1
|
The Entomopathogenic Fungus Beauveria bassiana Employs Autophagy as a Persistence and Recovery Mechanism during Conidial Dormancy. mBio 2023; 14:e0304922. [PMID: 36809079 PMCID: PMC10128008 DOI: 10.1128/mbio.03049-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Many filamentous fungi develop a conidiation process as an essential mechanism for their dispersal and survival in natural ecosystems. However, the mechanisms underlying conidial persistence in environments are still not fully understood. Here, we report that autophagy is crucial for conidial lifespans (i.e., viability) and vitality (e.g., stress responses and virulence) in the filamentous mycopathogen Beauveria bassiana. Specifically, Atg11-mediated selective autophagy played an important, but not dominant, role in the total autophagic flux. Furthermore, the aspartyl aminopeptidase Ape4 was found to be involved in conidial vitality during dormancy. Notably, the vacuolar translocation of Ape4 was dependent on its physical interaction with autophagy-related protein 8 (Atg8) and associated with the autophagic role of Atg8, as determined through a truncation assay of a critical carboxyl-tripeptide. These observations revealed that autophagy acted as a subcellular mechanism for conidial recovery during dormancy in environments. In addition, a novel Atg8-dependent targeting route for vacuolar hydrolase was identified, which is essential for conidial exit from a long-term dormancy. These new insights improved our understanding of the roles of autophagy in the physiological ecology of filamentous fungi as well as the molecular mechanisms involved in selective autophagy. IMPORTANCE Conidial environmental persistence is essential for fungal dispersal in ecosystems while also serving as a determinant for the biocontrol efficacy of entomopathogenic fungi during integrated pest management. This study identified autophagy as a mechanism to safeguard conidial lifespans and vitality postmaturation. In this mechanism, the aspartyl aminopeptidase Ape4 translocates into vacuoles via its physical interaction with autophagy-related protein 8 (Atg8) and is involved in conidial vitality during survival. The study revealed that autophagy acted as a subcellular mechanism for maintaining conidial persistence during dormancy, while also documenting an Atg8-dependent targeting route for vacuolar hydrolase during conidial recovery from dormancy. Thus, these observations provided new insight into the roles of autophagy in the physiological ecology of filamentous fungi and documented novel molecular mechanisms involved in selective autophagy.
Collapse
|
2
|
Yang F, Xie XH, Li X, Liao HN, Zou B. Analysis of Psychological and Gut Microbiome Characteristics in Patients With Non-erosive Reflux Disease. Front Psychiatry 2021; 12:741049. [PMID: 35095588 PMCID: PMC8793911 DOI: 10.3389/fpsyt.2021.741049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: To assess the correlation between the incidence of non-erosive reflux disease (NERD) and psychological factors, especially somatoform disorders. To investigate the characteristics of gut microbiome in NERD patients. Methods: We enrolled 24 NERD patients and 24 healthy controls. All patients were evaluated via GerdQ, SOMS-7, SAS, HAMA, and HAMD. Fecal samples were collected and 16S rRNA sequencing was performed to evaluate the gut microbiome composition. Results: The main symptoms of the NERD patients were regurgitation (87.5%), belching (66.7%), pharyngeal discomfort (50%), and heartburn (37.5%). The average score of GerdQ was 13.42 ± 3.41. In 15 patients (62.5%), the total score of the last two items was <3 points, while the average score of 24 patients was 3.63 ± 2.32. NERD patients with somatoform disorders accounted for 50%. There were 17 patients without anxiety, 6 patients with mild anxiety (25%), 1 patient with moderate anxiety (4.2%), and no patient with severe anxiety. There were 22 patients (91.7%) without depression, 2 patients (8.3%) with mild depression, and no patient with moderate or severe depression. The alpha diversity of NERD group was higher than HC, which showed significant difference (P < 0.05). The beta-diversity was significantly different between HC and NERD patients (P = 0.026), male and female patients (P = 0.009). The beta-diversity was also significantly different between male and female patients (P = 0.009). There were several bacteria with significant differences between HC and NERD group, and NERD patients with or without somatoform disorders, such as Firmicutes, TM7 were enriched in the NERD group compared with the healthy control group, while Bacteroidetes were enriched in the healthy controls. Conclusions: NERD symptoms overlap with somatoform disorders. NERD symptoms have an impact on the daily life quality of patients. Some of them are accompanied by anxiety and depression of different degrees, and the two are significantly correlated. The diversity of gut microbiome in patients with NERD is significantly higher than healthy controls, which has its characteristics. The predominant bacteria in gut microbiome of patients with NERD are similar to the healthy population, with Firmicutes and Bacteroidetes as the main ones. The composition of gut microbiome in NERD patients with or without somatoform disorder is significantly different, which may be related to the interaction of microbiome-brain-gut axis.
Collapse
Affiliation(s)
- Fan Yang
- Department of Gastroenterology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xin-Hui Xie
- Department of Psychiatry, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen, China.,Brain Function and Psychosomatic Medicine Institute, Second People's Hospital of Huizhou, Huizhou, China.,Center of Acute Psychiatry Service, Second People's Hospital of Huizhou, Huizhou, China
| | - Xi Li
- Department of Gastroenterology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hui-Na Liao
- Department of Gastroenterology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Bing Zou
- Department of Gastroenterology, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
3
|
Yamawaki C, Oyama M, Yamaguchi Y, Ogita A, Tanaka T, Fujita KI. Curcumin potentiates the fungicidal effect of dodecanol by inhibiting drug efflux in wild-type budding yeast. Lett Appl Microbiol 2018; 68:17-23. [PMID: 30276838 DOI: 10.1111/lam.13083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/18/2018] [Accepted: 09/27/2018] [Indexed: 12/01/2022]
Abstract
Drug resistance commonly occurs when treating immunocompromised patients who have fungal infections. Curcumin, is a compound isolated from Curcuma longa, has been reported to inhibit drug efflux in several human cell lines and nonpathogenic budding yeast Saccharomyces cerevisiae cells that overexpresses the ATP-binding cassette (ABC) transporters S. cerevisiae Pdr5p and pathogenic Candida albicans Cdr1p and Cdr2p. The aim of this study was to examine the effects of curcumin on multidrug resistance in a wild-type strain of the budding yeast with an intrinsic expression system of multidrug efflux-related genes. The antifungal activity of dodecanol alone was temporary against S. cerevisiae; however, restoration of cell viability was completely inhibited when the cells were co-treated with dodecanol and curcumin. Furthermore, restriction of rhodamine 6G (R6G) efflux from the cells and intracellular accumulation of R6G were observed with curcumin treatment. Reverse transcription-polymerase chain reaction analysis revealed that curcumin reduced the dodecanol-induced overexpression of the ABC transporter-related genes PDR1, PDR3 and PDR5 to their control levels in untreated cells. Curcumin can directly restrict the glucose-induced drug efflux and inhibits the expression of the ABC transporter gene PDR5, and can thereby inhibit the efflux of dodecanol from S. cerevisiae cells. Curcumin is effective in potentiating the efficacy of antifungal drugs via its effects on ABC transporters. SIGNIFICANCE AND IMPACT OF THE STUDY: Drug resistance is common in immunocompromised patients with fungal infections. Curcumin, isolated from Curcuma longa, inhibits drug efflux in nonpathogenic budding yeast Saccharomyces cerevisiae cells overexpressing ABC transporters S. cerevisiae Pdr5p and pathogenic Candida albicans Cdr1p and Cdr2p. We examined the effects of curcumin on multidrug resistance in a wild-type strain of the budding yeast with an intrinsic expression system of multidrug efflux-related genes. Curcumin directly inhibited drug efflux and also suppressed the PDR5 expression, thereby enhancing the antifungal effects. Thus, curcumin potentially promotes the efficacy of antifungals via its effects on ABC transporters in wild-type fungal strains.
Collapse
Affiliation(s)
- C Yamawaki
- Graduate School of Science, Osaka City University, Osaka, Japan
| | - M Oyama
- Graduate School of Science, Osaka City University, Osaka, Japan
| | - Y Yamaguchi
- Graduate School of Science, Osaka City University, Osaka, Japan.,Advanced Research Institute for Natural Science and Technology, Osaka City University, Osaka, Japan
| | - A Ogita
- Graduate School of Science, Osaka City University, Osaka, Japan.,Research Center for Urban Health and Sports, Osaka City University, Osaka, Japan
| | - T Tanaka
- Graduate School of Science, Osaka City University, Osaka, Japan
| | - K-I Fujita
- Graduate School of Science, Osaka City University, Osaka, Japan
| |
Collapse
|
4
|
Wang X, Liang Z, Hou J, Shen Y, Bao X. The Absence of the Transcription Factor Yrr1p, Identified from Comparative Genome Profiling, Increased Vanillin Tolerance Due to Enhancements of ABC Transporters Expressing, rRNA Processing and Ribosome Biogenesis in Saccharomyces cerevisiae. Front Microbiol 2017; 8:367. [PMID: 28360888 PMCID: PMC5352702 DOI: 10.3389/fmicb.2017.00367] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/21/2017] [Indexed: 12/26/2022] Open
Abstract
Enhancing the tolerance of Saccharomyces cerevisiae to inhibitors derived from lignocellulose is conducive to producing biofuel and chemicals using abundant lignocellulosic materials. Vanillin is a major type of phenolic inhibitor in lignocellulose hydrolysates for S. cerevisiae. In the present work, the factors beneficial to vanillin resistance in yeast were identified from the vanillin-resistant strain EMV-8, which was derived from strain NAN-27 by adaptive evolution. We found 450 SNPs and 44 genes with InDels in the vanillin-tolerant strain EMV-8 by comparing the genome sequences of EMV-8 and NAN-27. To investigate the effects of InDels, InDels were deleted in BY4741, respectively. We demonstrated that the deletion of YRR1 improved vanillin tolerance of strain. In the presence of 6 mM vanillin, deleting YRR1 increase the maximum specific growth rate and the vanillin consumption rate by 142 and 51%, respectively. The subsequent transcriptome analysis revealed that deleting YRR1 resulted in changed expression of over 200 genes in the presence of 5 mM vanillin. The most marked changes were the significant up-regulation of the dehydrogenase ADH7, several ATP-binding cassette (ABC) transporters, and dozens of genes involved in ribosome biogenesis and rRNA processing. Coincidently, the crude enzyme solution of BY4741(yrr1Δ) exhibited higher NADPH-dependent vanillin reduction activity than control. In addition, overexpressing the ABC transporter genes PDR5, YOR1, and SNQ2, as well as the RNA helicase gene DBP2, increased the vanillin tolerance of strain. Interestingly, unlike the marked changes we mentioned above, under vanillin-free conditions, there are only limited transcriptional differences between wildtype and yrr1Δ. This indicated that vanillin might act as an effector in Yrr1p-related regulatory processes. The new findings of the relationship between YRR1 and vanillin tolerance, as well as the contribution of rRNA processing and ribosome biogenesis to enhancing S. cerevisiae vanillin tolerance, provide novel targets for genetic engineering manipulation to improve microbes' tolerance to lignocellulose hydrolysate.
Collapse
Affiliation(s)
- Xinning Wang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University Jinan, China
| | - Zhenzhen Liang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University Jinan, China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University Jinan, China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University Jinan, China
| | - Xiaoming Bao
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong UniversityJinan, China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of TechnologyJinan, China
| |
Collapse
|
5
|
Dou W, Zhu J, Wang T, Wang W, Li H, Chen X, Guan W. Mutations of charged amino acids at the cytoplasmic end of transmembrane helix 2 affect transport activity of the budding yeast multidrug resistance protein Pdr5p. FEMS Yeast Res 2016; 16:fow031. [PMID: 27189366 DOI: 10.1093/femsyr/fow031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2016] [Indexed: 01/06/2023] Open
Abstract
Pdr5p is a major ATP-binding cassette (ABC) transporter in Saccharomyces cerevisiae. It displays a sequence and functional homology to the pathogenic Candida albicans multidrug resistance protein Cdr1p. The transmembrane helices of Pdr5p act in substrate recognition, binding, translocation and eventual removal of toxic substances out of the plasma membrane via the formation of a binding pocket. In this study, we identify two novel Pdr5 mutants (E574K and E580K), which exhibit impaired substrate efflux functions. Both mutants remained hypersensitive to all tested Pdr5p substrates without affecting their protein expression levels, localization or ATPase activities. As E574 and E580 are both located adjacent to the predicted cytoplasmic end of transmembrane helix 2, this implies that such charged residues are functionally essential for Pdr5p. Molecular docking studies suggest the possibility that oppositely charged substitution at residue E574 may disturb the interaction between the substrates and Pdr5p, resulting in impaired transport activity. Our results present new evidence, suggesting that transmembrane helix 2 plays an important role for the efflux function of Pdr5p.
Collapse
Affiliation(s)
- Weiwang Dou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jianhua Zhu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Tanjun Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Wei Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Han Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xin Chen
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolism Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Wenjun Guan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolism Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
6
|
Prasad R, Rawal MK. Efflux pump proteins in antifungal resistance. Front Pharmacol 2014; 5:202. [PMID: 25221515 PMCID: PMC4148622 DOI: 10.3389/fphar.2014.00202] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/13/2014] [Indexed: 11/13/2022] Open
Abstract
It is now well-known that the enhanced expression of ATP binding cassette (ABC) and major facilitator superfamily (MFS) proteins contribute to the development of tolerance to antifungals in yeasts. For example, the azole resistant clinical isolates of the opportunistic human fungal pathogen Candida albicans show an overexpression of Cdr1p and/or CaMdr1p belonging to ABC and MFS superfamilies, respectively. Hence, azole resistant isolates display reduced accumulation of therapeutic drug due to its rapid extrusion and that facilitates its survival. Considering the importance of major antifungal transporters, the focus of recent research has been to understand the structure and function of these proteins to design inhibitors/modulators to block the pump protein activity so that the drug already in use could again sensitize resistant yeast cells. The review focuses on the structure and function of ABC and MFS transporters of Candida to highlight the recent advancement in the field.
Collapse
Affiliation(s)
- Rajendra Prasad
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University New Delhi, India
| | - Manpreet K Rawal
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University New Delhi, India
| |
Collapse
|
7
|
Structure and mechanism of ATP-dependent phospholipid transporters. Biochim Biophys Acta Gen Subj 2014; 1850:461-75. [PMID: 24746984 DOI: 10.1016/j.bbagen.2014.04.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND ATP-binding cassette (ABC) transporters and P4-ATPases are two large and seemingly unrelated families of primary active pumps involved in moving phospholipids from one leaflet of a biological membrane to the other. SCOPE OF REVIEW This review aims to identify common mechanistic features in the way phospholipid flipping is carried out by two evolutionarily unrelated families of transporters. MAJOR CONCLUSIONS Both protein families hydrolyze ATP, although they employ different mechanisms to use it, and have a comparable size with twelve transmembrane segments in the functional unit. Further, despite differences in overall architecture, both appear to operate by an alternating access mechanism and during transport they might allow access of phospholipids to the internal part of the transmembrane domain. The latter feature is obvious for ABC transporters, but phospholipids and other hydrophobic molecules have also been found embedded in P-type ATPase crystal structures. Taken together, in two diverse groups of pumps, nature appears to have evolved quite similar ways of flipping phospholipids. GENERAL SIGNIFICANCE Our understanding of the structural basis for phospholipid flipping is still limited but it seems plausible that a general mechanism for phospholipid flipping exists in nature. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.
Collapse
|
8
|
Mutations adjacent to the end of transmembrane helices 6 and 7 independently affect drug efflux capacity of yeast ABC transporter Pdr5p. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:932-9. [DOI: 10.1016/j.bbamem.2013.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 11/19/2013] [Accepted: 12/04/2013] [Indexed: 12/22/2022]
|
9
|
The transmission interface of the Saccharomyces cerevisiae multidrug transporter Pdr5: Val-656 located in intracellular loop 2 plays a major role in drug resistance. Antimicrob Agents Chemother 2012; 57:1025-34. [PMID: 23254431 DOI: 10.1128/aac.02133-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pdr5 is a major ATP-binding cassette (ABC) multidrug transporter regarded as the founding member of a fungal subfamily of clinically significant efflux pumps. When these proteins are overexpressed, they confer broad-spectrum ultraresistance. To better understand the evolution of these proteins under selective pressure, we exposed a Saccharomyces cerevisiae yeast strain already overexpressing Pdr5 to a lethal concentration of cycloheximide. This approach gave mutations that confer greater resistance to a subset of transport substrates. One of these mutations, V656L, is located in intracellular loop 2 (ICL2), a region predicted by structural studies with several other ABC transporters to play a critical role in the transmission interface between the ATP hydrolysis and drug transport domains. We show that this mutation increases drug resistance, possibly by altering the efficiency with which the energy from ATP hydrolysis is used for transport. Val-656 is a conserved residue, and an alanine substitution creates a nearly null phenotype for drug transport as well as reduced ATPase activity. We posit that despite its unusually small size, ICL2 is part of the transmission interface, and that alterations in this pathway can increase or decrease resistance to a broad spectrum of drugs.
Collapse
|