1
|
Microfibril-associated protein 2 is activated by POU class 2 homeobox 1 and promotes tumor growth and metastasis in tongue squamous cell carcinoma. Hum Cell 2023; 36:822-834. [PMID: 36527580 DOI: 10.1007/s13577-022-00840-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
Tongue squamous cell carcinoma (TSCC) represents the most frequent malignancy of the oral cavity, characterized by a high metastasis rate and poor prognosis. Microfibril-associated protein 2 (MFAP2), as an extracellular matrix protein, has been found to drive tumor progression. The function and underlying mechanism of MFAP2 in TSCC remain unknown. The expression levels of MFAP2 were analyzed in tissue samples from 30 TSCC patients by real time-polymerase chain reaction and western blot assays. Our results revealed that the expression of MFAP2 mRNA and protein was upregulated in TSCC tissue samples compared with that in the matched para-carcinoma tissue samples. By performing in vitro gain-of-function or loss-of-function experiments and in vivo mouse xenograft experiments, we found that overexpression of MFAP2 induced proliferation and promoted transition from G1 to S phase of TSCC cells. Stronger invasive and migratory capabilities were observed in MFAP2-overexpressing TSCC cells. In contrast, knockdown of MFAP2 exhibited anti-proliferative, apoptosis-promoting and pro-migratory roles in TSCC cells. Knockdown of MFAP2 significantly inhibited xenograft tumor growth. Mechanistically, POU class 2 homeobox 1 (POU2F1) was recruited to the region of MFAP2 promoter and upregulates the expression of MFAP2. Silencing of MFAP2 effectively blocked the proliferation, migration, and invasion of TSCC cells caused by POU2F1 overexpression. Our results indicate that the role of MFAP2 in TSCC may attribute to transcriptional regulation of POU2F1.
Collapse
|
2
|
Aravindan S, Ramraj S, Kandasamy K, Thirugnanasambandan SS, Somasundaram DB, Herman TS, Aravindan N. Hormophysa triquerta polyphenol, an elixir that deters CXCR4- and COX2-dependent dissemination destiny of treatment-resistant pancreatic cancer cells. Oncotarget 2017; 8:5717-5734. [PMID: 27974694 PMCID: PMC5351584 DOI: 10.18632/oncotarget.13900] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/23/2016] [Indexed: 12/20/2022] Open
Abstract
Therapy-resistant pancreatic cancer (PC) cells play a crucial role in tumor relapse, recurrence, and metastasis. Recently, we showed the anti-PC potential of an array of seaweed polyphenols and identified efficient drug deliverables. Herein, we investigated the benefit of one such deliverable, Hormophysa triquerta polyphenol (HT-EA), in regulating the dissemination physiognomy of therapy-resistant PC cells in vitro,and residual PC in vivo. Human PC cells exposed to ionizing radiation (IR), with/without HT-EA pre-treatment were examined for the alterations in the tumor invasion/metastasis (TIM) transcriptome (93 genes, QPCR-profiling). Utilizing a mouse model of residual PC, we investigated the benefit of HT-EA in the translation regulation of crucial TIM targets (TMA-IHC). Radiation activated 30, 50, 15, and 38 TIM molecules in surviving Panc-1, Panc-3.27, BxPC3, and MiaPaCa-2 cells. Of these, 15, 44, 12, and 26 molecules were suppressed with HT-EA pre-treatment. CXCR4 and COX2 exhibited cell-line-independent increases after IR, and was completely suppressed with HT-EA, across all PC cells. HT-EA treatment resulted in translational repression of IR-induced CXCR4, COX2, β-catenin, MMP9, Ki-67, BAPX, PhPT-1, MEGF10, and GRB10 in residual PC. Muting CXCR4 or COX2 regulated the migration/invasion potential of IR-surviving cells, while forced expression of CXCR4 or COX2 significantly increased migration/invasion capabilities of PC cells. Further, treatment with HT-EA significantly inhibited IR-induced and CXCR4/COX2 forced expression-induced PC cell migration/invasion. This study (i) documents the TIM blueprint in therapy-resistant PC cells, (ii) defines the role of CXCR4 and COX2 in induced metastatic potential, and (iii) recognizes the potential of HT-EA in deterring the CXCR4/COX2-dependent dissemination destiny of therapy-resistant residual PC cells.
Collapse
Affiliation(s)
- Sheeja Aravindan
- Department of Marine Sciences, Center of Advanced Study in Marine Biology, Annamalai University, Parangipettai, TN, India
- Stephenson Cancer Center, Oklahoma City, OK, USA
| | - Satishkumar Ramraj
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kathiresan Kandasamy
- Department of Marine Sciences, Center of Advanced Study in Marine Biology, Annamalai University, Parangipettai, TN, India
| | | | - Dinesh Babu Somasundaram
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Terence S. Herman
- Stephenson Cancer Center, Oklahoma City, OK, USA
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Natarajan Aravindan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
3
|
High Energy Particle Radiation-associated Oncogenic Transformation in Normal Mice: Insight into the Connection between Activation of Oncotargets and Oncogene Addiction. Sci Rep 2016; 6:37623. [PMID: 27876887 PMCID: PMC5120307 DOI: 10.1038/srep37623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 11/01/2016] [Indexed: 12/19/2022] Open
Abstract
Concerns on high-energy particle radiation-induced tumorigenic transformation of normal tissue in astronauts, and in cancer patients undergoing radiotherapy, emphasizes the significance of elucidating the mechanisms involved in radiogenic transformation processes. Mostly used genetically modified or tumor-prone models are less reliable in determining human health risk in space or protracted post-treatment normal tissue toxicity. Here, in wild type C57BL/6 mice, we related the deregulation of distinctive set of tissue-specific oncotargets in major organs upon 56Fe (600 MeV/amu; 0.5 Gy/min; 0.8 Gy) particle radiation and compared the response with low LET γ-radiation (137Cs; 0.5 Gy/min; 2 Gy). One of the novel findings is the ‘tissue-independent’ activation of TAL2 upon high-energy radiation, and thus qualifies TAL2 as a potential biomarker for particle and other qualities of radiation. Heightened expression of TAL2 gene transcript, which sustained over four weeks post-irradiation foster the concept of oncogene addiction signaling in radiogenic transformation. The positive/negative expression of other selected oncotargets that expresses tissue-dependent manner indicated their role as a secondary driving force that addresses the diversity of tissue-dependent characteristics of tumorigenesis. This study, while reporting novel findings on radiogenic transformation of normal tissue when exposed to particle radiation, it also provides a platform for further investigation into different radiation quality, LET and dose/dose rate effect in healthy organs.
Collapse
|
4
|
Aravindan S, Ramraj SK, Somasundaram ST, Herman TS, Aravindan N. Polyphenols from marine brown algae target radiotherapy-coordinated EMT and stemness-maintenance in residual pancreatic cancer. Stem Cell Res Ther 2015; 6:182. [PMID: 26395574 PMCID: PMC4578749 DOI: 10.1186/s13287-015-0173-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 02/25/2015] [Accepted: 09/01/2015] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Therapy-associated onset of stemness-maintenance in surviving tumor-cells dictates tumor relapse/recurrence. Recently, we recognized the anti-pancreatic cancer (PC) potential of seaweed polyphenol manifolds and narrowed down three superior drug-deliverables that could serve as adjuvants and benefit PC cure. Utilizing the PC- cancer stem cells (PC-CSCs) grown ex vivo and mouse model of residual-PC, we investigated the benefits of seaweed polyphenols in regulating stemness-maintenance. METHODS ALDH(+)CD44(+)CD24(+) PC-CSCs from Panc-1, Panc-3.27, MiaPaCa-2, or BxPC-3 cells-derived xenografts grown ex vivo were either mock-irradiated, exposed to fractionated irradiation (FIR, 2Gy/D for 5 days), treated with polyphenols (100 μg/ml) of Hormophysa triquerta (HT-EA), Spatoglossum asperum (SA-EA) or Padina tetrastromatica (PT-EA) with/without FIR were examined for cell viability, transcription of 93 stem-cell-related molecules (QPCR profiling). Polyphenol-dependent regulation of FIR-transactivated Oct4, Zic3, EIF4C, Nanog, and LIF (QPCR) and functional translation of Nanog, SOX2, and OCT3/4 (immunoblotting) were examined in Panc-1/Panc-3.27/MiaPaCa-2/BxPC-3-xenografts derived PC-CSCs. Effect of seaweed-polyphenols in the regulation of EMT (N-Cadherin), pluripotency- (SOX2, OCT3/4, Nanog) and stemness-maintenance (PI3KR1, LIF, CD44) in therapy (FIR, 2Gy/D for 5D/wk for 3-weeks) resistant residual tumors were examined by tissue microarray construction and automated immunohistochemistry. RESULTS Ex vivo exposure of PC-CSCs to SA-EA, PT-EA and HT-EA exhibit dose-dependent inhibition of cell viability. FIR amplified the transcription of 69, 80, 74 and 77 stem-cell related genes in MiaPaCa-2-, Panc-1-, Panc-3.27- and BXPC3-established xenograft-derived ALDH(+)CD44(+)CD24(+)PC-CSCs. Treatment with SA-EA, PT-EA, or HT-EA completely suppressed FIR-activated stem-cell transcriptional machinery in ALDH(+)CD44(+)CD24(+)PC-CSCs established from MiaPaCa-2, Panc-1, Panc-3.27 and BXPC3 xenografts. QPCR validated EIF4C, OCT3/4, Nanog, LIF, and ZIC3 transcriptional profile outcomes. Nanog, Sox2, and OCT3/4 immunoblotting affirmed the PC-CSC radiosensitizing benefit of seaweed polyphenols. Residual-PC tissues microarrayed and immunostained after in vivo treatments recognized complete regulation of FIR-induced SOX2, OCT3/4, Nanog, LIF, CD44, PIK3R1, N-Cadherin, and E-Cadherin with SA-EA, PT-EA, and HT-EA. CONCLUSIONS These data, for the first time, documented the EMT/stemness-maintenance in therapy-resistant PC-CSCs. Further, the data suggest that seaweed polyphenols may inhibit PC relapse/recurrence by targeting therapy-orchestrated stem-cell signaling in residual cells.
Collapse
Affiliation(s)
- Sheeja Aravindan
- Department of Marine Sciences, Center of Advance Study in Marine Biology, Annamalai University, Parangipettai, TN, 608 502, India.
- Stephenson Cancer Center, 975 NE 10th Street, Oklahoma City, OK, 73104-5419, USA.
| | - Satish Kumar Ramraj
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK, 73104, USA.
| | - Somasundaram T Somasundaram
- Department of Marine Sciences, Center of Advance Study in Marine Biology, Annamalai University, Parangipettai, TN, 608 502, India.
| | - Terence S Herman
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK, 73104, USA.
| | - Natarajan Aravindan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
5
|
Pandian V, Ramraj S, Khan FH, Azim T, Aravindan N. Metastatic neuroblastoma cancer stem cells exhibit flexible plasticity and adaptive stemness signaling. Stem Cell Res Ther 2015; 6:2. [PMID: 25888913 PMCID: PMC4396071 DOI: 10.1186/s13287-015-0002-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/03/2015] [Accepted: 02/03/2015] [Indexed: 12/28/2022] Open
Abstract
Introduction High-risk neuroblastoma (HR-NB) presenting with hematogenous metastasis is one of the most difficult cancers to cure. Patient survival is poor. Aggressive tumors contain populations of rapidly proliferating clonogens that exhibit stem cell properties, cancer stem cells (CSCs). Conceptually, CSCs that evade intensive multimodal therapy dictate tumor progression, relapse/recurrence, and poor clinical outcomes. Herein, we investigated the plasticity and stem-cell related molecular response of aggressive metastatic neuroblastoma cells that fit the CSC model. Methods Well-characterized clones of metastatic site-derived aggressive cells (MSDACs) from a manifold of metastatic tumors of clinically translatable HR-NB were characterized for their CSC fit by examining epithelial-to-mesenchymal transition (EMT) (E-cadherin, N-Cadherin), survival (NFκB P65, p50, IκB and pIκB) and drug resistance (ABCG2) by immunoblotting; pluripotency maintenance (Nanog, SOX2) by immunofluorescence; and EMT and stemness related transcription of 93 genes by QPCR profiling. Plasticity of MSDACs under sequential alternation of culture conditions with serum and serum-free stem-cell conditions was assessed by clonal expansion (BrdU incorporation), tumorosphere formation (anchorage independent growth), EMT and stemness related transcriptome (QPCR profiling) and validated with MYC, SOX2, EGFR, NOTCH1 and CXCL2 immunoblotting. Results HR-NB MSDACs maintained in alternated culture conditions, serum-free stem cell medium to growth medium with serum and vice versa identified its flexible revocable plasticity characteristics. We observed signatures of stem cell-related molecular responses consistent with phenotypic conversions. Successive reintroduction to the favorable niche not only regained identical EMT, self-renewal capacity, pluripotency maintenance, and other stem cell-related signaling events, but also instigated additional events depicting aggressive adaptive plasticity. Conclusions Together, these results demonstrated the flexible plasticity of HR-NB MSDACs that typically fit the CSC model, and further identified the intrinsic adaptiveness of the successive phenotype switching that clarifies the heterogeneity of HR-NB. Moreover, the continuous ongoing acquisition of stem cell-related molecular rearrangements may hold the key to the switch from favorable disease to HR-NB. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0002-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vijayabaskar Pandian
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 737, Oklahoma City, OK, 73104, USA.
| | - Satishkumar Ramraj
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 737, Oklahoma City, OK, 73104, USA.
| | - Faizan H Khan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 737, Oklahoma City, OK, 73104, USA.
| | - Tasfia Azim
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 737, Oklahoma City, OK, 73104, USA.
| | - Natarajan Aravindan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 737, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
6
|
X-ray-induced changes in the expression of inflammation-related genes in human peripheral blood. Int J Mol Sci 2014; 15:19516-34. [PMID: 25350114 PMCID: PMC4264126 DOI: 10.3390/ijms151119516] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 10/16/2014] [Accepted: 10/20/2014] [Indexed: 01/28/2023] Open
Abstract
Using quantitative real-time polymerase chain reaction (PCR) array, we explored and compared the expression changes of inflammation-related genes in human peripheral blood irradiated with 0.5, 3, and 10 Gy doses of X-rays 24 h after exposure. Results indicated that the expression of 62 out of 84 genes was significantly altered after X-ray radiation. Among these 62 genes, 35 (such as TNFSF4) are known to be associated with radiation response, but others are novel. At a low radiation dose (0.5 Gy), 9 genes were up-regulated and 19 were down-regulated. With further increased dose to 3 Gy, 8 unique genes were up-regulated and 19 genes were down-regulated. We also identified 48 different genes that were differentially expressed significantly after 10 Gy of irradiation, and among these transcripts, up-regulated genes accounted for only one-third (16 genes) of the total. Of the 62 genes, 31 were significantly altered only at a specific dose, and a total of 10 genes were significantly expressed at all 3 doses. The dose- and time-dependent expression of CCL2 was confirmed by quantitative real-time reverse-transcription PCR. A number of candidate genes reported herein may be useful molecular biomarkers of radiation exposure in human peripheral blood.
Collapse
|
7
|
Modjtahedi H, Cho BC, Michel MC, Solca F. A comprehensive review of the preclinical efficacy profile of the ErbB family blocker afatinib in cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2014; 387:505-21. [PMID: 24643470 PMCID: PMC4019832 DOI: 10.1007/s00210-014-0967-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/19/2014] [Indexed: 01/07/2023]
Abstract
Afatinib (also known as BIBW 2992) has recently been approved in several countries for the treatment of a distinct type of epidermal growth factor receptor (EGFR)-mutated non-small cell lung cancer. This manuscript comprehensively reviews the preclinical data on afatinib, an irreversible inhibitor of the tyrosine kinase activity of members of the epidermal growth factor receptor family (ErbB) including EGFR, HER2 and ErbB4. Afatinib covalently binds to cysteine 797 of the EGFR and the corresponding cysteines 805 and 803 in HER2 and ErbB4, respectively. Such covalent binding irreversibly inhibits the tyrosine kinase activity of these receptors, resulting in reduced auto- and transphosphorylation within the ErbB dimers and inhibition of important steps in the signal transduction of all ErbB receptor family members. Afatinib inhibits cellular growth and induces apoptosis in a wide range of cells representative for non-small cell lung cancer, breast cancer, pancreatic cancer, colorectal cancer, head and neck squamous cell cancer and several other cancer types exhibiting abnormalities of the ErbB network. This translates into tumour shrinkage in a variety of in vivo rodent models of such cancers. Afatinib retains inhibitory effects on signal transduction and in vitro and in vivo cancer cell growth in tumours resistant to reversible EGFR inhibitors, such as those exhibiting the T790M mutations. Several combination treatments have been explored to prevent and/or overcome development of resistance to afatinib, the most promising being those with EGFR- or HER2-targeted antibodies, other tyrosine kinase inhibitors or inhibitors of downstream signalling molecules.
Collapse
Affiliation(s)
- Helmout Modjtahedi
- School of Life Science, Faculty of Science, Engineering and Computing, Kingston University London, Kingston upon Thames, UK
| | - Byoung Chul Cho
- Division of Medical Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Martin C. Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
- Department of Regional Medicine and Scientific Affairs, Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany
| | - Flavio Solca
- Department of Pharmacology, Boehringer Ingelheim RCV GmbH & Co. KG, Doktor-Böhringer Gasse 5-11, 1120 Vienna, Austria
| |
Collapse
|
8
|
Acquired tumor cell radiation resistance at the treatment site is mediated through radiation-orchestrated intercellular communication. Int J Radiat Oncol Biol Phys 2014; 88:677-85. [PMID: 24411622 DOI: 10.1016/j.ijrobp.2013.11.215] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/05/2013] [Accepted: 11/12/2013] [Indexed: 11/21/2022]
Abstract
PURPOSE Radiation resistance induced in cancer cells that survive after radiation therapy (RT) could be associated with increased radiation protection, limiting the therapeutic benefit of radiation. Herein we investigated the sequential mechanistic molecular orchestration involved in radiation-induced radiation protection in tumor cells. RESULTS Radiation, both in the low-dose irradiation (LDIR) range (10, 50, or 100 cGy) or at a higher, challenge dose IR (CDIR), 4 Gy, induced dose-dependent and sustained NFκB-DNA binding activity. However, a robust and consistent increase was seen in CDIR-induced NFκB activity, decreased DNA fragmentation, apoptosis, and cytotoxicity and attenuation of CDIR-inhibited clonal expansion when the cells were primed with LDIR prior to challenge dose. Furthermore, NFκB manipulation studies with small interfering RNA (siRNA) silencing or p50/p65 overexpression unveiled the influence of LDIR-activated NFκB in regulating CDIR-induced DNA fragmentation and apoptosis. LDIR significantly increased the transactivation/translation of the radiation-responsive factors tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α), cMYC, and SOD2. Coculture experiments exhibit LDIR-influenced radiation protection and increases in cellular expression, secretion, and activation of radiation-responsive molecules in bystander cells. Individual gene-silencing approach with siRNAs coupled with coculture studies showed the influence of LDIR-modulated TNF-α, IL-1α, cMYC, and SOD2 in induced radiation protection in bystander cells. NFκB inhibition/overexpression studies coupled with coculture experiments demonstrated that TNF-α, IL-1α, cMYC, and SOD2 are selectively regulated by LDIR-induced NFκB. CONCLUSIONS Together, these data strongly suggest that scattered LDIR-induced NFκB-dependent TNF-α, IL-1α, cMYC, and SOD2 mediate radiation protection to the subsequent challenge dose in tumor cells.
Collapse
|
9
|
Dinuclear and heptanuclear complexes of copper(II) with 7-azaindole ligand: Synthesis, characterization, magnetic properties, and biological activity. J Inorg Biochem 2013; 127:175-81. [DOI: 10.1016/j.jinorgbio.2013.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/22/2013] [Accepted: 04/11/2013] [Indexed: 11/30/2022]
|
10
|
Aravindan S, Delma CR, Thirugnanasambandan SS, Herman TS, Aravindan N. Anti-pancreatic cancer deliverables from sea: first-hand evidence on the efficacy, molecular targets and mode of action for multifarious polyphenols from five different brown-algae. PLoS One 2013; 8:e61977. [PMID: 23613993 PMCID: PMC3628576 DOI: 10.1371/journal.pone.0061977] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 03/15/2013] [Indexed: 12/26/2022] Open
Abstract
Pancreatic cancer (PC) remains the fourth leading cause of cancer death with an unacceptable survival that has remained relatively unchanged over the past 25 years. The presence of occult or clinical metastases at the time of diagnosis together with the lack of effective chemotherapies pose a dire need for designing new and targeted therapeutic deliverables that favors the clinical outcome. Herein, we investigated the anti-tumorigenic potential of polyphenols from five different brown-algae in human PC cells (MiaPaCa-2, Panc-1, BXPC-3 and Panc-3.27). Total anti-oxidant capacity (TAC) analysis on stepwise polyphenol separations with increasing polarity (Hexane-DCM-EA-methanol) identified high levels of TAC in DCM and EA extractions across all seaweeds assessed. All DCM and EA separated polyphenols induced a dose-dependent and sustained (time-independent) inhibition of cell proliferation and viability. Further, these polyphenols profoundly enhanced DNA damage (acridine orange/Ethidium bromide staining and DNA fragmentation) in all the cell lines investigated. More importantly, luciferase reporter assay revealed a significant inhibition of NFκB transcription in cells treated with polyphenols. Interestingly, QPCR analysis identified a differential yet definite regulation of pro-tumorigenic EGFR, VEGFA, AKT, hTERT, kRas, Bcl2, FGFα and PDGFα transcription in cells treated with DCM and EA polyphenols. Immunoblotting validates the inhibitory potential of seaweed polyphenols in EGFR phosphorylation, kRas, AurKβ and Stat3. Together, these data suggest that intermediate polarity based fractions of seaweed polyphenols may significantly potentiate tumor cell killing and may serve as potential drug deliverable for PC cure. More Studies dissecting out the active constituents in potent fractions, mechanisms of action and synergism, if any, are warranted and are currently in process.
Collapse
Affiliation(s)
- Sheeja Aravindan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Marine Sciences, Center of Advanced Study in Marine Biology, Annamalai University, Parangipettai, India
| | - Caroline R. Delma
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Marine Sciences, Center of Advanced Study in Marine Biology, Annamalai University, Parangipettai, India
| | | | - Terence S. Herman
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Natarajan Aravindan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
11
|
Aravindan S, Natarajan M, Herman TS, Aravindan N. Radiation-induced TNFα cross signaling-dependent nuclear import of NFκB favors metastasis in neuroblastoma. Clin Exp Metastasis 2013; 30:807-17. [PMID: 23584794 DOI: 10.1007/s10585-013-9580-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 03/30/2013] [Indexed: 01/30/2023]
Abstract
Ascertaining function-specific orchestration of NFκB in response to radiation may reveal a molecular blue-print that dictates induced relapse and metastasis of the neuroblastoma. We recently demonstrated that sustained activation of NFκB caused by ionizing radiation (IR)-initiated TNFα-NFκB feedback signaling leads to radioresistance and recurrence of neuroblastoma. We investigated whether muting IR-triggered or TNFα-dependent second-signaling feedback-dependent NFκB nuclear import results in limiting IR-altered invasion and metastasis. Neuroblastoma cells were exposed to 2 Gy and incubated for 1 h or 24 h. The cells were then treated with an NFκB-targeting peptide blocker, SN50. Upon confirming the blockade in DNA-binding activity, transcription driven transactivation of NFκB and secretion of soluble TNFα, transcriptional alterations of 93 tumor invasion/metastasis genes were assessed by using QPCR profiling and then were selectively validated at the protein level. Exposure to 2 Gy induced 63, 42 and 71 genes in surviving SH-SY5Y, IMR-32 and SK-N-MC cells, respectively. Blocking post-translational nuclear import of NFκB comprehensively inhibited both initial activation of genes (62/63, 34/42 and 65/71) triggered by IR and also TNFα-mediated second signaling-dependent sustained (59/63, 32/42 and 71/71) activation of tumor invasion and metastasis signaling molecules. Furthermore, alterations in the proteins MMP9, MMP2, PYK-2, SPA-1, Dnmt3b, Ask-1, CTGF, MMP10, MTA-2, NF-2, E-Cadherin, TIMP-2 and ADAMTS1 and the results of our scratch-wound assay validate the role of post-translational NFκB in IR-regulated invasion/metastasis. These data demonstrate that IR-induced second-phase (post-translational) NFκB activation mediates TNFα-dependent second signaling and further implies that IR induced NFκB in cells that survive after treatment regulates tumor invasion/metastasis signaling.
Collapse
Affiliation(s)
- Sheeja Aravindan
- Radiation Biology Research Laboratory, Department of Radiation Oncology, University of Oklahoma Health Sciences Center, BMSB 737, 940 Stanton L. Young Boulevard, Oklahoma City, OK, USA
| | | | | | | |
Collapse
|
12
|
Aravindan N, Aravindan S, Herman TS, Natarajan M. EGFR tyrosine kinase inhibitor pelitinib regulates radiation-induced p65-dependent telomerase activation in squamous cell carcinoma. Radiat Res 2013; 179:304-12. [PMID: 23379415 DOI: 10.1667/rr3028.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Our earlier studies indicated that ionizing radiation (IR) induces NF-κB-dependent clonal expansion of therapy resistant tumor cells. Herein, we investigated whether mitigation of NF-κB-dependent telomerase activation by EGFR tyrosine kinase inhibitor can enhance IR-induced celling killing. SCC-4 and SCC-9 cells exposed to IR with or without Pelitinib were examined for NF-κB and hTERT transcription using luciferase reporter assays. NF-κB-dependent hTERT transcription was confirmed by either muting NF-κB or by using hTERT constructs lacking NF-κB binding sites. hTERT, mRNA, telomerase activity and cell survival of tumor cells were analyzed using QPCR, TRAP and clonogenic assay, respectively. Pelitinib inhibited IR-induced NF-κB, telomerase activity and hTERT transactivation. Ionizing radiation-induced telomerase activity is regulated at the transcriptional level by triggering TERT promoter activation. Functional NF-κB mediates telomerase activity by binding to the κB binding region in the promoter region of TERT. Elimination of the NF-κB recognition site on telomerase or muting NF-κB compromises IR-induced telomerase promoter activation. We found that Pelitinib inhibited IR-induced TERT transcription, transactivation and telomerase activation in IR-exposed and NF-κB-overexpressed cells. Furthermore, Pelitinib potentiates IR-induced cell killing. Our results strongly suggest that IR-induced NF-κB-mediated cell survival is supported by telomerase activation. We propose that if this pathway can be inhibited with Pelitinib treatment, one could further enhance therapeutic outcome in squamous cell carcinoma.
Collapse
Affiliation(s)
- Natarajan Aravindan
- Departments of a Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| | | | | | | |
Collapse
|