferase inhibitors as anticancer agents. Front Pharmacol 2022; 13:1072651. [PMID: 37077808 PMCID: PMC10107375 DOI: 10.3389/fphar.2022.1072651] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
DNA methylation mediated by DNA methyltransferase is an important epigenetic process that regulates gene expression in mammals, which plays a key role in silencing certain genes, such as tumor suppressor genes, in cancer, and it has become a promising therapeutic target for cancer treatment. Similar to other epigenetic targets, DNA methyltransferase can also be modulated by chemical agents. Four agents have already been approved to treat hematological cancers. In order to promote the development of a DNA methyltransferase inhibitor as an anti-tumor agent, in the current review, we discuss the relationship between DNA methylation and tumor, the anti-tumor mechanism, the research progress and pharmacological properties of DNA methyltransferase inhibitors, and the future research trend of DNA methyltransferase inhibitors.
Collapse
Affiliation(s)
- Zhixiong Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Yuyan Li
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Dongsheng Lei
- School of Physical Science and Technology, Electron Microscopy Center of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Jin Xiang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
- Science and Technology Department, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yanyan Wang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
- Science and Technology Department, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yanyan Wang, ; Jinliang Yang,
| | - Jinliang Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
- *Correspondence: Yanyan Wang, ; Jinliang Yang,
| |
Collapse
|
6
|
Basha NJ, Basavarajaiah SM. An insight into therapeutic efficacy of heterocycles as histone modifying enzyme inhibitors that targets cancer epigenetic pathways. Chem Biol Drug Des 2022; 100:682-698. [PMID: 36059065 DOI: 10.1111/cbdd.14135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 01/10/2023]
Abstract
Histone modifying enzymes are the key regulators involved in the post-translational modification of histone and non-histone. These enzymes are responsible for the epigenetic control of cellular functions. However, deregulation of the activity of these enzymes results in uncontrolled disorders such as cancer and inflammatory and neurological diseases. The study includes histone acetyltransferases, deacetylases, methyl transferases, demethylases, DNA methyl transferases, and their potent inhibitors which are in a clinical trial and used as medicinal drugs. The present review covers the heterocycles as target-specific inhibitors of histone-modifying enzyme, more specifically histone acetyltransferases. This review also confers more recent reports on heterocycles as potential HAT inhibitors covered from 2016-2022 and future perspectives of these heterocycles in epigenetic therapy.
Collapse
Affiliation(s)
- N Jeelan Basha
- Department of Chemistry, Indian Academy Degree College-Autonomous, Bengaluru, Karnataka, India
| | - S M Basavarajaiah
- P.G. Department of Chemistry, Vijaya College, Bengaluru, Karnataka, India
| |
Collapse
|
7
|
Xi Y, Li T, Xi Y, Zeng X, Miao Y, Guo R, Zhang M, Li B. Combination treatment with hENT1 and miR-143 reverses gemcitabine resistance in triple-negative breast cancer. Cancer Cell Int 2022; 22:271. [PMID: 36050724 PMCID: PMC9438150 DOI: 10.1186/s12935-022-02681-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 08/11/2022] [Indexed: 12/24/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer and is susceptible to develop gemcitabine (GEM) resistance. Decreased expression of human equilibrative nucleoside transporter 1 (hENT1) accompanied by compensatory increase of glycolysis is strongly associated with GEM resistance in TNBC. In this study, we investigated the treatment feasibility of combined hENT1 upregulation and miR-143-mediated inhibition of glycolysis for reversing GEM resistance in TNBC. Methods Experiments were performed in vitro and in vivo to compare the efficacy of GEM therapies. In this study, we established stable drug-resistant cell line, GEM-R cells, from parental cells (MDA-MB-231) through exposure to GEM following a stepwise incremental dosing strategy. Then GEM-R cells were transfected by lentiviral plasmids and GEM-R cells overexpressing hENT1 (GEM-R-hENT1) were established. The viability and apoptosis of wild-type (MDA-MB-231), GEM-R, and GEM-R-hENT1 cells treated with GEM or GEM + miR-143 were analyzed by CCK8 assay and flow cytometry. The RNA expression and protein expression were measured by RT-PCR and western blotting respectively. GEM uptake was determined by multiple reaction monitoring (MRM) analysis. Glycolysis was measured by glucose assay and 18F-FDG uptake. The antitumor effect was assessed in vivo in a tumor xenograft model by evaluating toxicity, tumor volume, and maximum standardized uptake value in 18F-FDG PET. Immunohistochemistry and fluorescence photography were taken in tumor samples. Pairwise comparisons were performed using Student’s t-test. Results Our results represented that overexpression of hENT1 reversed GEM resistance in GEM-R cells by showing lower IC50 and higher rate of apoptosis. MiR-143 suppressed glycolysis in GEM-R cells and enhanced the effect of reversing GEM resistance in GEM-R-hENT1 cells. The therapeutic efficacy was validated using a xenograft mouse model. Combination treatment decreased tumor growth rate and maximum standardized uptake value in 18F-FDG PET more effectively. Conclusions Combined therapy of exogenous upregulation of hENT1 expression and miR-143 mimic administration was effective in reversing GEM resistance, providing a promising strategy for treating GEM-resistant TNBC.
Collapse
Affiliation(s)
- Yue Xi
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China.,Collaboration Innovation Center for Molecular Imaging of Precision Medicine, Ruijin Center, Shanghai, 200025, China
| | - Ting Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China.,Collaboration Innovation Center for Molecular Imaging of Precision Medicine, Ruijin Center, Shanghai, 200025, China
| | - Yun Xi
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China.,Collaboration Innovation Center for Molecular Imaging of Precision Medicine, Ruijin Center, Shanghai, 200025, China
| | - Xinyi Zeng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Miao
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China.,Collaboration Innovation Center for Molecular Imaging of Precision Medicine, Ruijin Center, Shanghai, 200025, China
| | - Rui Guo
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China.,Collaboration Innovation Center for Molecular Imaging of Precision Medicine, Ruijin Center, Shanghai, 200025, China
| | - Min Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China. .,Collaboration Innovation Center for Molecular Imaging of Precision Medicine, Ruijin Center, Shanghai, 200025, China.
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China. .,Collaboration Innovation Center for Molecular Imaging of Precision Medicine, Ruijin Center, Shanghai, 200025, China.
| |
Collapse
|
8
|
Zou MJ, Cheng XR, Liu RF. lncRNA DLG1-AS1 promotes cervical cancer cell gemcitabine resistance by regulating miR-16-5p/HDGF. J Obstet Gynaecol Res 2022; 48:1836-1847. [PMID: 35388952 DOI: 10.1111/jog.15245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 03/09/2022] [Accepted: 03/18/2022] [Indexed: 12/22/2022]
Abstract
AIM To investigate the long non-coding RNA DLG1 Antisense RNA 1 (lncRNA DLG1-AS1) mechanism in cervical cancer cells with gemcitabine (GEM) resistance. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect DLG1-AS1, miR-16-5p, and hepatoma-derived growth factor (HDGF) expression in cervical cancer cells. The effects of DLG1-AS1 knockdown on cell viability, proliferation, and apoptosis were investigated in GEM-resistant cervical cancer cells. The binding of DLG1-AS1 with miR-16-5p and of miR-16-5p with HDGF was confirmed through dual-luciferase reporter assays. HDGF expression was detected through Western blotting. A xenograft model was established using stably transfected GEM-resistant cervical cancer cells to detect the role of DLG1-AS1 in tumorigenesis in vivo. RESULTS DLG1-AS1 expression was significantly elevated in HeLa/GEM and SiHa/GEM cells. DLG1-AS1 silencing significantly reduced the viability and proliferation of GEM-resistant cervical cancer cells. DLG1-AS1 also promoted GEM sensitivity in cervical cancer cells by inhibiting miR-16-5p. Moreover, the tumor volume in nude mice in the DLG1-AS1 knockdown group decreased after GEM treatment. In addition, DLG1-AS1 targeted miR-16-5p, and miR-16-5p targeted HDGF. The miR-16-5p inhibitor reversed the DLG1-AS1 knockdown effect in GEM-resistant cervical cancer cells. CONCLUSION Knockdown of DLG1-AS1 promoted GEM sensitivity in cervical cancer cells by regulating miR-16-5p/HDGF.
Collapse
Affiliation(s)
- Min-Jun Zou
- Department of Pharmacy, The People's Hospital of Zhongshan City, Zhongshan, Guangdong Province, China
| | - Xiao-Rong Cheng
- Department of Pharmacy, The People's Hospital of Zhongshan City, Zhongshan, Guangdong Province, China
| | - Rui-Feng Liu
- Department of Pharmacy, The People's Hospital of Zhongshan City, Zhongshan, Guangdong Province, China
| |
Collapse
|
9
|
Kaya Çakir H, Eroglu O. In vitro anti-proliferative effect of capecitabine (Xeloda) combined with mocetinostat (MGCD0103) in 4T1 breast cancer cell line by immunoblotting. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 24:1515-1522. [PMID: 35317122 PMCID: PMC8917851 DOI: 10.22038/ijbms.2021.58393.12971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/06/2021] [Indexed: 11/06/2022]
Abstract
Objectives Mouse breast cancer cell line 4T1 can accurately mimic the response to immune receptors and targeting therapeutic agents. Combined therapy has emerged as an important strategy with reduced side effects and maximum therapeutic effect. Mocetinostat (MGCD0103) is one of the members of Class I Histone Deacetylase Inhibitors (HDACi) and its mechanism of action has not been defined, yet. Capecitabine (Xeloda) is an antimetabolite and currently is widely utilized to treat a wide range of solid tumors. The aim of this study was to investigate the effects of the capecitabine, mocetinostat and their combined application on the 4T1 cell line. Materials and Methods The effects of combined administration of mocetinostat and capecitabine on 4T1 cells were investigated by cell viability and migration assays, apoptosis analysis, and Western blotting technique. Results The concentrations of drugs that give a half-maximal response (IC50) were detected for capecitabine (1700 µM), mocetinostat (3,125 µM), and 50 µM Capecitabine+1,5 µM Mocetinostat for 48 hr. In capecitabine+mocetinostat combine group, we observed that cell migration decreased, DNA fragmentation increased compared to the control group. capecitabine + mocetinostat group induced apoptosis by decreasing Bcl-2, PI3K, Akt, c-myc protein levels, while increasing Bax, Caspase-3, PTEN, cleaved-PARP, Caspase-7, Caspase-9, p53, cleaved-Cas-9 protein levels in 4T1 cells. Conclusion Capecitabine and mocetinostat played a toxic role through inducing apoptosis on 4T1 cancer cells in a time- and concentration-dependent manner. These results showed that combined therapy with low concentrations were detected to be more effective than that with high-concentration alone drug treatment.
Collapse
Affiliation(s)
- Hacer Kaya Çakir
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Bilecik Seyh Edebali University, Bilecik, Turkey.,Biotechnology Research and Application Center, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Onur Eroglu
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Bilecik Seyh Edebali University, Bilecik, Turkey.,Biotechnology Research and Application Center, Bilecik Seyh Edebali University, Bilecik, Turkey
| |
Collapse
|
10
|
DNA Methylation Malleability and Dysregulation in Cancer Progression: Understanding the Role of PARP1. Biomolecules 2022; 12:biom12030417. [PMID: 35327610 PMCID: PMC8946700 DOI: 10.3390/biom12030417] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
Mammalian genomic DNA methylation represents a key epigenetic modification and its dynamic regulation that fine-tunes the gene expression of multiple pathways during development. It maintains the gene expression of one generation of cells; particularly, the mitotic inheritance of gene-expression patterns makes it the key governing mechanism of epigenetic change to the next generation of cells. Convincing evidence from recent discoveries suggests that the dynamic regulation of DNA methylation is accomplished by the enzymatic action of TET dioxygenase, which oxidizes the methyl group of cytosine and activates transcription. As a result of aberrant DNA modifications, genes are improperly activated or inhibited in the inappropriate cellular context, contributing to a plethora of inheritable diseases, including cancer. We outline recent advancements in understanding how DNA modifications contribute to tumor suppressor gene silencing or oncogenic-gene stimulation, as well as dysregulation of DNA methylation in cancer progression. In addition, we emphasize the function of PARP1 enzymatic activity or inhibition in the maintenance of DNA methylation dysregulation. In the context of cancer remediation, the impact of DNA methylation and PARP1 pharmacological inhibitors, and their relevance as a combination therapy are highlighted.
Collapse
|
11
|
The Class I HDAC Inhibitor Valproic Acid Strongly Potentiates Gemcitabine Efficacy in Pancreatic Cancer by Immune System Activation. Biomedicines 2022; 10:biomedicines10030517. [PMID: 35327319 PMCID: PMC8945828 DOI: 10.3390/biomedicines10030517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/26/2022] [Accepted: 02/16/2022] [Indexed: 01/01/2023] Open
Abstract
Background: Gemcitabine efficacy in pancreatic cancer is often impaired due to limited intracellular uptake and metabolic activation. Epi-drugs target gene expression patterns and represent a promising approach to reverse chemoresistance. In this study, we investigate the chemosensitizing effect of different epi-drugs when combined with gemcitabine in pancreatic cancer. Methods: Mouse KPC3 cells were used for all experiments. Five different epi-drugs were selected for combination therapy: 5-aza-2′-deoxycytidine, hydralazine, mocetinostat, panobinostat, and valproic acid (VPA). Treatment effects were determined by cell proliferation and colony forming assays. Expression of genes were assessed by real-time quantitative PCR. The most promising epi-drug for combination therapy was studied in immune competent mice. Intratumor changes were defined using NanoString PanCancer panel IO360. Results: All epi-drugs, except hydralazine, potentiated the gemcitabine response in KPC3 cells (range decrease IC50 value 1.7−2-fold; p < 0.001). On colony formation, the cytotoxic effect of 0.5 ng/mL gemcitabine was 1.4 to 6.3 times stronger (p < 0.01). Two out of three drug-transporter genes were strongly upregulated following epi-drug treatment (a range fold increase of 17−124 and 9−60 for Slc28a1 and Slc28a3, respectively; all p < 0.001). VPA combined with gemcitabine significantly reduced tumor size with 74% compared to vehicle-treated mice and upregulated expression of immune-related pathways (range pathway score 0.86−1.3). Conclusions: These results provide a strong rationale for combining gemcitabine with VPA treatment. For the first time, we present intratumor changes and show activation of the immune system. Clinical trials are warranted to assess efficacy and safety of this novel combination in pancreatic cancer patients.
Collapse
|
12
|
Inhibitors of DNA Methylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:471-513. [DOI: 10.1007/978-3-031-11454-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Nachiyappan A, Gupta N, Taneja R. EHMT1/EHMT2 in EMT, Cancer Stemness and Drug Resistance: Emerging Evidence and Mechanisms. FEBS J 2021; 289:1329-1351. [PMID: 34954891 DOI: 10.1111/febs.16334] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/25/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022]
Abstract
Metastasis, therapy failure and tumor recurrence are major clinical challenges in cancer. The interplay between tumor initiating cells (TICs) and Epithelial-Mesenchymal transition (EMT) drives tumor progression and spread. Recent advances have highlighted the involvement of epigenetic deregulation in these processes. The Euchromatin Histone Lysine Methyltransferase 1 (EHMT1) and Euchromatin Histone Lysine Methyltransferase 2 (EHMT2) that primarily mediate histone 3 lysine 9 di-methylation (H3K9me2), as well as methylation of non-histone proteins, are now recognized to be aberrantly expressed in many cancers. Their deregulated expression is associated with EMT, cellular plasticity and therapy resistance. In this review, we summarize evidence of their myriad roles in cancer metastasis, stemness and drug resistance. We discuss cancer-type specific molecular targets, context-dependent mechanisms and future directions of research in targeting EHMT1/EHMT2 for the treatment of cancer.
Collapse
Affiliation(s)
- Alamelu Nachiyappan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593
| | - Neelima Gupta
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593.,Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 117593
| |
Collapse
|
14
|
Yoshida K, Fujita A, Narazaki H, Asano T, Itoh Y. Drug resistance to nelarabine in leukemia cell lines might be caused by reduced expression of deoxycytidine kinase through epigenetic mechanisms. Cancer Chemother Pharmacol 2021; 89:83-91. [PMID: 34825941 DOI: 10.1007/s00280-021-04373-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Drug resistance is a serious problem in leukemia therapy. A novel purine nucleoside analogue, nelarabine, is available for the treatment of children with T cell acute lymphoblastic leukemia. We investigated the mechanisms of drug resistance to nelarabine. METHODS Nelarabine-resistant cells were selected by stepwise and continuous exposure to nelarabine using the limiting dilution method in human B and T cell lymphoblastic leukemia cell lines. Expression analysis was performed using real-time polymerase chain reaction, and epigenetic analysis was performed using methylation-specific polymerase chain reaction and chromatin immunoprecipitation. RESULTS The RNA expression level for deoxycytidine kinase (dCK) was decreased in nelarabine-resistant leukemia cells. There were no differences between the parental and nelarabine-resistant leukemia cells in the methylation status of the promoter region of the dCK gene. In the chromatin immune precipitation assay, decreased acetylation of histones H3 and H4 bound to the dCK promoter was seen in the nelarabine-resistant cells when compared to the parental cells. Furthermore, treatment with a novel histone deacetylase inhibitor, vorinostat, promoted the cytotoxic effect of nelarabine along with increased expression of the dCK gene, and it increased acetylation of both histones H3 and H4 bound to the dCK promoter in nelarabine-resistant leukemia cells. The combination index showed that the effect of nelarabine and vorinostat was synergistic. CONCLUSION This study reports that nelarabine with vorinostat can promote cytotoxicity in nelarabine-resistant leukemia cells through epigenetic mechanisms.
Collapse
Affiliation(s)
- Keishi Yoshida
- Department of Pediatrics, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari, Inzai, Chiba, 270-1694, Japan
| | - Atsushi Fujita
- Department of Pediatrics, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari, Inzai, Chiba, 270-1694, Japan
| | - Hidehiko Narazaki
- Department of Pediatrics, Nippon Medical School, Inzai, Chiba, Japan
| | - Takeshi Asano
- Department of Pediatrics, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari, Inzai, Chiba, 270-1694, Japan.
| | - Yasuhiko Itoh
- Department of Pediatrics, Nippon Medical School, Inzai, Chiba, Japan
| |
Collapse
|
15
|
Lopes N, Pacheco MB, Soares-Fernandes D, Correia MP, Camilo V, Henrique R, Jerónimo C. Hydralazine and Enzalutamide: Synergistic Partners against Prostate Cancer. Biomedicines 2021; 9:biomedicines9080976. [PMID: 34440180 PMCID: PMC8391120 DOI: 10.3390/biomedicines9080976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
Advanced prostate cancers frequently develop resistance to androgen-deprivation therapy with serious implications for patient survival. Considering their importance in this type of neoplasia, epigenetic modifications have drawn attention as alternative treatment strategies. The aim of this study was to assess the antitumoral effects of the combination of hydralazine, a DNA methylation inhibitor, with enzalutamide, an antagonist of the androgen receptor, in prostate cancer cell lines. Several biological parameters, such as cell viability, proliferation, DNA damage, and apoptosis, as well as clonogenic and invasive potential, were evaluated. The individual treatments with hydralazine and enzalutamide exerted growth-inhibitory effects in prostate cancer cells and their combined treatment displayed synergistic effects. The combination of these two drugs was very effective in decreasing malignant features of prostate cancer and may become an alternative therapeutic option for prostate cancer patient management.
Collapse
Affiliation(s)
- Nair Lopes
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (N.L.); (M.B.P.); (D.S.-F.); (M.P.C.); (V.C.); (R.H.)
| | - Mariana Brütt Pacheco
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (N.L.); (M.B.P.); (D.S.-F.); (M.P.C.); (V.C.); (R.H.)
| | - Diana Soares-Fernandes
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (N.L.); (M.B.P.); (D.S.-F.); (M.P.C.); (V.C.); (R.H.)
| | - Margareta P. Correia
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (N.L.); (M.B.P.); (D.S.-F.); (M.P.C.); (V.C.); (R.H.)
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vânia Camilo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (N.L.); (M.B.P.); (D.S.-F.); (M.P.C.); (V.C.); (R.H.)
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (N.L.); (M.B.P.); (D.S.-F.); (M.P.C.); (V.C.); (R.H.)
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (N.L.); (M.B.P.); (D.S.-F.); (M.P.C.); (V.C.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Correspondence: ; Tel.: +351-225-084-000; Fax: +351-225-084-047
| |
Collapse
|
16
|
Saha N, Muntean AG. Insight into the multi-faceted role of the SUV family of H3K9 methyltransferases in carcinogenesis and cancer progression. Biochim Biophys Acta Rev Cancer 2020; 1875:188498. [PMID: 33373647 DOI: 10.1016/j.bbcan.2020.188498] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022]
Abstract
Growing evidence implicates histone H3 lysine 9 methylation in tumorigenesis. The SUV family of H3K9 methyltransferases, which include G9a, GLP, SETDB1, SETDB2, SUV39H1 and SUV39H2 deposit H3K9me1/2/3 marks at euchromatic and heterochromatic regions, catalyzed by their conserved SET domain. In cancer, this family of enzymes can be deregulated by genomic alterations and transcriptional mis-expression leading to alteration of transcriptional programs. In solid and hematological malignancies, studies have uncovered pro-oncogenic roles for several H3K9 methyltransferases and accordingly, small molecule inhibitors are being tested as potential therapies. However, emerging evidence demonstrate onco-suppressive roles for these enzymes in cancer development as well. Here, we review the role H3K9 methyltransferases play in tumorigenesis focusing on gene targets and biological pathways affected due to misregulation of these enzymes. We also discuss molecular mechanisms regulating H3K9 methyltransferases and their influence on cancer. Finally, we describe the impact of H3K9 methylation on therapy induced resistance in carcinoma. Converging evidence point to multi-faceted roles for H3K9 methyltransferases in development and cancer that encourages a deeper understanding of these enzymes to inform novel therapy.
Collapse
Affiliation(s)
- Nirmalya Saha
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America
| | - Andrew G Muntean
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America.
| |
Collapse
|
17
|
Montalvo-Casimiro M, González-Barrios R, Meraz-Rodriguez MA, Juárez-González VT, Arriaga-Canon C, Herrera LA. Epidrug Repurposing: Discovering New Faces of Old Acquaintances in Cancer Therapy. Front Oncol 2020; 10:605386. [PMID: 33312959 PMCID: PMC7708379 DOI: 10.3389/fonc.2020.605386] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022] Open
Abstract
Gene mutations are strongly associated with tumor progression and are well known in cancer development. However, recently discovered epigenetic alterations have shown the potential to greatly influence tumoral response to therapy regimens. Such epigenetic alterations have proven to be dynamic, and thus could be restored. Due to their reversible nature, the promising opportunity to improve chemotherapy response using epigenetic therapy has arisen. Beyond helping to understand the biology of the disease, the use of modern clinical epigenetics is being incorporated into the management of the cancer patient. Potential epidrug candidates can be found through a process known as drug repositioning or repurposing, a promising strategy for the discovery of novel potential targets in already approved drugs. At present, novel epidrug candidates have been identified in preclinical studies and some others are currently being tested in clinical trials, ready to be repositioned. This epidrug repurposing could circumvent the classic paradigm where the main focus is the development of agents with one indication only, while giving patients lower cost therapies and a novel precision medical approach to optimize treatment efficacy and reduce toxicity. This review focuses on the main approved epidrugs, and their druggable targets, that are currently being used in cancer therapy. Also, we highlight the importance of epidrug repurposing by the rediscovery of known chemical entities that may enhance epigenetic therapy in cancer, contributing to the development of precision medicine in oncology.
Collapse
Affiliation(s)
- Michel Montalvo-Casimiro
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | - Marco Antonio Meraz-Rodriguez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | | | - Cristian Arriaga-Canon
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | - Luis A. Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
18
|
Randazzo O, Papini F, Mantini G, Gregori A, Parrino B, Liu DSK, Cascioferro S, Carbone D, Peters GJ, Frampton AE, Garajova I, Giovannetti E. "Open Sesame?": Biomarker Status of the Human Equilibrative Nucleoside Transporter-1 and Molecular Mechanisms Influencing its Expression and Activity in the Uptake and Cytotoxicity of Gemcitabine in Pancreatic Cancer. Cancers (Basel) 2020; 12:3206. [PMID: 33142664 PMCID: PMC7692081 DOI: 10.3390/cancers12113206] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 01/14/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive tumor characterized by early invasiveness, rapid progression and resistance to treatment. For more than twenty years, gemcitabine has been the main therapy for PDAC both in the palliative and adjuvant setting. After the introduction of FOLFIRINOX as an upfront treatment for metastatic disease, gemcitabine is still commonly used in combination with nab-paclitaxel as an alternative first-line regimen, as well as a monotherapy in elderly patients unfit for combination chemotherapy. As a hydrophilic nucleoside analogue, gemcitabine requires nucleoside transporters to permeate the plasma membrane, and a major role in the uptake of this drug is played by human equilibrative nucleoside transporter 1 (hENT-1). Several studies have proposed hENT-1 as a biomarker for gemcitabine efficacy in PDAC. A recent comprehensive multimodal analysis of hENT-1 status evaluated its predictive role by both immunohistochemistry (with five different antibodies), and quantitative-PCR, supporting the use of the 10D7G2 antibody. High hENT-1 levels observed with this antibody were associated with prolonged disease-free status and overall-survival in patients receiving gemcitabine adjuvant chemotherapy. This commentary aims to critically discuss this analysis and lists molecular factors influencing hENT-1 expression. Improved knowledge on these factors should help the identification of subgroups of patients who may benefit from specific therapies and overcome the limitations of traditional biomarker studies.
Collapse
Affiliation(s)
- Ornella Randazzo
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (O.R.); (F.P.); (G.M.); (A.G.); (G.J.P.); (I.G.)
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy; (B.P.); (S.C.); (D.C.)
| | - Filippo Papini
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (O.R.); (F.P.); (G.M.); (A.G.); (G.J.P.); (I.G.)
| | - Giulia Mantini
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (O.R.); (F.P.); (G.M.); (A.G.); (G.J.P.); (I.G.)
- Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza, 56017 Pisa, Italy
| | - Alessandro Gregori
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (O.R.); (F.P.); (G.M.); (A.G.); (G.J.P.); (I.G.)
| | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy; (B.P.); (S.C.); (D.C.)
| | - Daniel S. K. Liu
- Division of Cancer, Department of Surgery & Cancer, Imperial College, Hammersmith Hospital campus, London W12 0NN, UK;
| | - Stella Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy; (B.P.); (S.C.); (D.C.)
| | - Daniela Carbone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy; (B.P.); (S.C.); (D.C.)
| | - Godefridus J. Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (O.R.); (F.P.); (G.M.); (A.G.); (G.J.P.); (I.G.)
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Adam E. Frampton
- Division of Cancer, Department of Surgery & Cancer, Imperial College, Hammersmith Hospital campus, London W12 0NN, UK;
- Faculty of Health and Medical Sciences, The Leggett Building, University of Surrey, Guildford GU2 7XH, UK
| | - Ingrid Garajova
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (O.R.); (F.P.); (G.M.); (A.G.); (G.J.P.); (I.G.)
- Medical Oncology Unit, University Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (O.R.); (F.P.); (G.M.); (A.G.); (G.J.P.); (I.G.)
- Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza, 56017 Pisa, Italy
| |
Collapse
|
19
|
Yang C, Zhang J, Ma Y, Wu C, Cui W, Wang L. Histone methyltransferase and drug resistance in cancers. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:173. [PMID: 32859239 PMCID: PMC7455899 DOI: 10.1186/s13046-020-01682-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023]
Abstract
A number of novel anticancer drugs have been developed in recent years. However, the mortality of cancer patients remains high because of the emergence of drug resistance. It was reported that drug resistance might involved in changes in gene expression without changing genotypes, which is similar to epigenetic modification. Some studies indicated that targeting histone methyltransferase can reverse drug resistance. Hence, the use of histone methyltransferase inhibitors or histone demethylase inhibitors opens new therapeutic approaches for cancer treatment. While the relationship between histone methyltransferase and tumor resistance has been determined, there is a lack of updated review on the association between them. In this review, we summarized the mechanisms of histone methyltransferases in cancer drug resistance and the therapeutic strategies of targeting histone methyltransferase to reverse drug resistance.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, People's Republic of China
| | - Jiayu Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, People's Republic of China
| | - Yukui Ma
- Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, People's Republic of China
| | - Wei Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China. .,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, People's Republic of China.
| |
Collapse
|
20
|
Attia F, Fathy S, Anani M, Hassan A, Attia F, Ibrahim G, Elazab M. Human equilibrative nucleoside transporter-1 and deoxycytidine kinase can predict gemcitabine effectiveness in Egyptian patients with Hepatocellular carcinoma. J Clin Lab Anal 2020; 34:e23457. [PMID: 32671914 PMCID: PMC7676182 DOI: 10.1002/jcla.23457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 01/30/2023] Open
Abstract
Background Several biomarkers of gemcitabine effectiveness have been studied in cancers, but less so in hepatocellular carcinoma (HCC), which is identified as the fifth most common cancer worldwide. Investigation of human equilibrative nucleoside transporter‐1 (HENT‐1) and deoxycytidine kinase (DCK), genes involved in gemcitabine uptake and metabolism, can be beneficial in the selection of potential cancer patients who could be responding to the treatment. Aim To study HENT‐1 and DCK gene expression in HCC patients with different protocols of treatment. Methods Using real‐time PCR, we analyzed expression levels of HENT‐1 and DCK genes from peripheral blood samples of 109 patients (20 controls & 89 HCC patients) between March 2015 and March 2017. All the 89 HCC patients received the antioxidants selenium (Se) and vitamin E (Vit.E) either alone (45 patients) or in combination with gemcitabine (24 patients) or radiofrequency ablation (RFA) (20 patients). Results There was a significant increase in HENT‐1 expression levels in HCC patients treated with Se and Vit.E alone as compared to controls (P ˂ .0001), while there was no significant difference between HCC patients treated with gemcitabine or RFA as compared to controls. In contrast, expression of DCK was significantly increased in all groups of HCC patients as compared to controls (P ˂ .0001). Conclusions HENT‐1 and DCK mRNA expressions are important markers of HCC and for GEM effect and GEM sensitivity in patients with HCC. This could be beneficial in the selection of HCC patients sensitive to gemcitabine to avoid subjecting resistant patients to unnecessary chemotherapy.
Collapse
Affiliation(s)
- Fadia Attia
- Departments of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Sara Fathy
- Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Maha Anani
- Departments of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Adel Hassan
- Infectious and Endemic Disease Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Fawzy Attia
- Internal Medicine Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Gehan Ibrahim
- Departments of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Mona Elazab
- Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
21
|
Abstract
Multidrug resistance (MDR) is a vital issue in cancer treatment. Drug resistance can be developed through a variety of mechanisms, including increased drug efflux, activation of detoxifying systems and DNA repair mechanisms, and escape of drug-induced apoptosis. Identifying the exact mechanism related in a particular case is a difficult task. Proteomics is the large-scale study of proteins, particularly their expression, structures and functions. In recent years, comparative proteomic methods have been performed to analyze MDR mechanisms in drug-selected model cancer cell lines. In this paper, we review the recent developments and progresses by comparative proteomic approaches to identify potential MDR mechanisms in drug-selected model cancer cell lines, which may help understand and design chemical sensitizers.
Collapse
|
22
|
Asada K, Kaji K, Sato S, Seki K, Shimozato N, Kawaratani H, Takaya H, Sawada Y, Nakanishi K, Furukawa M, Kitade M, Moriya K, Namisaki T, Noguchi R, Akahane T, Yoshiji H. Hydralazine Sensitizes to the Antifibrotic Effect of 5-Aza-2'-deoxycytidine in Hepatic Stellate Cells. BIOLOGY 2020; 9:117. [PMID: 32503264 PMCID: PMC7345531 DOI: 10.3390/biology9060117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND Hepatic stellate cell (HSC) activation is essential for the development of liver fibrosis. Epigenetic machinery, such as DNA methylation, is largely involved in the regulation of gene expression during HSC activation. Although the pharmacological DNA demethylation of HSC using 5-aza-2'-deoxycytidine (5-aza-dC) yielded an antifibrotic effect, this drug has been reported to induce excessive cytotoxicity at a high dose. Hydralazine (HDZ), an antihypertensive agent, also exhibits non-nucleoside demethylating activity. However, the effect of HDZ on HSC activation remains unclear. In this study, we performed a combined treatment with 5-aza-dC and HDZ to obtain an enhanced antifibrotic effect with lower cytotoxicity. METHODS HSC-T6 cells were used as a rat HSC cell line in this study. The cells were cultivated together with 1 µM 5-Aza-dC and/or 10 µg/mL of HDZ, which were refreshed every 24 h until the 96 h treatment ended. Cell proliferation was measured using the WST-1 assay. The mRNA expression levels of peptidylprolyl isomerase A (Ppia), an internal control gene, collagen type I alpha 1 (Cola1), RAS protein activator like 1 (Rasal1), and phosphatase and tensin homolog deleted from chromosome 10 (Pten) were analyzed using quantitative reverse transcription polymerase chain reaction. RESULTS The percentage cell viability with 5-aza-dC, HDZ, and combined treatment vs. the vehicle-only control was 101.4 ± 2.5, 95.2 ± 5.7, and 79.2 ± 0.7 (p < 0.01 for 5-aza-dC and p < 0.01 for HDZ), respectively, in the 48 h treatment, and 52.4 ± 5.6, 65.9 ± 3.4, and 29.9 ± 1.3 (p < 0.01 for 5-aza-dC and p < 0.01 for HDZ), respectively, in the 96 h treatment. 5-Aza-dC and the combined treatment markedly decreased Cola1 mRNA levels. Accordingly, the expression levels of Rasal1 and Pten, which are antifibrotic genes, were increased by treatment after the 5-aza-dC and combined treatments. Moreover, single treatment with HDZ did not affect the expression levels of Cola1, Rasal1, or Pten. These results suggest that HDZ sensitizes to the antifibrotic effect of 5-aza-dC in HSC-T6 cells. The molecular mechanism underlying the sensitization to the antifibrotic effect of 5-aza-dC by HDZ remains to be elucidated. The expression levels of rat equilibrative nucleoside transporter genes (rEnt1, rEnt2, and rEnt3) were not affected by HDZ in this study. CONCLUSIONS Further confirmation using primary HSCs and in vivo animal models is desirable, but combined treatment with 5-aza-dC and HDZ may be an effective therapy for liver fibrosis without severe adverse effects.
Collapse
Affiliation(s)
- Kiyoshi Asada
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8521, Japan; (K.K.); (S.S.); (K.S.); (N.S.); (H.K.); (H.T.); (Y.S.); (K.N.); (M.F.); (M.K.); (K.M.); (T.N.); (R.N.); (T.A.); (H.Y.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Coronado-Posada N, Olivero-Verbel J. In silico evaluation of pesticides as potential modulators of human DNA methyltransferases. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2019; 30:865-878. [PMID: 31595789 DOI: 10.1080/1062936x.2019.1666165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
DNA methylations are carried out by DNA methyltransferases (DNMTs) that are key enzymes during gene expression. Many chemicals, including pesticides, have shown modulation of epigenetic functions by inhibiting DNMTs. In this work, human DNMTs were evaluated as a potential target for pesticides through virtual screening of 1038 pesticides on DNMT1 (3SWR) and DNMT3A (2QRV). Molecular docking calculations for DNMTs-pesticide complexes were performed using AutoDock Vina. Binding-affinity values and contact patterns were employed as selection criteria of pesticides as virtual hits for DNMTs. The best three DNMT-pesticides complexes selected according to their high absolute affinity values (kcal/mol), for both DNMT1 and DNMT3A, were flocoumafen (-12.5; -9.9), brodifacoum (-12.4; -8.4) and difenacoum (-12.1; -8.7). These chemicals belong to second-generation rodenticides. The most frequent predicted interacting residues for DNMT1-pesticide complexes were Trp1170A, Phe1145A, Asn1578A, Arg1574A and Pro1225A; whereas for DNMT3A those were Arg271B, Lys740A, and Glu303B. These results suggest that rodenticides used for pest control are potential DNMT ligands and therefore, may modulate DNA methylations. This finding has important environmental and clinical implications, as epigenetic pathways are critical in many biochemical processes leading to diseases.
Collapse
Affiliation(s)
- N Coronado-Posada
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia
| | - J Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia
| |
Collapse
|
24
|
Chen G, Yu X, Zhang M, Zheng A, Wang Z, Zuo Y, Liang Q, Jiang D, Chen Y, Zhao L, Jiang L, Li D, Liao S. Inhibition of Euchromatic Histone Lysine Methyltransferase 2 (EHMT2) Suppresses the Proliferation and Invasion of Cervical Cancer Cells. Cytogenet Genome Res 2019; 158:205-212. [DOI: 10.1159/000502072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2019] [Indexed: 12/18/2022] Open
Abstract
EHMT2 (euchromatic histone lysine methyltransferase 2), a histone methyltransferase, has been shown to be involved in multiple human cancers. In this study, we determined mRNA and protein expression of EHMT2 in cervical cancer cells and normal cervical epithelial cells. EHMT2 was inhibited with short hairpin RNA (shEHMT2) in cervical cancer cells. Cell viability, colony proliferation, apoptosis, adhesion, and invasion assays and Western blot were performed to assess the function of EHMT2. As a result, EHMT2 was upregulated in human cervical cancer cells compared to normal cervical epithelial cells. Suppression of EHMT2 expression impairs cell proliferation and induces apoptosis. Furthermore, EHMT2 silencing inhibited cell adhesion and invasion. Finally, knockdown of EHMT2 resulted in a reduction of the expression of the tumorigenic proteins Bcl-2, Mcl-1, and Survivin and in an increase in the expression of the anti-malignant protein E-cadherin. In conclusion, our data suggest that EHMT2 plays a key role in cell proliferation and metastatic capacity in cervical cancer cells and could serve as a potential therapeutic target.
Collapse
|
25
|
Sun Q, Xu W, Ji S, Qin Y, Liu W, Hu Q, Zhang Z, Liu M, Yu X, Xu X. Role of hepatocyte nuclear factor 4 alpha in cell proliferation and gemcitabine resistance in pancreatic adenocarcinoma. Cancer Cell Int 2019; 19:49. [PMID: 30867652 PMCID: PMC6398265 DOI: 10.1186/s12935-019-0767-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 02/28/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Hepatocyte nuclear factor 4α (HNF4α) is a tissue-specific transcription factor that regulates the expression of numerous genes in hepatocytes and pancreatic β cells. HNF4α has been reported to affect cell proliferation and chemoresistance in several cancers. However, the role of HNF4α in pancreatic adenocarcinoma (PDAC) has not been studied extensively and remains unclear. METHODS By utilizing immunohistochemical (IHC) staining, we measured the expression of HNF4α in PDAC tissues. By silencing HNF4α in PDAC cell lines, we assessed the impact of HNF4α on pancreatic cancer cell proliferation and gemcitabine sensitivity. We used CCK8 and colony formation assays to examine the effect of HNF4α on cell proliferation. A flow cytometry assay was used to assess cell apoptosis. The expression of gemcitabine-related genes was detected by quantitative real‑time PCR (qRT-PCR) and Western blotting. IHC was utilized to assess the correlation between HNF4α and human equilibrative nucleoside transporter 1 (hENT1) expression in PDAC patients. Chromatin immunoprecipitation (ChIP) and dual‑luciferase reporter assays were used to confirm that hENT1 is a target gene of HNF4α. RESULTS Increased HNF4α expression was detected in PDAC tissues; patients with higher HNF4α expression displayed worse prognosis. To elucidate the function of HNF4α, we examined its role in pancreatic cancer cell proliferation, apoptosis and gemcitabine resistance. In HNF4α-silenced Capan-1 and MiaPaCa-2 cells, we observed decreased cell proliferation and increased sensitivity to gemcitabine compared to those of controls. The mechanism of HNF4α in gemcitabine-related chemosensitivity was then explored. In response to HNF4α silencing, the expression levels of gemcitabine-related proteins, hENT1 and deoxycytidine kinase (dCK) were significantly increased. Additionally, hENT1 was negatively correlated with HNF4α in PDAC tissue samples. Moreover, we identified hENT1 as a downstream target of HNF4α. CONCLUSION HNF4α is a prognostic marker for overall survival, is required for pancreatic cancer cell proliferation and promotes resistance to gemcitabine by downregulating hENT1. Therefore, targeting HNF4α might reverse gemcitabine resistance and provide novel treatment strategies for PDAC.
Collapse
Affiliation(s)
- Qiqing Sun
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
| | - Wenyan Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
| | - Wensheng Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
| | - Qiangsheng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
| | - Zheng Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
| | - Mengqi Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
| |
Collapse
|
26
|
SARC018_SPORE02: Phase II Study of Mocetinostat Administered with Gemcitabine for Patients with Metastatic Leiomyosarcoma with Progression or Relapse following Prior Treatment with Gemcitabine-Containing Therapy. Sarcoma 2018; 2018:2068517. [PMID: 30473623 PMCID: PMC6220374 DOI: 10.1155/2018/2068517] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/07/2018] [Accepted: 10/02/2018] [Indexed: 02/07/2023] Open
Abstract
Histone deacetylase inhibitors (HDACi) can reverse chemoresistance, enhance chemotherapy-induced cytotoxicity, and reduce sarcoma proliferation in cell lines and animal models. We sought to determine the safety and toxicity of mocetinostat and its ability to reverse chemoresistance when administered with gemcitabine in patients with metastatic leiomyosarcoma resistant to prior gemcitabine-containing therapy. Participants with metastatic leiomyosarcoma received mocetinostat orally, 70 mg per day, three days per week, increasing to 90 mg after three weeks if well tolerated. Gemcitabine was administered at 1,000 mg/m2 intravenously at 10 mg/m2/minute on days five and 12 of every 21-day cycle. Disease response was evaluated with CT or MRI. Twenty participants with leiomyosarcoma were evaluated for toxicity. Median time to disease progression was 2.0 months (95% CI 1.54–3.12). Eighteen participants were evaluated for radiologic response by RECIST 1.1. Best responses included one PR and 12 SD. Tumor size reduced in 3 patients. Most common toxicities were fatigue, thrombocytopenia, anemia, nausea, and anorexia. One patient experienced a significant pericardial adverse event. No study-related deaths were observed. Rechallenging with gemcitabine by adding mocetinostat was feasible and demonstrated modest activity in patients with leiomyosarcoma. Further studies are needed to better define the role of HDAC inhibitors in patients with metastatic leiomyosarcoma.
Collapse
|
27
|
Freiburghaus C, Emruli VK, Johansson A, Eskelund CW, Grønbæk K, Olsson R, Ek F, Jerkeman M, Ek S. Bortezomib prevents cytarabine resistance in MCL, which is characterized by down-regulation of dCK and up-regulation of SPIB resulting in high NF-κB activity. BMC Cancer 2018; 18:466. [PMID: 29695239 PMCID: PMC5918903 DOI: 10.1186/s12885-018-4346-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 04/08/2018] [Indexed: 12/04/2022] Open
Abstract
Background The addition of high-dose cytarabine to the treatment of mantle cell lymphoma (MCL) has significantly prolonged survival of patients, but relapses are common and are normally associated with increased resistance. To elucidate the mechanisms responsible for cytarabine resistance, and to create a tool for drug discovery investigations, we established a unique and molecularly reproducible cytarabine resistant model from the Z138 MCL cell line. Methods Effects of different substances on cytarabine-sensitive and resistant cells were evaluated by assessment of cell proliferation using [methyl-14C]-thymidine incorporation and molecular changes were investigated by protein and gene expression analyses. Results Gene expression profiling revealed that major transcriptional changes occur during the initial phase of adaptation to cellular growth in cytarabine containing media, and only few key genes, including SPIB, are deregulated upon the later development of resistance. Resistance was shown to be mediated by down-regulation of the deoxycytidine kinase (dCK) protein, responsible for activation of nucleoside analogue prodrugs. This key event, emphasized by cross-resistance to other nucleoside analogues, did not only effect resistance but also levels of SPIB and NF-κB, as assessed through forced overexpression in resistant cells. Thus, for the first time we show that regulation of drug resistance through prevention of conversion of pro-drug into active drug are closely linked to increased proliferation and resistance to apoptosis in MCL. Using drug libraries, we identify several substances with growth reducing effect on cytarabine resistant cells. We further hypothesized that co-treatment with bortezomib could prevent resistance development. This was confirmed and show that the dCK levels are retained upon co-treatment, indicating a clinical use for bortezomib treatment in combination with cytarabine to avoid development of resistance. The possibility to predict cytarabine resistance in diagnostic samples was assessed, but analysis show that a majority of patients have moderate to high expression of dCK at diagnosis, corresponding well to the initial clinical response to cytarabine treatment. Conclusion We show that cytarabine resistance potentially can be avoided or at least delayed through co-treatment with bortezomib, and that down-regulation of dCK and up-regulation of SPIB and NF-κB are the main molecular events driving cytarabine resistance development. Electronic supplementary material The online version of this article (10.1186/s12885-018-4346-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Kirsten Grønbæk
- Department of Haematology, Rigshospitalet, Copenhagen, Denmark
| | - Roger Olsson
- Department of Experimental Medical Science, Chemical Biology & Therapeutics, Lund University, Lund, Sweden
| | - Fredrik Ek
- Department of Experimental Medical Science, Chemical Biology & Therapeutics, Lund University, Lund, Sweden
| | - Mats Jerkeman
- Department of Oncology, Lund University, Lund, Sweden
| | - Sara Ek
- Department of Immunotechnology, Lund University, Lund, Sweden.
| |
Collapse
|
28
|
Lopez G, Braggio D, Zewdu A, Casadei L, Batte K, Bid HK, Koller D, Yu P, Iwenofu OH, Strohecker A, Choy E, Lev D, Pollock R. Mocetinostat combined with gemcitabine for the treatment of leiomyosarcoma: Preclinical correlates. PLoS One 2017; 12:e0188859. [PMID: 29186204 PMCID: PMC5706733 DOI: 10.1371/journal.pone.0188859] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/14/2017] [Indexed: 02/07/2023] Open
Abstract
Leiomyosarcoma (LMS) is a malignant soft tissue sarcoma (STS) with a dismal prognosis following metastatic disease. Chemotherapeutic intervention has demonstrated to have modest clinical efficacy with no curative potential in LMS patients. Previously, we demonstrated pan-HDAC inhibition to have a superior effect in various complex karyotypic sarcomas. In this study, our goal is to evaluate the therapeutic efficacy of mocetinostat alone and in combination with gemcitabine in LMS. Human leiomyosarcoma (LMS) cell lines were used for in vitro and in vivo studies. Compounds tested included the class I HDAC inhibitor, mocetinostat, and nucleoside analog, gemcitabine. MTS and clonogenic assays were used to evaluate the effect of mocetinostat on LMS cell growth. Cleaved caspase 3/7 analysis was used to determine the effects of mocetinostat on apoptosis. Compusyn software was used to determine in vitro synergy studies for the combination of mocetinostat plus gemcitabine. A LMS xenograft model in SCID mice was used to test the impact of mocetinostat alone, gemcitabine alone and the combination of mocetinostat plus gemcitabine. Mocetinostat abrogated LMS cell growth and clonogenic potential, and enhanced apoptosis in LMS cell lines. The combination of mocetinostat plus gemcitabine exhibited a synergistic effect in LMS cells in vitro. Similarly, mocetinostat combined with gemcitabine resulted in superior anti-LMS effects in vivo. Mocetinostat reduced the expression of gemcitabine-resistance markers RRM1, RRM2, and increased the expression of gemcitabine-sensitivity marker, hENT1, in LMS cells. LMS are aggressive, metastatic tumors with poor prognosis where effective therapeutic interventions are wanting. Our studies demonstrate the potential utility of mocetinostat combined with gemcitabine for the treatment of LMS.
Collapse
Affiliation(s)
- Gonzalo Lopez
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Danielle Braggio
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Abeba Zewdu
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Lucia Casadei
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Kara Batte
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Hemant Kumar Bid
- Life Science Institute, University of Michigan, Ann Arbor, MI, United States of America
| | - David Koller
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Peter Yu
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Obiajulu Hans Iwenofu
- Department of Pathology, The Ohio State University, Columbus, OH, United States of America
| | - Anne Strohecker
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Edwin Choy
- Division of Hematology Oncology, Massachusetts General Hospital, Boston, MA, United States of America
| | - Dina Lev
- Surgery B, Sheba Medical Center, Tel Aviv, Israel
| | - Raphael Pollock
- Department of Surgery, The Ohio State University, Columbus, OH, United States of America
- * E-mail:
| |
Collapse
|
29
|
Encouraging results with the compassionate use of hydralazine/valproate (TRANSKRIP™) as epigenetic treatment for myelodysplastic syndrome (MDS). Ann Hematol 2017; 96:1825-1832. [DOI: 10.1007/s00277-017-3103-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/13/2017] [Indexed: 12/17/2022]
|
30
|
Candelaria M, Corrales-Alfaro C, Gutiérrez-Hernández O, Díaz-Chavez J, Labardini-Méndez J, Vidal-Millán S, Herrera LA. Expression Levels of Human Equilibrative Nucleoside Transporter 1 and Deoxycytidine Kinase Enzyme as Prognostic Factors in Patients with Acute Myeloid Leukemia Treated with Cytarabine. Chemotherapy 2016; 61:313-8. [PMID: 27119162 DOI: 10.1159/000445370] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 03/11/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Cytarabine (Ara-C) is the primary drug in different treatment schemas for acute myeloid leukemia (AML) and requires the human equilibrative nucleoside transporter (hENT1) to enter cells. The deoxycytidine kinase (dCK) enzyme limits its activation rate. Therefore, decreased expression levels of these genes may influence the response rate to this drug. METHODS AML patients without previous treatment were enrolled. The expression of hENT1 and dCK genes was analyzed using RT-PCR. Clinical parameters were registered. All patients received Ara-C + doxorubicin as an induction regimen (7 + 3 schema). Descriptive statistics were used to analyze data. Uni- and multivariate analyses were performed to determine factors that influenced response and survival. RESULTS Twenty-eight patients were included from January 2011 until December 2012. Median age was 36.5 years. All patients had an adequate performance status (43% with ECOG 1 and 57% with ECOG 2). Cytogenetic risk was considered unfavorable in 54% of the patients. Complete response was achieved in 53.8%. Cox regression analysis showed that a higher hENT1 expression level was the only factor that influenced response and survival. CONCLUSIONS These results highly suggest that the pharmacogenetic analyses of Ara-C influx may be decisive in AML patients.
Collapse
|
31
|
Lopez M, Halby L, Arimondo PB. DNA Methyltransferase Inhibitors: Development and Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:431-473. [DOI: 10.1007/978-3-319-43624-1_16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Chen CC, Lee KD, Pai MY, Chu PY, Hsu CC, Chiu CC, Chen LT, Chang JY, Hsiao SH, Leu YW. Changes in DNA methylation are associated with the development of drug resistance in cervical cancer cells. Cancer Cell Int 2015; 15:98. [PMID: 26464562 PMCID: PMC4604021 DOI: 10.1186/s12935-015-0248-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 10/05/2015] [Indexed: 12/31/2022] Open
Abstract
Background and propose Changes in DNA methylation are associated with changes in somatic cell fate without the alteration of coding sequences. In addition to its use as a traceable biomarker, reversible DNA methylation could also serve as a therapeutic target. In particular, if the development of drug resistance is associated with changes in DNA methylation, then demethylation might reverse the resistance phenotype. The reversion of the drug-resistance might then be feasible if the association between abnormal DNA methylation and the development of drug-resistance could be identified. Methods Methylation differences between the drug-resistance cervical cancer cell, SiHa, and its derived oxaliplatin-resistant S3 cells were detected by methylation specific microarray. The drug-resistance cells were treated with demethylation agent to see if the resistance phenotype were reversed. Targeted methylation of one of the identified locus in normal cell is expected to recapitulate the development of resistance and a two-component reporter system is adopted to monitor the increase of DNA methylation in live cells. Results In this report, we identified methylation changes, both genome-wide and within individual loci, in the oxaliplatin-resistant cervical cancer cell S3 compared with its parental cell line SiHa. Treatment of S3 with a demethylation agent reversed increases in methylation and allowed the expression of methylation-silenced genes. Treatment with the demethylation agent also restored the sensitivity of S3 to cisplatin, taxol, and oxaliplatin to the same level as that of SiHa. Finally, we found that methylation of the target gene Casp8AP2 is sufficient to increase drug resistance in different cells. Conclusions These results suggest that global methylation is associated with the development of drug resistance and could serve as a biomarker and therapeutic target for drug resistance in cervical cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12935-015-0248-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chih-Cheng Chen
- Department of Hematology and Oncology, Chang Gung Memorial Hospital, Chiayi, Chang Gung University College of Medicine, Taoyuan, Taiwan ; Chang Gung Institute of Technology, Taoyuan, Taiwan
| | - Kuan-Der Lee
- Department of Hematology and Oncology, Chang Gung Memorial Hospital, Chiayi, Chang Gung University College of Medicine, Taoyuan, Taiwan ; Chang Gung Institute of Technology, Taoyuan, Taiwan
| | - Mei-Yu Pai
- Department of Life Science, Human Epigenomics Center, Institute of Molecular Biology and Institute of Biomedical Science, National Chung Cheng University, Chiayi, 621 Taiwan
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua City, Taiwan
| | - Chia-Chen Hsu
- Department of Life Science, Human Epigenomics Center, Institute of Molecular Biology and Institute of Biomedical Science, National Chung Cheng University, Chiayi, 621 Taiwan
| | - Chia-Chen Chiu
- Department of Hematology and Oncology, Chang Gung Memorial Hospital, Chiayi, Chang Gung University College of Medicine, Taoyuan, Taiwan ; Chang Gung Institute of Technology, Taoyuan, Taiwan ; Department of Life Science, Human Epigenomics Center, Institute of Molecular Biology and Institute of Biomedical Science, National Chung Cheng University, Chiayi, 621 Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County 350 Taiwan
| | - Jang-Yang Chang
- Division of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704 Taiwan
| | - Shu-Huei Hsiao
- Department of Life Science, Human Epigenomics Center, Institute of Molecular Biology and Institute of Biomedical Science, National Chung Cheng University, Chiayi, 621 Taiwan
| | - Yu-Wei Leu
- Department of Life Science, Human Epigenomics Center, Institute of Molecular Biology and Institute of Biomedical Science, National Chung Cheng University, Chiayi, 621 Taiwan
| |
Collapse
|
33
|
Héninger E, Krueger TEG, Lang JM. Augmenting antitumor immune responses with epigenetic modifying agents. Front Immunol 2015; 6:29. [PMID: 25699047 PMCID: PMC4316783 DOI: 10.3389/fimmu.2015.00029] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/14/2015] [Indexed: 12/31/2022] Open
Abstract
Epigenetic silencing of immune-related genes is a striking feature of the cancer genome that occurs in the process of tumorigenesis. This phenomena impacts antigen processing and antigen presentation by tumor cells and facilitates evasion of immunosurveillance. Further modulation of the tumor microenvironment by altered expression of immunosuppressive cytokines impairs antigen-presenting cells and cytolytic T-cell function. The potential reversal of immunosuppression by epigenetic modulation is therefore a promising and versatile therapeutic approach to reinstate endogenous immune recognition and tumor lysis. Pre-clinical studies have identified multiple elements of the immune system that can be modulated by epigenetic mechanisms and result in improved antigen presentation, effector T-cell function, and breakdown of suppressor mechanisms. Recent clinical studies are utilizing epigenetic therapies prior to, or in combination with, immune therapies to improve clinical outcomes.
Collapse
Affiliation(s)
- Erika Héninger
- University of Wisconsin Carbone Cancer Center , Madison, WI , USA
| | | | - Joshua M Lang
- University of Wisconsin Carbone Cancer Center , Madison, WI , USA ; Department of Medicine, University of Wisconsin , Madison, WI , USA
| |
Collapse
|
34
|
Erdmann A, Halby L, Fahy J, Arimondo PB. Targeting DNA Methylation with Small Molecules: What’s Next? J Med Chem 2014; 58:2569-83. [DOI: 10.1021/jm500843d] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Alexandre Erdmann
- Epigenetic Targeting of Cancer,
USR3388 ETaC, CNRS-Pierre Fabre, 3 Avenue H. Curien, 31035 Toulouse Cedex 01, France
| | - Ludovic Halby
- Epigenetic Targeting of Cancer,
USR3388 ETaC, CNRS-Pierre Fabre, 3 Avenue H. Curien, 31035 Toulouse Cedex 01, France
| | - Jacques Fahy
- Epigenetic Targeting of Cancer,
USR3388 ETaC, CNRS-Pierre Fabre, 3 Avenue H. Curien, 31035 Toulouse Cedex 01, France
| | - Paola B Arimondo
- Epigenetic Targeting of Cancer,
USR3388 ETaC, CNRS-Pierre Fabre, 3 Avenue H. Curien, 31035 Toulouse Cedex 01, France
| |
Collapse
|
35
|
Yamanishi M, Narazaki H, Asano T. Melatonin overcomes resistance to clofarabine in two leukemic cell lines by increased expression of deoxycytidine kinase. Exp Hematol 2014; 43:207-14. [PMID: 25461250 DOI: 10.1016/j.exphem.2014.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/16/2014] [Accepted: 11/03/2014] [Indexed: 12/11/2022]
Abstract
Drug resistance remains a serious problem in leukemia therapy. Among newly developed nucleoside antimetabolites, clofarabine has broad cytotoxic activity showing therapeutic promise and is currently approved for relapsed acute lymphoblastic leukemia. To investigate the mechanisms responsible for clofarabine resistance, we established two clofarabine-resistant lymphoblastic leukemia cell lines from parental lines. To elucidate the mechanisms against clofarabine resistance in two newly established clofarabine-resistant cell lines, we measured the expression of export pumps multidrug resistance protein 1, multidrug resistance-associated protein 1, and ATP-binding cassette subfamily G member 2. There were no differences in the expression between clofarabine-sensitive and -resistant cell lines. Next, we determined expression of deoxycytidine kinase (dCK), which phosphorylates clofarabine to exert cytotoxicity, in clofarabine-sensitive and -resistant cells. Clofarabine-resistant cells showed significantly decreased expression of dCK RNA when compared with sensitive cells. To elucidate the mechanisms of decreased dCK expression in clofarabine-resistant cells, we analyzed the methylation status of CpG islands of the dCK promoter and found no differences in methylation status between clofarabine-sensitive and -resistant cells. Next, we measured the acetylation status of histone and found that total histone acetylation, and histone H3 and H4 acetylation on chromatin immunoprecipitation assay were significantly decreased in resistant cells. Melatonin is an indolamine that functions in the regulation of chronobiological rhythms to exert cytotoxic effects. We examined the effects of melatonin in clofarabine-resistant cells and found that melatonin treatment led to significantly increased cytotoxicity with clofarabine in resistant cells via increased acetylation. Melatonin may be a useful candidate for overcoming clofarabine resistance in two newly established clofarabine resistant leukemia cell lines.
Collapse
Affiliation(s)
- Miho Yamanishi
- Department of Pediatrics, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Japan
| | - Hidehiko Narazaki
- Department of Pediatrics, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Japan
| | - Takeshi Asano
- Department of Pediatrics, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Japan.
| |
Collapse
|
36
|
Chen J, Xu ZY, Wang F. Association between DNA methylation and multidrug resistance in human glioma SHG-44 cells. Mol Med Rep 2014; 11:43-52. [PMID: 25333456 PMCID: PMC4237088 DOI: 10.3892/mmr.2014.2690] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 06/11/2014] [Indexed: 01/03/2023] Open
Abstract
The aim of the present study was to evaluate the association between DNA methylation and multidrug resistance (MDR) in glioma and identify novel effectors responsible for MDR in human gliomas. An MDR glioma cell line, SGH-44/ADM, was developed using adriamycin (ADM) impulse treatment. Cryopreservation, recovery and withdrawal were performed to evaluate the stability of SGH-44/ADM cells. The adherence rate and cellular morphology were observed by microscopy, and the cell growth curve and doubling time were determined. DNA methylation was analyzed using a methylated DNA immunoprecipitation microarray chip (MeDIP-Chip). The cell cycle, Rh123 ingestion and exudation, and SGH-44/ADM apoptosis were analyzed by flow cytometry. SGH-44/ADM cells showed little difference as compared with parental cells, except that SGH-44/ADM cells were bigger in size with a wizened nucleus. Compared to SGH-44 cells, a larger proportion of SGH-44/ADM cells remained in G1 and S phase, as measured by flow cytometry. The MDR of SGH-44/ADM was associated with the upregulation of multi-drug resistance 1, prostaglandin-endoperoxide synthase 2 (COX-2); protein kinase C α (PKCα); however, the expression of these genes was not associated with DNA methylation. In the MeDIP-Chip analysis, 74 functions were markedly enhanced, and seven significant pathways were observed. Genes including SNAP47, ARRB2, PARD6B, TGFB1, VPS4B and CBLB were identified by gene ontology analysis. The predominant molecular mechanism of MDR in SGH-44/ADM cells was identified as exocytosis and efflux. The expression of COX-2, PKCα and P-glycoprotein (Pgp) was not found to be associated with DNA methylation. Genes including SNAP47, VAMP4 and VAMP3 may serve as the downstream effectors of Pgp, COX-2 or PKCα; however, further experiments are required to verify these observations.
Collapse
Affiliation(s)
- Jin Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Zhong-Ye Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Feng Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
37
|
PharmGKB summary: very important pharmacogene information for N-acetyltransferase 2. Pharmacogenet Genomics 2014; 24:409-25. [PMID: 24892773 DOI: 10.1097/fpc.0000000000000062] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Dueñas-Gonzalez A, Coronel J, Cetina L, González-Fierro A, Chavez-Blanco A, Taja-Chayeb L. Hydralazine-valproate: a repositioned drug combination for the epigenetic therapy of cancer. Expert Opin Drug Metab Toxicol 2014; 10:1433-44. [PMID: 25154405 DOI: 10.1517/17425255.2014.947263] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION DNA methylation (DNMTi) and histone deacetylase inhibitors (HDACi) are in development for cancer therapy. So far, four epigenetic drugs are approved for myelodysplastic syndrome (MDS) and cutaneous T-cell lymphoma (CTCL). The combination of hydralazine-valproate (TRANSKRIP(™)) is being repositioned as an oral DNMT and HDAC inhibitor. AREAS COVERED Brief discussion on the current status of epigenetic drugs and studies published on the preclinical and clinical development of the hydralazine-valproate combination. EXPERT OPINION Drug repositioning is a strategy for prompt and cost-efficient drug discovery. There is evidence that combining DNMTi with HDACi would be more efficacious than administering each agent on its own. Hydralazine-valproate is safe when used alone or in combination with chemotherapy or chemoradiation. The fact that both drugs are orally administered is another advantage over current epigenetic drugs. This combination is promising but larger studies are needed. Among these, the randomized Phase III trials in advanced and in locally advanced cervical cancer combined with chemotherapy and cisplatin-radiation respectively, would eventually confirm its efficacy. Studies on MDS and CTCL would also eventually prove the efficacy of hydralazine valproate so that in the coming years hydralazine-valproate could have a role in cancer epigenetic therapy.
Collapse
Affiliation(s)
- Alfonso Dueñas-Gonzalez
- Instituto de Investigaciones Biomédicas UNAM/Instituto Nacional de Cancerología Mexico, Unit of Biomedical Research on Cancer , Mexico City , Mexico
| | | | | | | | | | | |
Collapse
|
39
|
Guan X, Zhong X, Men W, Gong S, Zhang L, Han Y. Analysis of EHMT1 expression and its correlations with clinical significance in esophageal squamous cell cancer. Mol Clin Oncol 2013; 2:76-80. [PMID: 24649311 DOI: 10.3892/mco.2013.207] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/28/2013] [Indexed: 01/25/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a highly aggressive malignancy, requiring effective biomarkers for prognosis and therapeutic responsiveness. Histone H3K9 methyltransferases (EHMT1 and EHMT2) are global genome organizers, which are crucial for maintaining the balance state of cells in a tissue-specific manner. It was previously suggested that EHMT1 expression is a predictor of prognosis in several malignant tumors; however, the prognostic significance of EHMT1 expression in ESCC has not been determined. A cohort of 50 ESCC cases and 46 paired normal esophageal tissue samples were evaluated to assess the levels of EHMT1 expression by immunohistochemistry and reverse transcription-polymerase chain reaction. The SPSS software package was used for statistical data analysis. A significantly upregulated EHMT1 expression was observed in squamous preinvasive lesions and ESCC compared to the matched normal esophageal epithelia (52.0 vs. 21.7%, respectively). The expression of EHMT1 was correlated with tumor grade (G), depth of invasion (T) and lymph node metastasis (N) in ESCC. EHMT1 overexpression was found to be associated with poor cancer-specific survival in squamous cell carcinomas (χ2=3.922, P=0.048). The expression of EHMT1 was identified as an independent prognostic factor for overall survival in ESCC patients. In conclusion, EHMT1 expression is upregulated in ESCC and early preinvasive esophageal squamous lesions and the overexpression of EHMT1 is associated with poor prognosis in ESCC. Therefore, the expression of EHMT1 may be an effective prognostic biomarker for ESCC.
Collapse
Affiliation(s)
- Xiaojiao Guan
- Department of Pathology, Basic Science College, China Medical University, Shenyang, Liaoning, P.R. China
| | - Xinwen Zhong
- Departments of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Wanfu Men
- Departments of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Shulei Gong
- Departments of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Lin Zhang
- Departments of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Yuchen Han
- Department of Pathology, Basic Science College, China Medical University, Shenyang, Liaoning, P.R. China ; ; Pathology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| |
Collapse
|
40
|
Walters RJ, Williamson EJ, English DR, Young JP, Rosty C, Clendenning M, Walsh MD, Parry S, Ahnen DJ, Baron JA, Win AK, Giles GG, Hopper JL, Jenkins MA, Buchanan DD. Association between hypermethylation of DNA repetitive elements in white blood cell DNA and early-onset colorectal cancer. Epigenetics 2013; 8:748-55. [PMID: 23804018 DOI: 10.4161/epi.25178] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Changes in the methylation levels of DNA from white blood cells (WBCs) are putatively associated with an elevated risk for several cancers. The aim of this study was to investigate the association between colorectal cancer (CRC) and the methylation status of three DNA repetitive elements in DNA from peripheral blood. WBC DNA from 539 CRC cases diagnosed before 60 years of age and 242 sex and age frequency-matched healthy controls from the Australasian Colorectal Cancer Family Registry were assessed for methylation across DNA repetitive elements Alu, LINE-1 and Sat2 using MethyLight. The percentage of methylated reference (PMR) of cases and controls was calculated for each marker. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using multivariable logistic regression adjusted for potential confounders. CRC cases demonstrated a significantly higher median PMR for LINE-1 (p < 0.001), Sat2 (p < 0.001) and Alu repeats (p = 0.02) when compared with controls. For each of the DNA repetitive elements, individuals with PMR values in the highest quartile were significantly more likely to have CRC compared with those in the lowest quartile (LINE-1 OR = 2.34, 95%CI = 1.48-3.70; p < 0.001, Alu OR = 1.83, 95%CI = 1.17-2.86; p = 0.01, Sat2 OR = 1.72, 95%CI = 1.10-2.71; p = 0.02). When comparing the OR for the PMR of each marker across subgroups of CRC, only the Alu marker showed a significant difference in the 5-fluoruracil treated and nodal involvement subgroups (both p = 0.002). This association between increasing methylation levels of three DNA repetitive elements in WBC DNA and early-onset CRC is novel and may represent a potential epigenetic biomarker for early CRC detection.
Collapse
Affiliation(s)
- Rhiannon J Walters
- Cancer and Population Studies Group; Queensland Institute of Medical Research; Herston, QLD Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|