1
|
Dunuweera AN, Dunuweera SP, Ranganathan K. A Comprehensive Exploration of Bioluminescence Systems, Mechanisms, and Advanced Assays for Versatile Applications. Biochem Res Int 2024; 2024:8273237. [PMID: 38347947 PMCID: PMC10861286 DOI: 10.1155/2024/8273237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/10/2023] [Accepted: 01/21/2024] [Indexed: 02/15/2024] Open
Abstract
Bioluminescence has been a fascinating natural phenomenon of light emission from living creatures. It happens when the enzyme luciferase facilitates the oxidation of luciferin, resulting in the creation of an excited-state species that emits light. Although there are many bioluminescent systems, few have been identified. D-luciferin-dependent systems, coelenterazine-dependent systems, Cypridina luciferin-based systems, tetrapyrrole-based luciferins, bacterial bioluminescent systems, and fungal bioluminescent systems are natural bioluminescent systems. Since different bioluminescence systems, such as various combinations of luciferin-luciferase pair reactions, have different light emission wavelengths, they benefit industrial applications such as drug discovery, protein-protein interactions, in vivo imaging in small animals, and controlling neurons. Due to the expression of luciferase and easy permeation of luciferin into most cells and tissues, bioluminescence assays are applied nowadays with modern technologies in most cell and tissue types. It is a versatile technique in a variety of biomedical research. Furthermore, there are some investigated blue-sky research projects, such as bioluminescent plants and lamps. This review article is mainly based on the theory of diverse bioluminescence systems and their past, present, and future applications.
Collapse
Affiliation(s)
| | | | - K. Ranganathan
- Department of Botany, University of Jaffna, Jaffna 40000, Sri Lanka
| |
Collapse
|
2
|
Goh KS, Wang LJ, Ni JH, Wang TY. Luminescent characteristics and mitochondrial COI barcodes of nine cohabitated Taiwanese fireflies. PeerJ 2022; 10:e14195. [PMID: 36325176 PMCID: PMC9620971 DOI: 10.7717/peerj.14195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/15/2022] [Indexed: 01/24/2023] Open
Abstract
Background Over 50 Taiwanese firefly species have been discovered, but scientists lack information regarding most of their genetics, bioluminescent features, and cohabitating phenomena. In this study, we focus on morphological species identification and phylogeny reconstructed by COI barcoding, as well as luminescent characteristics of cohabited Taiwanese firefly species to determine the key factors that influenced how distinct bioluminescent species evolved to coexist and proliferate within the same habitat. Methods In this study, 366 specimens from nine species were collected in northern Taiwan from April to August, 2016-2019. First, the species and sex of the specimens were morphologically and genetically identified. Then, their luminescent spectra and intensities were recorded using a spectrometer and a power meter, respectively. The habitat temperature, relative humidity, and environmental light intensity were also measured. The cytochrome oxidase I (COI) gene sequence was used as a DNA barcode to reveal the phylogenetic relationships of cohabitated species. Results Nine species-eight adult species (Abscondita chinensis, Abscondita cerata, Aquatica ficta, Luciola curtithorax, Luciola kagiana, Luciola filiformis, Curtos sauteri, and Curtos costipennis) and one larval Pyrocoelia praetexta-were morphologically identified. The nine species could be found in April-August. Six of the eight adult species shared an overlap occurrence period in May. Luminescent spectra analysis revealed that the λ max of studied species ranged from 552-572 nm (yellow-green to orange-yellow). The average luminescent intensity range of these species was about 1.2-14 lux (182.1-2,048 nW/cm2) for males and 0.8-5.8 lux (122.8-850 nW/cm2) for females, and the maximum luminescent intensity of males was 1.01-7.26-fold higher than that of females. Compared with previous studies, this study demonstrates that different λ max, species-specific flash patterns, microhabitat choices, nocturnal activity time, and/or an isolated mating season are key factors that may lead to the species-specific courtship of cohabitated fireflies. Moreover, we estimated that the fireflies start flashing or flying when the environmental light intensity decreased to 6.49-28.1 lux. Thus, based on a rough theoretical calculation, the sensing distance between male and female fireflies might be 1.8-2.7 m apart in the dark. In addition, the mitochondrial COI barcode identified species with high resolution and suggested that most of the studied species have been placed correctly with congeners in previous phylogenies. Several cryptic species were revealed by the COI barcode with 3.27%-12.3% variation. This study renews the idea that fireflies' luminescence color originated from the green color of a Lampyridae ancestor, then red-shifted to yellow-green in Luciolinae, and further changed to orange-yellow color in some derived species.
Collapse
Affiliation(s)
- King-Siang Goh
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Liang-Jong Wang
- Forest Protection Division, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - Jing-Han Ni
- Department of Ecological Humanities, Providence University, Taichung, Taiwan
| | - Tzi-Yuan Wang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
3
|
Species-Specific Flash Patterns Track the Nocturnal Behavior of Sympatric Taiwanese Fireflies. BIOLOGY 2022; 11:biology11010058. [PMID: 35053057 PMCID: PMC8773436 DOI: 10.3390/biology11010058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/13/2021] [Accepted: 12/24/2021] [Indexed: 01/08/2023]
Abstract
It is highly challenging to evaluate the species' content and behavior changes in wild fireflies, especially for a sympatric population. Here, the flash interval (FI) and flash duration (FD) of flying males from three sympatric species (Abscondita cerata, Luciola kagiana, and Luciola curtithorax) were investigated for their potentials in assessing species composition and nocturnal behaviors during the A. cerata mating season. Both FI and FD were quantified from the continuous flashes of adult fireflies (lasting 5-30 s) via spatiotemporal analyses of video recorded along the Genliao hiking trail in Taipei, Taiwan. Compared to FD patterns and flash colors, FI patterns exhibited the highest species specificity, making them a suitable reference for differentiating firefly species. Through the case study of a massive occurrence of A. cerata (21 April 2018), the species contents (~85% of the flying population) and active periods of a sympatric population comprising A. cerata and L. kagiana were successfully evaluated by FI pattern matching, as well as field specimen collections. Our study suggests that FI patterns may be a reliable species-specific luminous marker for monitoring the behavioral changes in a sympatric firefly population in the field, and has implication values for firefly conservation.
Collapse
|
4
|
Dawkar VV, Barage SH, Barbole RS, Fatangare A, Grimalt S, Haldar S, Heckel DG, Gupta VS, Thulasiram HV, Svatoš A, Giri AP. Azadirachtin-A from Azadirachta indica Impacts Multiple Biological Targets in Cotton Bollworm Helicoverpa armigera. ACS OMEGA 2019; 4:9531-9541. [PMID: 31460043 PMCID: PMC6648242 DOI: 10.1021/acsomega.8b03479] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/11/2019] [Indexed: 05/11/2023]
Abstract
Azadirachtin-A (AzaA) from the Indian neem tree (Azadirachta indica) has insecticidal properties; however, its molecular mechanism remains elusive. The "targeted and nontargeted proteomic profiling", metabolomics, matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) imaging, gene expression, and in silico analysis provided clues about its action on Helicoverpa armigera. Fourth instar H. armigera larvae fed on AzaA-based diet (AzaD) suffered from significant mortality, growth retardation, reduced larval mass, complications in molting, and prolonged development. Furthermore, death of AzaD-fed larvae was observed with various phenotypes like bursting, blackening, and half-molting. Liquid chromatography-mass spectrometry (LC-MS) data showed limited catabolic processing of ingested AzaA and dramatic alternations of primary metabolism in H. armigera. MALDI-TOF imaging indicated the presence of AzaA in midgut of H. armigera. In the gut, out of 79 proteins identified, 34 were upregulated, which were related to digestion, immunity, energy production, and apoptosis mechanism. On the other hand, 45 proteins were downregulated, including those from carbohydrate metabolism, lipid metabolism, and energy transfer. In the hemolymph, 21 upregulated proteins were reported to be involved in immunity, RNA processing, and mRNA-directed protein synthesis, while 7 downregulated proteins were implicated in energy transfer, hydrolysis, lipid metabolism, defense mechanisms, and amino acid storage-related functions. Subsequently, six target proteins were identified using labeled AzaA that interacted with whole insect proteins. In silico analysis suggests that AzaA could be efficiently accommodated in the hydrophobic pocket of juvenile hormone esterase and showed strong interaction with active site residues, indicating plausible targets of AzaA in H. armigera. Quantitative polymerase chain reaction analysis suggested differential gene expression patterns and partly corroborated the proteomic results. Overall, data suggest that AzaA generally targets more than one protein in H. armigera and hence could be a potent biopesticide.
Collapse
Affiliation(s)
- Vishal V. Dawkar
- Plant Molecular Biology Unit, Division of Biochemical
Sciences and Division of Organic
Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
- Research Group, Mass Spectrometry/Proteomics and Department of Entomology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
- E-mail: . Tel: +91 (0)20 25902710. Fax: +91 (0)20 25902648
| | - Sagar H. Barage
- Bioinformatics
Centre, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, Maharashtra, India
- Amity
Institute of Biotechnology (AIB), Amity
University, Mumbai−Pune
Expressway, Bhatan, Post-Somathne, Panvel, Mumbai 410206, Maharashtra, India
| | - Ranjit S. Barbole
- Plant Molecular Biology Unit, Division of Biochemical
Sciences and Division of Organic
Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Amol Fatangare
- Research Group, Mass Spectrometry/Proteomics and Department of Entomology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Susana Grimalt
- Research Group, Mass Spectrometry/Proteomics and Department of Entomology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Saikat Haldar
- Plant Molecular Biology Unit, Division of Biochemical
Sciences and Division of Organic
Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - David G. Heckel
- Research Group, Mass Spectrometry/Proteomics and Department of Entomology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Vidya S. Gupta
- Plant Molecular Biology Unit, Division of Biochemical
Sciences and Division of Organic
Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Hirekodathakallu V. Thulasiram
- Plant Molecular Biology Unit, Division of Biochemical
Sciences and Division of Organic
Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Aleš Svatoš
- Research Group, Mass Spectrometry/Proteomics and Department of Entomology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Ashok P. Giri
- Plant Molecular Biology Unit, Division of Biochemical
Sciences and Division of Organic
Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
5
|
RNA-Seq analysis of the bioluminescent and non-bioluminescent species of Elateridae (Coleoptera): Comparison to others photogenic and non-photogenic tissues of Elateroidea species. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 29:154-165. [PMID: 30472608 DOI: 10.1016/j.cbd.2018.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 02/06/2023]
|
6
|
Fallon TR, Lower SE, Chang CH, Bessho-Uehara M, Martin GJ, Bewick AJ, Behringer M, Debat HJ, Wong I, Day JC, Suvorov A, Silva CJ, Stanger-Hall KF, Hall DW, Schmitz RJ, Nelson DR, Lewis SM, Shigenobu S, Bybee SM, Larracuente AM, Oba Y, Weng JK. Firefly genomes illuminate parallel origins of bioluminescence in beetles. eLife 2018; 7:e36495. [PMID: 30324905 PMCID: PMC6191289 DOI: 10.7554/elife.36495] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/23/2018] [Indexed: 12/31/2022] Open
Abstract
Fireflies and their luminous courtships have inspired centuries of scientific study. Today firefly luciferase is widely used in biotechnology, but the evolutionary origin of bioluminescence within beetles remains unclear. To shed light on this long-standing question, we sequenced the genomes of two firefly species that diverged over 100 million-years-ago: the North American Photinus pyralis and Japanese Aquatica lateralis. To compare bioluminescent origins, we also sequenced the genome of a related click beetle, the Caribbean Ignelater luminosus, with bioluminescent biochemistry near-identical to fireflies, but anatomically unique light organs, suggesting the intriguing hypothesis of parallel gains of bioluminescence. Our analyses support independent gains of bioluminescence in fireflies and click beetles, and provide new insights into the genes, chemical defenses, and symbionts that evolved alongside their luminous lifestyle.
Collapse
Affiliation(s)
- Timothy R Fallon
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Department of BiologyMassachusetts Institute of TechnologyCambridgeUnited States
| | - Sarah E Lower
- Department of Molecular Biology and GeneticsCornell UniversityIthacaUnited States
- Department of BiologyBucknell UniversityLewisburgUnited States
| | - Ching-Ho Chang
- Department of BiologyUniversity of RochesterRochesterUnited States
| | - Manabu Bessho-Uehara
- Department of Environmental BiologyChubu UniversityKasugaiJapan
- Graduate School of Bioagricultural SciencesNagoya UniversityNagoyaJapan
- Monterey Bay Aquarium Research InstituteMoss LandingUnited States
| | - Gavin J Martin
- Department of BiologyBrigham Young UniversityProvoUnited States
| | - Adam J Bewick
- Department of GeneticsUniversity of GeorgiaAthensUnited States
| | - Megan Behringer
- Biodesign Center for Mechanisms of EvolutionArizona State UniversityTempeUnited States
| | - Humberto J Debat
- Center of Agronomic Research, National Institute of Agricultural TechnologyCórdobaArgentina
| | - Isaac Wong
- Department of BiologyUniversity of RochesterRochesterUnited States
| | - John C Day
- Centre for Ecology and Hydrology (CEH)WallingfordUnited Kingdom
| | - Anton Suvorov
- Department of BiologyBrigham Young UniversityProvoUnited States
| | - Christian J Silva
- Department of BiologyUniversity of RochesterRochesterUnited States
- Department of Plant SciencesUniversity of California DavisDavisUnited States
| | | | - David W Hall
- Department of GeneticsUniversity of GeorgiaAthensUnited States
| | | | - David R Nelson
- Department of Microbiology Immunology and BiochemistryUniversity of Tennessee HSCMemphisUnited States
| | - Sara M Lewis
- Department of BiologyTufts UniversityMedfordUnited States
| | - Shuji Shigenobu
- NIBB Core Research FacilitiesNational Institute for Basic BiologyOkazakiJapan
| | - Seth M Bybee
- Department of BiologyBrigham Young UniversityProvoUnited States
| | | | - Yuichi Oba
- Department of Environmental BiologyChubu UniversityKasugaiJapan
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Department of BiologyMassachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
7
|
Gondim KC, Atella GC, Pontes EG, Majerowicz D. Lipid metabolism in insect disease vectors. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 101:108-123. [PMID: 30171905 DOI: 10.1016/j.ibmb.2018.08.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/17/2018] [Accepted: 08/26/2018] [Indexed: 06/08/2023]
Abstract
More than a third of the world population is at constant risk of contracting some insect-transmitted disease, such as Dengue fever, Zika virus disease, malaria, Chagas' disease, African trypanosomiasis, and others. Independent of the life cycle of the pathogen causing the disease, the insect vector hematophagous habit is a common and crucial trait for the transmission of all these diseases. This lifestyle is unique, as hematophagous insects feed on blood, a diet that is rich in protein but relatively poor in lipids and carbohydrates, in huge amounts and low frequency. Another unique feature of these insects is that blood meal triggers essential metabolic processes, as molting and oogenesis and, in this way, regulates the expression of various genes that are involved in these events. In this paper, we review current knowledge of the physiology and biochemistry of lipid metabolism in insect disease vectors, comparing with classical models whenever possible. We address lipid digestion and absorption, hemolymphatic transport, and lipid storage by the fat body and ovary. In this context, both de novo fatty acid and triacylglycerol synthesis are discussed, including the related fatty acid activation process and the intracellular lipid binding proteins. As lipids are stored in order to be mobilized later on, e.g. for flight activity or survivorship, lipolysis and β-oxidation are also considered. All these events need to be finely regulated, and the role of hormones in this control is summarized. Finally, we also review information about infection, when vector insect physiology is affected, and there is a crosstalk between its immune system and lipid metabolism. There is not abundant information about lipid metabolism in vector insects, and significant current gaps in the field are indicated, as well as questions to be answered in the future.
Collapse
Affiliation(s)
- Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Georgia C Atella
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Emerson G Pontes
- Departamento de Bioquímica, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - David Majerowicz
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
8
|
Owens ACS, Meyer-Rochow VB, Yang EC. Short- and mid-wavelength artificial light influences the flash signals of Aquatica ficta fireflies (Coleoptera: Lampyridae). PLoS One 2018; 13:e0191576. [PMID: 29415023 PMCID: PMC5802884 DOI: 10.1371/journal.pone.0191576] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 01/08/2018] [Indexed: 02/01/2023] Open
Abstract
Urbanization can radically disrupt natural ecosystems through alteration of the sensory environment. Habitat disturbances are predicted to favor behaviorally flexible species capable of adapting to altered environments. When artificial light at night (ALAN) is introduced into urban areas, it has the potential to impede reproduction of local firefly populations by obscuring their bioluminescent courtship signals. Whether individual fireflies can brighten their signals to maintain visibility against an illuminated background remains unknown. In this study, we exposed male Aquatica ficta fireflies to diffused light of varying wavelength and intensity, and recorded their alarm flash signals. When exposed to wavelengths at or below 533 nm, males emitted brighter signals with decreased frequency. This is the first evidence of individual-level light signal plasticity in fireflies. In contrast, long wavelength ambient light (≥ 597 nm) did not affect signal morphology, likely because A. ficta cannot perceive these wavelengths. These results suggest long wavelength lighting is less likely to impact firefly courtship, and its use in place of broad spectrum white lighting could augment firefly conservation efforts. More generally, this study demonstrates benefits of bioluminescent signal plasticity in a "noisy" signaling environment, and sheds light on an important yet understudied consequence of urbanization.
Collapse
Affiliation(s)
| | - Victor Benno Meyer-Rochow
- Department of Genetics and Physiology, Oulu University, Oulu, Finland
- Research Institute of Luminous Organisms, Tokyo, Japan
| | - En-Cheng Yang
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
9
|
Vongsangnak W, Chumnanpuen P, Sriboonlert A. Transcriptome analysis reveals candidate genes involved in luciferin metabolism in Luciola aquatilis (Coleoptera: Lampyridae). PeerJ 2016; 4:e2534. [PMID: 27761329 PMCID: PMC5068357 DOI: 10.7717/peerj.2534] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 09/06/2016] [Indexed: 12/31/2022] Open
Abstract
Bioluminescence, which living organisms such as fireflies emit light, has been studied extensively for over half a century. This intriguing reaction, having its origins in nature where glowing insects can signal things such as attraction or defense, is now widely used in biotechnology with applications of bioluminescence and chemiluminescence. Luciferase, a key enzyme in this reaction, has been well characterized; however, the enzymes involved in the biosynthetic pathway of its substrate, luciferin, remains unsolved at present. To elucidate the luciferin metabolism, we performed a de novo transcriptome analysis using larvae of the firefly species, Luciola aquatilis. Here, a comparative analysis is performed with the model coleopteran insect Tribolium casteneum to elucidate the metabolic pathways in L. aquatilis. Based on a template luciferin biosynthetic pathway, combined with a range of protein and pathway databases, and various prediction tools for functional annotation, the candidate genes, enzymes, and biochemical reactions involved in luciferin metabolism are proposed for L. aquatilis. The candidate gene expression is validated in the adult L. aquatilis using reverse transcription PCR (RT-PCR). This study provides useful information on the bio-production of luciferin in the firefly and will benefit to future applications of the valuable firefly bioluminescence system.
Collapse
Affiliation(s)
- Wanwipa Vongsangnak
- Department of Zoology, Kasetsart University, Bangkok, Thailand; Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Pramote Chumnanpuen
- Department of Zoology, Kasetsart University, Bangkok, Thailand; Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Ajaraporn Sriboonlert
- Department of Genetics, Kasetsart University, Bangkok, Thailand; Centre for Advanced Studies in Tropical Natural Resources, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
10
|
Tseng KL, Lee YZ, Chen YR, Lyu PC. 1H, 15N and 13C resonance assignments of light organ-associated fatty acid-binding protein of Taiwanese fireflies. BIOMOLECULAR NMR ASSIGNMENTS 2016; 10:71-74. [PMID: 26373428 DOI: 10.1007/s12104-015-9640-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/09/2015] [Indexed: 06/05/2023]
Abstract
Fatty acid-binding proteins (FABPs) are a family of proteins that modulate the transfer of various fatty acids in the cytosol and constitute a significant portion in many energy-consuming cells. The ligand binding properties and specific functions of a particular type of FABP seem to be diverse and depend on the respective binding cavity as well as the cell type from which this protein is derived. Previously, a novel FABP (lcFABP; lc: Luciola cerata) was identified in the light organ of Taiwanese fireflies. The lcFABP was proved to possess fatty acids binding capabilities, especially for fatty acids of length C14-C18. However, the structural details are unknown, and the structure-function relationship has remained to be further investigated. In this study, we finished the (1)H, (15)N and (13)C chemical shift assignments of (15)N/(13)C-enriched lcFABP by solution NMR spectroscopy. In addition, the secondary structure distribution was revealed based on the backbone N, H, Cα, Hα, C and side chain Cβ assignments. These results can provide the basis for further structural exploration of lcFABP.
Collapse
Affiliation(s)
- Kai-Li Tseng
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, No. 101, Sec. 2, Kuang Fu Rd, Hsinchu, 30013, Taiwan, ROC
| | - Yi-Zong Lee
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, No. 101, Sec. 2, Kuang Fu Rd, Hsinchu, 30013, Taiwan, ROC
| | - Yun-Ru Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, No. 101, Sec. 2, Kuang Fu Rd, Hsinchu, 30013, Taiwan, ROC
| | - Ping-Chiang Lyu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, No. 101, Sec. 2, Kuang Fu Rd, Hsinchu, 30013, Taiwan, ROC.
- Department of Medical Sciences, National Tsing Hua University, Hsinchu, Taiwan, ROC.
| |
Collapse
|
11
|
Uric acid spherulites in the reflector layer of firefly light organ. PLoS One 2013; 8:e56406. [PMID: 23441187 PMCID: PMC3575340 DOI: 10.1371/journal.pone.0056406] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 01/08/2013] [Indexed: 11/19/2022] Open
Abstract
Background In firefly light organs, reflector layer is a specialized tissue which is believed to play a key role for increasing the bioluminescence intensity through reflection. However, the nature of this unique tissue remains elusive. In this report, we investigated the role, fine structure and nature of the reflector layer in the light organ of adult Luciola cerata. Principal Findings Our results indicated that the reflector layer is capable of reflecting bioluminescence, and contains abundant uric acid. Electron microscopy (EM) demonstrated that the cytosol of the reflector layer's cells is filled with densely packed spherical granules, which should be the uric acid granules. These granules are highly regular in size (∼700 nm in diameter), and exhibit a radial internal structure. X-ray diffraction (XRD) analyses revealed that an intense single peak pattern with a d-spacing value of 0.320 nm is specifically detected in the light organ, and is highly similar to the diffraction peak pattern and d-spacing value of needle-formed crystals of monosodium urate monohydrate. However, the molar ratio evaluation of uric acid to various cations (K+, Na+, Ca2+ and Mg2+) in the light organ deduced that only a few uric acid molecules were in the form of urate salts. Thus, non-salt uric acid should be the source of the diffraction signal detected in the light organ. Conclusions In the light organ, the intense single peak diffraction signal might come from a unique needle-like uric acid form, which is different from other known structures of non-salt uric acid form. The finding of a radial structure in the granules of reflector layer implies that the spherical uric acid granules might be formed by the radial arrangement of needle-formed packing matter.
Collapse
|