1
|
Bertrand OC, Jiménez Lao M, Shelley SL, Wible JR, Williamson TE, Meng J, Brusatte SL. The virtual brain endocast of Trogosus (Mammalia, Tillodontia) and its relevance in understanding the extinction of archaic placental mammals. J Anat 2024; 244:1-21. [PMID: 37720992 PMCID: PMC10734658 DOI: 10.1111/joa.13951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023] Open
Abstract
After successfully diversifying during the Paleocene, the descendants of the first wave of mammals that survived the end-Cretaceous mass extinction waned throughout the Eocene. Competition with modern crown clades and intense climate fluctuations may have been part of the factors leading to the extinction of these archaic groups. Why these taxa went extinct has rarely been studied from the perspective of the nervous system. Here, we describe the first virtual endocasts for the archaic order Tillodontia. Three species from the middle Eocene of North America were analyzed: Trogosus hillsii, Trogosus grangeri, and Trogosus castoridens. We made morphological comparisons with the plaster endocast of another tillodont, Tillodon fodiens, as well as groups potentially related to Tillodontia: Pantodonta, Arctocyonidae, and Cimolesta. Trogosus shows very little inter-specific variation with the only potential difference being related to the fusion of the optic canal and sphenorbital fissure. Many ancestral features are displayed by Trogosus, including an exposed midbrain, small neocortex, orbitotemporal canal ventral to rhinal fissure, and a broad circular fissure. Potential characteristics that could unite Tillodontia with Pantodonta, and Arctocyonidae are the posterior position of cranial nerve V3 exit in relation to the cerebrum and the low degree of development of the subarcuate fossa. The presence of large olfactory bulbs and a relatively small neocortex are consistent with a terrestrial lifestyle. A relatively small neocortex may have put Trogosus at risk when competing with artiodactyls for potentially similar resources and avoiding predation from archaic carnivorans, both of which are known to have had larger relative brain and neocortex sizes in the Eocene. These factors may have possibly exacerbated the extinction of Tillodontia, which showed highly specialized morphologies despite the increase in climate fluctuations throughout the Eocene, before disappearing during the middle Eocene.
Collapse
Affiliation(s)
- Ornella C Bertrand
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Cerdanyola del Vallès, Barcelona, Spain
- School of GeoSciences, Grant Institute, University of Edinburgh, Edinburgh, Scotland, UK
| | - Marina Jiménez Lao
- School of GeoSciences, Grant Institute, University of Edinburgh, Edinburgh, Scotland, UK
| | - Sarah L Shelley
- School of GeoSciences, Grant Institute, University of Edinburgh, Edinburgh, Scotland, UK
- Section of Mammals, Carnegie Museum of Natural History, Pittsburgh, Pennsylvania, USA
| | - John R Wible
- Section of Mammals, Carnegie Museum of Natural History, Pittsburgh, Pennsylvania, USA
| | - Thomas E Williamson
- New Mexico Museum of Natural History and Science, Albuquerque, New Mexico, USA
| | - Jin Meng
- Division of Paleontology, American Museum of Natural History, New York, New York, USA
| | - Stephen L Brusatte
- School of GeoSciences, Grant Institute, University of Edinburgh, Edinburgh, Scotland, UK
- New Mexico Museum of Natural History and Science, Albuquerque, New Mexico, USA
| |
Collapse
|
2
|
Maugoust J, Orliac MJ. Anatomical correlates and nomenclature of the chiropteran endocranial cast. Anat Rec (Hoboken) 2023; 306:2791-2829. [PMID: 37018745 DOI: 10.1002/ar.25206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 04/07/2023]
Abstract
Bats form a diverse group of mammals that are highly specialized in active flight and ultrasound echolocation. These specializations rely on adaptations that reflect on their morphoanatomy and have been tentatively linked to brain morphology and volumetry. Despite their small size and fragility, bat crania and natural braincase casts ("endocasts") have been preserved in the fossil record, which allows for investigating brain evolution and inferring paleobiology. Advances in imaging techniques have allowed virtual extraction of internal structures, assuming that the shape of the endocast reflects soft organ morphology. However, there is no direct correspondence between the endocast and internal structures because meninges and vascular tissues mark the inner braincase together with the brain they surround, resulting in a mosaic morphology of the endocast. The hypothesis suggesting that the endocast reflects the brain in terms of both external shape and volume has drastic implications when addressing brain evolution, but it has been rarely discussed. To date, only a single study addressed the correspondence between the brain and braincase in bats. Taking advantage of the advent of imaging techniques, we reviewed the anatomical, neuroanatomical, and angiological literature and compare this knowledge available on bat's braincase anatomy with anatomical observations using a sample of endocranial casts representing most modern bat families. Such comparison allows to propose a Chiroptera-scale nomenclature for future descriptions and comparisons among bat endocasts. Describing the imprints of the tissues surrounding the brain also allows to address to what extent brain features can be blurred or hidden (e.g., hypophysis, epiphysis, colliculi, flocculus). Furthermore, this approach encourages further study to formally test the proposed hypotheses.
Collapse
Affiliation(s)
- Jacob Maugoust
- Institut des Sciences de l'Evolution de Montpellier, département CHANGE, équipe Paléontologie, UMR 5554 Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, Montpellier Cedex 5, 34095, France
| | - Maeva Judith Orliac
- Institut des Sciences de l'Evolution de Montpellier, département CHANGE, équipe Paléontologie, UMR 5554 Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, Montpellier Cedex 5, 34095, France
| |
Collapse
|
3
|
Bertrand OC, Shelley SL, Williamson TE, Wible JR, Chester SGB, Flynn JJ, Holbrook LT, Lyson TR, Meng J, Miller IM, Püschel HP, Smith T, Spaulding M, Tseng ZJ, Brusatte SL. Brawn before brains in placental mammals after the end-Cretaceous extinction. Science 2022; 376:80-85. [PMID: 35357913 DOI: 10.1126/science.abl5584] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mammals are the most encephalized vertebrates, with the largest brains relative to body size. Placental mammals have particularly enlarged brains, with expanded neocortices for sensory integration, the origins of which are unclear. We used computed tomography scans of newly discovered Paleocene fossils to show that contrary to the convention that mammal brains have steadily enlarged over time, early placentals initially decreased their relative brain sizes because body mass increased at a faster rate. Later in the Eocene, multiple crown lineages independently acquired highly encephalized brains through marked growth in sensory regions. We argue that the placental radiation initially emphasized increases in body size as extinction survivors filled vacant niches. Brains eventually became larger as ecosystems saturated and competition intensified.
Collapse
Affiliation(s)
- Ornella C Bertrand
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, Scotland EH9 3FE, UK
| | - Sarah L Shelley
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, Scotland EH9 3FE, UK.,Section of Mammals, Carnegie Museum of Natural History, Pittsburgh, PA, USA
| | | | - John R Wible
- Section of Mammals, Carnegie Museum of Natural History, Pittsburgh, PA, USA
| | - Stephen G B Chester
- Department of Anthropology, Brooklyn College, City University of New York, Brooklyn, NY, USA.,Department of Anthropology, The Graduate Center, City University of New York, New York, NY, USA.,New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - John J Flynn
- Division of Paleontology, American Museum of Natural History, New York, NY, USA.,Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA.,Ecology, Evolutionary Biology, and Behavior subprogram, PhD Program in Biology, The Graduate Center, City University of New York, New York, NY, USA.,PhD Program in Earth and Environmental Sciences, The Graduate Center, City University of New York, New York, NY, USA
| | - Luke T Holbrook
- Department of Biological Sciences, Rowan University, Glassboro, NJ, USA
| | | | - Jin Meng
- Division of Paleontology, American Museum of Natural History, New York, NY, USA
| | - Ian M Miller
- Denver Museum of Nature & Science, Denver, CO, USA.,National Geographic Society, Washington, DC, USA
| | - Hans P Püschel
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, Scotland EH9 3FE, UK
| | - Thierry Smith
- Directorate Earth and History of Life, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Michelle Spaulding
- Department of Biological Sciences, Purdue University Northwest, Westville, IN, USA
| | - Z Jack Tseng
- Department of Integrative Biology and Museum of Paleontology, University of California, Berkeley, CA, USA
| | - Stephen L Brusatte
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, Scotland EH9 3FE, UK.,New Mexico Museum of Natural History and Science, Albuquerque, NM, USA
| |
Collapse
|
4
|
Perini FA, Macrini TE, Flynn JJ, Bamba K, Ni X, Croft DA, Wyss AR. Comparative Endocranial Anatomy, Encephalization, and Phylogeny of Notoungulata (Placentalia, Mammalia). J MAMM EVOL 2021. [DOI: 10.1007/s10914-021-09583-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
MacPhee R, Del Pino SH, Kramarz A, Forasiepi AM, Bond M, Sulser RB. Cranial Morphology and Phylogenetic Relationships of Trigonostylops wortmani, an Eocene South American Native Ungulate. BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY 2021. [DOI: 10.1206/0003-0090.449.1.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- R.D.E. MacPhee
- Department of Mammalogy/Vertebrate Zoology and Richard Gilder Graduate School, American Museum of Natural History
| | | | - Alejandro Kramarz
- Sección Paleontología de Vertebrados, Museo Argentino de Ciencias Naturales Bernardino Rivadavia, CONICET, Buenos Aires, Argentina
| | | | - Mariano Bond
- Departamento Científico de Paleontología Vertebrados, Museo de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina
| | - R. Benjamin Sulser
- Department of Mammalogy/Vertebrate Zoology and Richard Gilder Graduate School, American Museum of Natural History
| |
Collapse
|
6
|
Bertrand OC, Shelley SL, Wible JR, Williamson TE, Holbrook LT, Chester SGB, Butler IB, Brusatte SL. Virtual endocranial and inner ear endocasts of the Paleocene 'condylarth' Chriacus: new insight into the neurosensory system and evolution of early placental mammals. J Anat 2019; 236:21-49. [PMID: 31667836 DOI: 10.1111/joa.13084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2019] [Indexed: 02/06/2023] Open
Abstract
The end-Cretaceous mass extinction allowed placental mammals to diversify ecologically and taxonomically as they filled ecological niches once occupied by non-avian dinosaurs and more basal mammals. Little is known, however, about how the neurosensory systems of mammals changed after the extinction, and what role these systems played in mammalian diversification. We here use high-resolution computed tomography (CT) scanning to describe the endocranial and inner ear endocasts of two species, Chriacus pelvidens and Chriacus baldwini, which belong to a cluster of 'archaic' placental mammals called 'arctocyonid condylarths' that thrived during the ca. 10 million years after the extinction (the Paleocene Epoch), but whose relationships to extant placentals are poorly understood. The endocasts provide new insight into the paleobiology of the long-mysterious 'arctocyonids', and suggest that Chriacus was an animal with an encephalization quotient (EQ) range of 0.12-0.41, which probably relied more on its sense of smell than vision, because the olfactory bulbs are proportionally large but the neocortex and petrosal lobules are less developed. Agility scores, estimated from the dimensions of the semicircular canals of the inner ear, indicate that Chriacus was slow to moderately agile, and its hearing capabilities, estimated from cochlear dimensions, suggest similarities with the extant aardvark. Chriacus shares many brain features with other Paleocene mammals, such as a small lissencephalic brain, large olfactory bulbs and small petrosal lobules, which are likely plesiomorphic for Placentalia. The inner ear of Chriacus also shares derived characteristics of the elliptical and spherical recesses with extinct species that belong to Euungulata, the extant placental group that includes artiodactyls and perissodactyls. This lends key evidence to the hypothesized close relationship between Chriacus and the extant ungulate groups, and demonstrates that neurosensory features can provide important insight into both the paleobiology and relationships of early placental mammals.
Collapse
Affiliation(s)
- Ornella C Bertrand
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, UK
| | - Sarah L Shelley
- Section of Mammals, Carnegie Museum of Natural History, Pittsburgh, PA, USA
| | - John R Wible
- Section of Mammals, Carnegie Museum of Natural History, Pittsburgh, PA, USA
| | | | - Luke T Holbrook
- Department of Biological Sciences, Rowan University, Glassboro, NJ, USA
| | - Stephen G B Chester
- Department of Anthropology and Archaeology, Brooklyn College, City University of New York, Brooklyn, NY, USA.,Department of Anthropology, The Graduate Center, City University of New York, New York, NY, USA.,New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - Ian B Butler
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, UK
| | - Stephen L Brusatte
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, UK.,New Mexico Museum of Natural History and Science, Albuquerque, NM, USA
| |
Collapse
|
7
|
Cameron J, Shelley SL, Williamson TE, Brusatte SL. The Brain and Inner Ear of the Early Paleocene “Condylarth”
Carsioptychus coarctatus
: Implications for Early Placental Mammal Neurosensory Biology and Behavior. Anat Rec (Hoboken) 2018; 302:306-324. [DOI: 10.1002/ar.23903] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/04/2018] [Accepted: 04/16/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Joe Cameron
- School of GeoSciences University of Edinburgh, Grant Institute Edinburgh Scotland UK
| | - Sarah L. Shelley
- School of GeoSciences University of Edinburgh, Grant Institute Edinburgh Scotland UK
| | | | - Stephen L. Brusatte
- School of GeoSciences University of Edinburgh, Grant Institute Edinburgh Scotland UK
- New Mexico Museum of Natural History and Science Albuquerque New Mexico
| |
Collapse
|
8
|
A Digital Endocranial Cast of the Early Paleocene (Puercan) 'Archaic' Mammal Onychodectes tisonensis (Eutheria: Taeniodonta). J MAMM EVOL 2017; 25:179-195. [PMID: 29755252 PMCID: PMC5938319 DOI: 10.1007/s10914-017-9381-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Eutherian mammals-placentals and their closest extinct relatives-underwent a major radiation following the end-Cretaceous extinction, during which they evolved disparate anatomy and established new terrestrial ecosystems. Much about the timing, pace, and causes of this radiation remain unclear, in large part because we still know very little about the anatomy, phylogenetic relationships, and biology of the so-called 'archaic' eutherians that prospered during the ~10 million years after the extinction. We describe the first digital endocranial cast of a taeniodont, a bizarre group of eutherians that flourished in the early Paleogene, reconstructed from a computed tomography (CT) scan of a late Puercan (65.4 million year old) specimen of Onychodectes tisonensis that recovered most of the forebrain and midbrain and portions of the inner ear. Notable features of the endocast include long, broad olfactory bulbs, dorsally-positioned rhinal fissures, and a lissencephalic cerebrum. Comparison with other taxa shows that Onychodectes possessed some of the largest olfactory bulbs (relative to cerebral size) of any known mammal. Statistical analysis of modern mammals shows that relative olfactory bulb dimensions are not strongly correlated with body size or fossorial digging for shelter, but relative bulb width is significantly greater in taxa that habitually dig to forage for food. The anatomical description and statistical results allow us to present an ecological model for Onychodectes and similar taeniodonts, in which they are animals of simple behavior that rely on a strong sense of smell to locate buried food before extracting and processing it with their specialized skeletal anatomy.
Collapse
|
9
|
Halliday TJD, Upchurch P, Goswami A. Resolving the relationships of Paleocene placental mammals. Biol Rev Camb Philos Soc 2017; 92:521-550. [PMID: 28075073 PMCID: PMC6849585 DOI: 10.1111/brv.12242] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 10/28/2015] [Accepted: 11/04/2015] [Indexed: 01/25/2023]
Abstract
The 'Age of Mammals' began in the Paleocene epoch, the 10 million year interval immediately following the Cretaceous-Palaeogene mass extinction. The apparently rapid shift in mammalian ecomorphs from small, largely insectivorous forms to many small-to-large-bodied, diverse taxa has driven a hypothesis that the end-Cretaceous heralded an adaptive radiation in placental mammal evolution. However, the affinities of most Paleocene mammals have remained unresolved, despite significant advances in understanding the relationships of the extant orders, hindering efforts to reconstruct robustly the origin and early evolution of placental mammals. Here we present the largest cladistic analysis of Paleocene placentals to date, from a data matrix including 177 taxa (130 of which are Palaeogene) and 680 morphological characters. We improve the resolution of the relationships of several enigmatic Paleocene clades, including families of 'condylarths'. Protungulatum is resolved as a stem eutherian, meaning that no crown-placental mammal unambiguously pre-dates the Cretaceous-Palaeogene boundary. Our results support an Atlantogenata-Boreoeutheria split at the root of crown Placentalia, the presence of phenacodontids as closest relatives of Perissodactyla, the validity of Euungulata, and the placement of Arctocyonidae close to Carnivora. Periptychidae and Pantodonta are resolved as sister taxa, Leptictida and Cimolestidae are found to be stem eutherians, and Hyopsodontidae is highly polyphyletic. The inclusion of Paleocene taxa in a placental phylogeny alters interpretations of relationships and key events in mammalian evolutionary history. Paleocene mammals are an essential source of data for understanding fully the biotic dynamics associated with the end-Cretaceous mass extinction. The relationships presented here mark a critical first step towards accurate reconstruction of this important interval in the evolution of the modern fauna.
Collapse
Affiliation(s)
- Thomas J. D. Halliday
- Department of Earth SciencesUniversity College LondonGower StreetLondonWC1E 6BTU.K.
- Department of Genetics, Evolution and EnvironmentUniversity College LondonGower StreetLondonWC1E 6BTU.K.
| | - Paul Upchurch
- Department of Earth SciencesUniversity College LondonGower StreetLondonWC1E 6BTU.K.
| | - Anjali Goswami
- Department of Earth SciencesUniversity College LondonGower StreetLondonWC1E 6BTU.K.
- Department of Genetics, Evolution and EnvironmentUniversity College LondonGower StreetLondonWC1E 6BTU.K.
| |
Collapse
|
10
|
Forasiepi AM, MacPhee RDE, Del Pino SH, Schmidt GI, Amson E, Grohé C. Exceptional Skull of Huayqueriana (Mammalia, Litopterna, Macraucheniidae) From the Late Miocene of Argentina: Anatomy, Systematics, and Paleobiological Implications. BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY 2016. [DOI: 10.1206/0003-0090-404.1.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Thiery G, Ducrocq S. Endocasts and brain evolution in Anthracotheriidae (Artiodactyla, Hippopotamoidea). J Anat 2016; 227:277-85. [PMID: 26278931 DOI: 10.1111/joa.12348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2015] [Indexed: 11/30/2022] Open
Abstract
Anthracotheres are a fossil family of 'Suiformes' from the Old World, North and Central America. They are known from the middle Eocene to the late Pliocene, and are suggested to be the stem group of Hippopotamidae. Yet, their soft anatomy remains poorly known. In this study we describe the virtual endocast of the late Oligocene anthracothere Microbunodon minimum, reconstructed using microtomography, as well as the natural endocast of Merycopotamus medioximus from the late Miocene. These are the first anthracothere endocasts ever described. Particular attention is given to the relative proportions of the brain, the neocortex, the cerebellum and the olfactory bulbs. The 'backward shift' of the pituitary of M. minimum, and the possible presence of a K lobe in M. medioximus, is discussed. Previous statements that some endocranial characters were subject to convergence among mammals are also corroborated.
Collapse
Affiliation(s)
- Ghislain Thiery
- iPHEP: Institut de Paléoprimatologie, Paléontologie Humaine: Evolution et Paléoenvironnements, UMR CNRS 7262, TSA 51106, 6 rue Michel Brunet, 86073 Poitiers, France
| | - Stéphane Ducrocq
- iPHEP: Institut de Paléoprimatologie, Paléontologie Humaine: Evolution et Paléoenvironnements, UMR CNRS 7262, TSA 51106, 6 rue Michel Brunet, 86073 Poitiers, France
| |
Collapse
|
12
|
LeBlanc ARH, Reisz RR, Brink KS, Abdala F. Mineralized periodontia in extinct relatives of mammals shed light on the evolutionary history of mineral homeostasis in periodontal tissue maintenance. J Clin Periodontol 2016; 43:323-32. [DOI: 10.1111/jcpe.12508] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2016] [Indexed: 01/24/2023]
Affiliation(s)
- Aaron R. H. LeBlanc
- Department of Biology; University of Toronto Mississauga; Mississauga ON Canada
| | - Robert R. Reisz
- Department of Biology; University of Toronto Mississauga; Mississauga ON Canada
- Institute of Oral Medicine; College of Medicine; National Cheng Kung University; Tainan Taiwan
| | - Kirstin S. Brink
- Department of Oral Health Sciences; Faculty of Dentistry; Life Sciences Institute; University of British Columbia; Vancouver BC Canada
| | - Fernando Abdala
- Evolutionary Studies Institute and School of Geosciences; University of the Witwatersrand; Johannesburg South Africa
- National Research Foundation; Centre of Excellence: Palaeosciences; Pretoria South Africa
| |
Collapse
|
13
|
Macrini TE, Flynn JJ, Ni X, Croft DA, Wyss AR. Comparative study of notoungulate (Placentalia, Mammalia) bony labyrinths and new phylogenetically informative inner ear characters. J Anat 2013; 223:442-61. [PMID: 24102069 DOI: 10.1111/joa.12108] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2013] [Indexed: 11/30/2022] Open
Abstract
The phylogenetic relationships of notoungulates, an extinct group of predominantly South American herbivores, remain poorly resolved with respect to both other placental mammals and among one another. Most previous phylogenetic analyses of notoungulates have not included characters of the internal cranium, not least because few such features, including the bony labyrinth, have been described for members of the group. Here we describe the inner ears of the notoungulates Altitypotherium chucalensis (Mesotheriidae), Pachyrukhos moyani (Hegetotheriidae) and Cochilius sp. (Interatheriidae) based on reconstructions of bony labyrinths obtained from computed tomography imagery. Comparisons of the bony labyrinths of these taxa with the basally diverging notoungulate Notostylops murinus (Notostylopidae), an isolated petrosal from Itaboraí, Brazil, referred to Notoungulata, and six therian outgroups, yielded an inner ear character matrix of 25 potentially phylogenetically informative characters, 14 of them novel to this study. Two equivocally optimized character states potentially support a pairing of Mesotheriidae and Hegetotheriidae, whereas four others may be diagnostic of Notoungulata. Three additional characters are potentially informative for diagnosing more inclusive clades: one for crown Placentalia; another for a clade containing Kulbeckia, Zalambdalestes, and Placentalia; and a third for Eutheria (crown Placentalia plus stem taxa). Several other characters are apomorphic for at least one notoungulate in our study and are of potential interest for broader taxonomic sampling within Notoungulata to clarify currently enigmatic interrelationships. Measures of the semicircular canals were used to infer agility (e.g. capable of quick movements vs. lethargic movements) of these taxa. Agility scores calculated from these data generally corroborate interpretations based on postcranial remains of these or closely related species. We provide estimates of the low-frequency hearing limits in notoungulates based on the ratio of radii of the apical and basal turns of the cochlea. These limits range from 15 Hz in Notostylops to 149 Hz in Pachyrukhos, values comparable to the Asian elephant (Elephas maximus) and the California sea lion (Zalophus californianus) when hearing in air, respectively.
Collapse
Affiliation(s)
- Thomas E Macrini
- Department of Biological Sciences, St Mary's University, San Antonio, TX, USA; Department of Vertebrate Paleontology, Division of Paleontology, American Museum of Natural History, New York, NY, USA
| | | | | | | | | |
Collapse
|
14
|
Benoit J, Crumpton N, Mérigeaud S, Tabuce R. A Memory Already like an Elephant's? The Advanced Brain Morphology of the Last Common Ancestor of Afrotheria (Mammalia). BRAIN, BEHAVIOR AND EVOLUTION 2013; 81:154-69. [DOI: 10.1159/000348481] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 01/24/2013] [Indexed: 11/19/2022]
|
15
|
Orliac MJ, Gilissen E. Virtual endocranial cast of earliest Eocene Diacodexis (Artiodactyla, Mammalia) and morphological diversity of early artiodactyl brains. Proc Biol Sci 2012; 279:3670-7. [PMID: 22764165 DOI: 10.1098/rspb.2012.1156] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The study of brain evolution, particularly that of the neocortex, is of primary interest because it directly relates to how behavioural variations arose both between and within mammalian groups. Artiodactyla is one of the most diverse mammalian clades. However, the first 10 Myr of their brain evolution has remained undocumented so far. Here, we used high-resolution X-ray computed tomography to investigate the endocranial cast of Diacodexis ilicis of earliest Eocene age. Its virtual reconstruction provides unprecedented access to both metric parameters and fine anatomy of the most complete endocast of the earliest artiodactyl. This picture is assessed in a broad comparative context by reconstructing endocasts of 14 other Early and Middle Eocene representatives of basal artiodactyls, allowing the tracking of the neocortical structure of artiodactyls back to its simplest pattern. We show that the earliest artiodactyls share a simple neocortical pattern, so far never observed in other ungulates, with an almond-shaped gyrus instead of parallel sulci as previously hypothesized. Our results demonstrate that artiodactyls experienced a tardy pulse of encephalization during the Late Neogene, well after the onset of cortical complexity increase. Comparisons with Eocene perissodactyls show that the latter reached a high level of cortical complexity earlier than the artiodactyls.
Collapse
Affiliation(s)
- M J Orliac
- ISE-M, Université Montpellier2, Place Eugène Bataillon, 34095 Montpellier cedex 05, France.
| | | |
Collapse
|