1
|
Granja TF, Köhler D, Leiss V, Eggstein C, Nürnberg B, Rosenberger P, Beer-Hammer S. Platelets and the Cybernetic Regulation of Ischemic Inflammatory Responses through PNC Formation Regulated by Extracellular Nucleotide Metabolism and Signaling. Cells 2022; 11:cells11193009. [PMID: 36230973 PMCID: PMC9561997 DOI: 10.3390/cells11193009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Ischemic events are associated with severe inflammation and are here referred to as ischemic inflammatory response (IIR). Recent studies identified the formation of platelet–neutrophil complexes (PNC) as key players in IIR. We investigated the role of extracellular platelet nucleotide signaling in the context of IIR and defined a cybernetic circle, including description of feedback loops. Cybernetic circles seek to integrate different levels of information to understand how biological systems function. Our study specifies the components of the cybernetic system of platelets in IIR and describes the theoretical progression of IIR passing the cybernetic cycle with positive and negative feedback loops based on nucleotide-dependent signaling and functional regulation. The cybernetic components and feedback loops were explored by cytometry, immunohistological staining, functional blocking antibodies, and ADP/ATP measurements. Using several ex vivo and in vivo approaches we confirmed cybernetic parameters, such as controller, sensor, and effector (VASP phosphorylation, P2Y12, ADORAs and GPIIb/IIIa activity), as well as set points (ADP, adenosine) and interfering control and disturbance variables (ischemia). We demonstrate the impact of the regulated platelet–neutrophil complex (PNC) formation in blood and the resulting damage to the affected inflamed tissue. Taken together, extracellular nucleotide signaling, PNC formation, and tissue damage in IIR can be integrated in a controlled cybernetic circle of platelet function, as introduced through this study.
Collapse
Affiliation(s)
- Tiago F. Granja
- Lusófona’s Research Center for Biosciences & Health Technologies, CBIOS–Universidade, Campo Grande 376, 1749-024 Lisboa, Portugal
- Department of Anesthesiology and Intensive Care Medicine, Tübingen University Hospital, Wilhelmstrasse 56, D-72074 Tübingen, Germany
| | - David Köhler
- Department of Anesthesiology and Intensive Care Medicine, Tübingen University Hospital, Wilhelmstrasse 56, D-72074 Tübingen, Germany
| | - Veronika Leiss
- Department of Pharmacology and Experimental Therapy and Toxicology and Interfaculty Center of Pharmacogenomics and Drug Research (ICePhA), Tübingen University Hospital, Wilhelmstrasse 56, D-72074 Tübingen, Germany
| | - Claudia Eggstein
- Department of Anesthesiology and Intensive Care Medicine, Tübingen University Hospital, Wilhelmstrasse 56, D-72074 Tübingen, Germany
| | - Bernd Nürnberg
- Department of Pharmacology and Experimental Therapy and Toxicology and Interfaculty Center of Pharmacogenomics and Drug Research (ICePhA), Tübingen University Hospital, Wilhelmstrasse 56, D-72074 Tübingen, Germany
| | - Peter Rosenberger
- Department of Anesthesiology and Intensive Care Medicine, Tübingen University Hospital, Wilhelmstrasse 56, D-72074 Tübingen, Germany
| | - Sandra Beer-Hammer
- Department of Pharmacology and Experimental Therapy and Toxicology and Interfaculty Center of Pharmacogenomics and Drug Research (ICePhA), Tübingen University Hospital, Wilhelmstrasse 56, D-72074 Tübingen, Germany
- Correspondence: ; Tel.: +49-7071-29-74594
| |
Collapse
|
2
|
Hou T, Tsang MS, Chu IM, Kan LL, Hon K, Leung T, Lam CW, Wong C. Skewed inflammation is associated with aberrant interleukin-37 signaling pathway in atopic dermatitis. Allergy 2021; 76:2102-2114. [PMID: 33569791 DOI: 10.1111/all.14769] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) is a severe global burden on physical, physiological, and mental health. The role of IL-37, a fundamental inhibitor of immunity, in AD was herein explored. METHOD Serum levels of IL-37 and T helper (Th) 2-related inflammatory mediators were quantified in subjects with or without AD. The expression of IL-37 receptors was determined by flow cytometry. Proteomics was employed to explore the serum protein profile and novel biomarkers. In vitro cell model, 3D-keratinocytes mimicking skin model, and the serum of subjects with or without AD were investigated to verify the proteomic results. RESULTS AD patients were found to present with higher levels of total and specific IgE as well as Th2 inflammatory mediators compared with healthy controls (HC). IL-37 level and its receptor IL18Rɑ expression in AD patients were significantly decreased, together with increased population of eosinophils, indicating that the signaling of IL37/IL18Rɑ was dampened. In addition, proteomic analysis revealed a significantly differential protein profile of AD patients compared with HC. IL-37 showed the strongest negative correlation with involucrin, a keratinizing epithelia protein. IL-37 was verified to suppress induced involucrin expression in in vitro skin cell models. AD patients show a significantly higher serum concentration of involucrin compared with HC. Together, our results demonstrated that IL-37 plays a regulatory role in AD. Its deficiency may lead to the aberrant involucrin expression in AD. CONCLUSIONS The dysregulation of serum protein and skin disruption in AD is related to the insufficiency of IL-37 and its attenuated anti-inflammatory signaling.
Collapse
Affiliation(s)
- Tianheng Hou
- Department of Chemical Pathology Prince of Wales HospitalThe Chinese University of Hong Kong Hong Kong China
| | - Miranda Sin‐Man Tsang
- Department of Chemical Pathology Prince of Wales HospitalThe Chinese University of Hong Kong Hong Kong China
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants The Chinese University of Hong Kong Hong Kong China
| | - Ida Miu‐Ting Chu
- Department of Chemical Pathology Prince of Wales HospitalThe Chinese University of Hong Kong Hong Kong China
| | - Lea Ling‐Yu Kan
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants The Chinese University of Hong Kong Hong Kong China
| | - Kam‐Lun Hon
- Department of Paediatrics The Chinese University of Hong KongPrince of Wales Hospital Hong Kong China
| | - Ting‐Fan Leung
- Department of Paediatrics The Chinese University of Hong KongPrince of Wales Hospital Hong Kong China
| | - Christopher Wai‐Kei Lam
- Faculty of Medicine and State Key Laboratory of Quality Research in Chinese Medicines Macau University of Science and Technology Macau China
| | - Chun‐Kwok Wong
- Department of Chemical Pathology Prince of Wales HospitalThe Chinese University of Hong Kong Hong Kong China
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants The Chinese University of Hong Kong Hong Kong China
| |
Collapse
|
3
|
Granja T, Magunia H, Schüssel P, Fischer C, Prüfer T, Schibilsky D, Serna-Higuita L, Wendel HP, Schlensak C, Häberle H, Rosenberger P, Straub A. Left ventricular assist device implantation causes platelet dysfunction and proinflammatory platelet-neutrophil interaction. Platelets 2020; 33:132-140. [PMID: 33347335 DOI: 10.1080/09537104.2020.1859101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Blood flow through left ventricular assist devices (LVAD) may induce activation and dysfunction of platelets. Dysfunctional platelets cause coagulation disturbances and form platelet-neutrophil conjugates (PNC), which contribute to inflammatory tissue damage. This prospective observational cohort study investigated patients, who underwent implantation of a LVAD (either HeartMate II (HM II) (n = 7) or HeartMate 3 (HM 3) (n = 6)) and as control patients undergoing coronary artery bypass grafting (CABG) and/or aortic valve replacement (AVR) (n = 10). We performed platelet and leukocyte flow cytometry, analysis of platelet activation markers, and platelet aggregometry. Platelet CD42b expression was reduced at baseline and perioperatively in HM II/3 compared to CABG/AVR patients. After surgery the platelet activation marker β-thromboglobulin and platelet microparticles increased in all groups while platelet aggregation decreased. Platelet aggregation was more significantly impaired in LVAD compared to CABG/AVR patients. PNC were higher in HM II compared to HM 3 patients. We conclude that LVAD implantation is associated with platelet dysfunction and proinflammatory platelet-leukocyte binding. These changes are less pronounced in patients treated with the newer generation LVAD HM 3. Future research should identify device-specific LVAD features, which are associated with the least amount of platelet activation to further improve LVAD therapy.
Collapse
Affiliation(s)
- Tiago Granja
- Dept. of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Harry Magunia
- Dept. of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Patricia Schüssel
- Dept. of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany.,Dept. of Urology, Caritas Hospital, Bad Mergentheim, Germany
| | - Claudius Fischer
- Dept. of Anesthesiology and Intensive Care Medicine, MediClin Herzzentrum, Lahr/Baden, Germany
| | - Thomas Prüfer
- Dept. of Anesthesiology and Intensive Care Medicine, Klinikum Bayreuth, Germany
| | - David Schibilsky
- University Heart Center Freiburg / Bad Krozingen, Faculty of Medicine, University of Freiburg, Germany.,Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Germany
| | - Lina Serna-Higuita
- Dept. of Thoracic, Cardiac and Vascular Surgery, University Hospital, Tübingen Germany
| | - Hans Peter Wendel
- Dept. of Anesthesiology, Intensive Care, Emergency, and Pain Medicine, St. Elisabethen Klinikum, Ravensburg, Germany
| | - Christian Schlensak
- Dept. of Anesthesiology, Intensive Care, Emergency, and Pain Medicine, St. Elisabethen Klinikum, Ravensburg, Germany
| | - Helene Häberle
- Dept. of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Peter Rosenberger
- Dept. of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Andreas Straub
- Dept. of Anesthesiology, Intensive Care, Emergency, and Pain Medicine, St. Elisabethen Klinikum, Ravensburg, Germany
| |
Collapse
|
4
|
Phosphorylation of vasodilator-stimulated phosphoprotein contributes to myocardial ischemic preconditioning. Basic Res Cardiol 2018; 113:11. [PMID: 29344719 DOI: 10.1007/s00395-018-0667-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 11/15/2017] [Accepted: 01/03/2018] [Indexed: 12/13/2022]
Abstract
Ischemic preconditioning (IP) is a well-known strategy to protect organs against cell death following ischemia. The previous work has shown that vasodilator-stimulated phosphoprotein (VASP) is involved in cytoskeletal reorganization and that it holds significant importance for the extent of myocardial ischemia reperfusion injury. Yet, the role of VASP during myocardial IP is, to date, not known. We report here that VASP phosphorylation at serine157 and serine239 is induced during hypoxia in vitro and during IP in vivo. The preconditioning-induced VASP phosphorylation inactivates the GP IIb/IIIa integrin receptor on platelets, which results in the reduced formation of organ compromising platelet neutrophil complexes. Experiments in chimeric mice confirmed the importance of VASP phosphorylation during myocardial IP. When studying this in VASP-/- animals and in an isolated heart model, we were able to confirm the important role of VASP on myocardial IP. In conclusion, we were able to show that IP-induced VASP phosphorylation in platelets is a protective mechanism against the deleterious effects of ischemia.
Collapse
|
5
|
Adenosine Receptor Adora2b Plays a Mechanistic Role in the Protective Effect of the Volatile Anesthetic Sevoflurane during Liver Ischemia/Reperfusion. Anesthesiology 2016; 125:547-60. [DOI: 10.1097/aln.0000000000001234] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract
Background
Liver ischemia/reperfusion (IR) injury is characterized by hepatic tissue damage and an inflammatory response. This is accompanied by the formation and vascular sequestration of platelet–neutrophil conjugates (PNCs). Signaling through Adora2b adenosine receptors can provide liver protection. Volatile anesthetics may interact with adenosine receptors. This study investigates potential antiinflammatory effects of the volatile anesthetic sevoflurane during liver IR.
Methods
Experiments were performed ex vivo with human blood and in a liver IR model with wild-type, Adora2a−/−, and Adora2b−/− mice. The effect of sevoflurane on platelet activation, PNC formation and sequestration, cytokine release, and liver damage (alanine aminotransferase release) was analyzed using flow cytometry, luminometry, and immunofluorescence. Adenosine receptor expression in liver tissue was analyzed using immunohistochemistry and real-time polymerase chain reaction.
Results
Ex vivo experiments indicate that sevoflurane inhibits platelet and leukocyte activation (n = 5). During liver IR, sevoflurane (2 Vol%) decreased PNC formation 2.4-fold in wild-type (P < 0.05) but not in Adora2b−/− mice (n ≥ 5). Sevoflurane reduced PNC sequestration 1.9-fold (P < 0.05) and alanine aminotransferase release 3.5-fold (P < 0.05) in wild-type but not in Adora2b−/− mice (n = 5). In Adora2a−/− mice, sevoflurane also inhibited PNC formation and cytokine release. Sevoflurane diminished cytokine release (n ≥ 3) and increased Adora2b transcription and expression in liver tissue of wild-types (n = 4).
Conclusions
Our experiments highlight antiinflammatory and tissue-protective properties of sevoflurane during liver IR and reveal a mechanistic role of Adora2b in sevoflurane-associated effects. The targeted use of sevoflurane not only as an anesthetic but also to prevent IR damage is a promising approach in the treatment of critically ill patients.
Collapse
|
6
|
|
7
|
Slaba I, Wang J, Kolaczkowska E, McDonald B, Lee WY, Kubes P. Imaging the dynamic platelet-neutrophil response in sterile liver injury and repair in mice. Hepatology 2015. [PMID: 26202541 DOI: 10.1002/hep.28003] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
UNLABELLED Although platelets have been extensively studied in hemostasis and inflammation, their role is not well understood in sterile liver injury and repair. Using a thermally induced focal liver injury and repair model and multichannel spinning disk confocal microscopy allowed visualization of the dynamic behavior of platelets and neutrophils in this insult. Platelets instantaneously adhered to molecularly altered sinusoidal endothelium adjacent to the afflicted area, paving approximately 200 µm abutting the injury. Platelets remained adherent for at least 4 hours, but dissipated by 8 hours. The early recruitment occurred by GPIIbIIIa (CD41) and the later recruitment was dependent upon both GPIIbIIIa and GPIb (CD42B). Platelets did not occlude the vessels, but rather paved the altered endothelium. Endothelin-induced vasoconstriction by hepatic stellate cells, and not platelet accumulation or coagulation, was responsible for temporarily restricted perfusion around the injury. Neutrophils crawled into the injury from significant distances through the sinusoids. The crawling neutrophils required the platelet-paved endothelium given that very little neutrophil recruitment was noted in thrombocytopenic or CD41-deficient mice. As platelets slowly dissipated, neutrophil recruitment was also halted. Previous work suggested that platelets binding to immobilized neutrophils induced neutrophil extracellular trap (NET) formation in response to infection as well as during thrombosis and other forms of sterile injury. In this model of neutrophils crawling on immobilized platelets, very few NETs were observed and no additional injury was noted. In fact, GPIIbIIIa-deficient mice had delayed repair. CONCLUSION In a liver model of sterile injury and repair, platelets play a critical role in forming a substratum and pave the way for neutrophils to enter the injured site for subsequent repair.
Collapse
Affiliation(s)
- Ingrid Slaba
- Department of Critical Care Medicine, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Jing Wang
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Elzbieta Kolaczkowska
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Department of Evolutionary Immunology, Jagiellonian University, Krakow, Poland
| | - Braedon McDonald
- Department of Critical Care Medicine, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Woo-Yong Lee
- Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Paul Kubes
- Department of Critical Care Medicine, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
8
|
Scutellarin's Cardiovascular Endothelium Protective Mechanism: Important Role of PKG-Iα. PLoS One 2015; 10:e0139570. [PMID: 26440524 PMCID: PMC4594915 DOI: 10.1371/journal.pone.0139570] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 09/15/2015] [Indexed: 11/21/2022] Open
Abstract
Scutellarin (SCU), a flavonoid glycoside compound, has been successfully used in clinic for treatment of ischemic diseases in China. In this report, we checked the effects of SCU on endothelium dysfunction (ED) of coronary artery (CA) against myocardial ischemia reperfusion (MIR) injury in vivo. The involvement of PKG-Iα was further studied using cultured endothelial cells subjected to hypoxia reoxygenation (HR) injury in vitro. In rat MIR model, SCU (45 and 90 mg/kg, iv) significantly reduced ischemic size and restored the endothelium-dependent vasodilation of isolated CA rings. PKG inhibitor Rp-8-Br-cGMP (50 μg/kg, iv) could ameliorate the protective effects of SCU. Increase in phosphorylation of vasodilator-stimulated phosphoprotein (VASP), a main substrate of PKG, at Ser 239 was observed in both heart tissue and serum of SCU-treated animals. In cultured human cardiac microvascular endothelial cells (HCMECs), SCU (1 and 10 μM) dose-dependently protected cell viability and increased the mRNA and protein level of PKG-Iα against HR injury. The activity of PKG was also increased by SCU treatment. The activation of PKG–1α was then studied using targeted proteomic analysis (MRM-MS) checking the phosphorylation state of the autophosphorylation domain (aa42-94). Significant decrease in phosphorylation of PKG-Iα at Ser50, Ser72, Ser89 was induced by HR injury while SCU treatment significantly increased the phosphorylation of PKG-Iα, not only at Ser50, Ser72 and Ser89, but also at Ser44 and Thr58 (two novel phosphorylation domains). Our results demonstrate PKG-Iα might play an important role in the protective effects of SCU on ED against MIR injury.
Collapse
|
9
|
Granja T, Schad J, Schüssel P, Fischer C, Häberle H, Rosenberger P, Straub A. Using six-colour flow cytometry to analyse the activation and interaction of platelets and leukocytes – A new assay suitable for bench and bedside conditions. Thromb Res 2015; 136:786-96. [DOI: 10.1016/j.thromres.2015.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 07/03/2015] [Accepted: 07/08/2015] [Indexed: 11/28/2022]
|
10
|
Masuda T, Iwashita Y, Hagiwara S, Ohta M, Inomata M, Noguchi T, Kitano S. WITHDRAWN: Alpha-lipoic acid derivate DHLHZn reduces hepatic ischemia/reperfusion injury by inhibition of pro-inflammatory signaling. J Surg Res 2012. [DOI: 10.1016/j.jss.2012.04.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|