1
|
Li A, Lai YC, Figueroa S, Yang T, Widelitz RB, Kobielak K, Nie Q, Chuong CM. Deciphering principles of morphogenesis from temporal and spatial patterns on the integument. Dev Dyn 2015; 244:905-20. [PMID: 25858668 PMCID: PMC4520785 DOI: 10.1002/dvdy.24281] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/04/2015] [Accepted: 04/03/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND How tissue patterns form in development and regeneration is a fundamental issue remaining to be fully understood. The integument often forms repetitive units in space (periodic patterning) and time (cyclic renewal), such as feathers and hairs. Integument patterns are visible and experimentally manipulatable, helping us reveal pattern formative processes. Variability is seen in regional phenotypic specificities and temporal cycling at different physiological stages. RESULTS Here we show some cellular/molecular bases revealed by analyzing integument patterns. (1) Localized cellular activity (proliferation, rearrangement, apoptosis, differentiation) transforms prototypic organ primordia into specific shapes. Combinatorial positioning of different localized activity zones generates diverse and complex organ forms. (2) Competitive equilibrium between activators and inhibitors regulates stem cells through cyclic quiescence and activation. CONCLUSIONS Dynamic interactions between stem cells and their adjacent niche regulate regenerative behavior, modulated by multi-layers of macro-environmental factors (dermis, body hormone status, and external environment). Genomics studies may reveal how positional information of localized cellular activity is stored. In vivo skin imaging and lineage tracing unveils new insights into stem cell plasticity. Principles of self-assembly obtained from the integumentary organ model can be applied to help restore damaged patterns during regenerative wound healing and for tissue engineering to rebuild tissues. Developmental Dynamics 244:905-920, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ang Li
- Department of Pathology, University of Southern California, Los Angeles, California
| | - Yung-Chih Lai
- Department of Pathology, University of Southern California, Los Angeles, California
- Center for Developmental Biology and Regenerative Medicine, Taiwan University, Taipei, Taiwan
| | - Seth Figueroa
- Department of Biomedical Engineering, University of California, Irvine, California
| | - Tian Yang
- Department of Cell Biology, College of Basic Medicine, Third Military Medical University, Chongqing, China
| | - Randall B Widelitz
- Department of Pathology, University of Southern California, Los Angeles, California
| | - Krzysztof Kobielak
- Department of Pathology, University of Southern California, Los Angeles, California
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, California
| | - Cheng Ming Chuong
- Department of Pathology, University of Southern California, Los Angeles, California
- Center for Developmental Biology and Regenerative Medicine, Taiwan University, Taipei, Taiwan
- Stem Cell and Regenerative Medicine Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
2
|
Commissural axonal corridors instruct neuronal migration in the mouse spinal cord. Nat Commun 2015; 6:7028. [DOI: 10.1038/ncomms8028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/25/2015] [Indexed: 12/24/2022] Open
|
3
|
Lovrics A, Gao Y, Juhász B, Bock I, Byrne HM, Dinnyés A, Kovács KA. Boolean modelling reveals new regulatory connections between transcription factors orchestrating the development of the ventral spinal cord. PLoS One 2014; 9:e111430. [PMID: 25398016 PMCID: PMC4232242 DOI: 10.1371/journal.pone.0111430] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/26/2014] [Indexed: 11/19/2022] Open
Abstract
We have assembled a network of cell-fate determining transcription factors that play a key role in the specification of the ventral neuronal subtypes of the spinal cord on the basis of published transcriptional interactions. Asynchronous Boolean modelling of the network was used to compare simulation results with reported experimental observations. Such comparison highlighted the need to include additional regulatory connections in order to obtain the fixed point attractors of the model associated with the five known progenitor cell types located in the ventral spinal cord. The revised gene regulatory network reproduced previously observed cell state switches between progenitor cells observed in knock-out animal models or in experiments where the transcription factors were overexpressed. Furthermore the network predicted the inhibition of Irx3 by Nkx2.2 and this prediction was tested experimentally. Our results provide evidence for the existence of an as yet undescribed inhibitory connection which could potentially have significance beyond the ventral spinal cord. The work presented in this paper demonstrates the strength of Boolean modelling for identifying gene regulatory networks.
Collapse
Affiliation(s)
| | - Yu Gao
- Biotalentum Ltd., Gödöllö, Hungary
| | | | - István Bock
- Biotalentum Ltd., Gödöllö, Hungary
- Molecular Animal Biotechnology Laboratory, Szent Istvan University, Gödöllö, Hungary
| | - Helen M. Byrne
- Oxford Centre for Collaborative Applied Mathematics, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - András Dinnyés
- Biotalentum Ltd., Gödöllö, Hungary
- Molecular Animal Biotechnology Laboratory, Szent Istvan University, Gödöllö, Hungary
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Krisztián A. Kovács
- Biotalentum Ltd., Gödöllö, Hungary
- Institute of Science and Technology, Klosterneuburg, Austria
| |
Collapse
|
4
|
Stifani N. Motor neurons and the generation of spinal motor neuron diversity. Front Cell Neurosci 2014; 8:293. [PMID: 25346659 PMCID: PMC4191298 DOI: 10.3389/fncel.2014.00293] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 09/02/2014] [Indexed: 11/13/2022] Open
Abstract
Motor neurons (MNs) are neuronal cells located in the central nervous system (CNS) controlling a variety of downstream targets. This function infers the existence of MN subtypes matching the identity of the targets they innervate. To illustrate the mechanism involved in the generation of cellular diversity and the acquisition of specific identity, this review will focus on spinal MNs (SpMNs) that have been the core of significant work and discoveries during the last decades. SpMNs are responsible for the contraction of effector muscles in the periphery. Humans possess more than 500 different skeletal muscles capable to work in a precise time and space coordination to generate complex movements such as walking or grasping. To ensure such refined coordination, SpMNs must retain the identity of the muscle they innervate. Within the last two decades, scientists around the world have produced considerable efforts to elucidate several critical steps of SpMNs differentiation. During development, SpMNs emerge from dividing progenitor cells located in the medial portion of the ventral neural tube. MN identities are established by patterning cues working in cooperation with intrinsic sets of transcription factors. As the embryo develop, MNs further differentiate in a stepwise manner to form compact anatomical groups termed pools connecting to a unique muscle target. MN pools are not homogeneous and comprise subtypes according to the muscle fibers they innervate. This article aims to provide a global view of MN classification as well as an up-to-date review of the molecular mechanisms involved in the generation of SpMN diversity. Remaining conundrums will be discussed since a complete understanding of those mechanisms constitutes the foundation required for the elaboration of prospective MN regeneration therapies.
Collapse
Affiliation(s)
- Nicolas Stifani
- Medical Neuroscience, Dalhousie University Halifax, NS, Canada
| |
Collapse
|
5
|
Transcription factors FOXG1 and Groucho/TLE promote glioblastoma growth. Nat Commun 2014; 4:2956. [PMID: 24356439 PMCID: PMC3984242 DOI: 10.1038/ncomms3956] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/18/2013] [Indexed: 01/24/2023] Open
Abstract
Glioblastoma (GBM) is the most common and deadly malignant brain cancer, with a median survival of less than two years. GBM displays a cellular complexity that includes brain tumour-initiating cells (BTICs), which are considered as potential key targets for GBM therapies. Here we show that the transcription factors FOXG1 and Groucho/TLE are expressed in poorly differentiated astroglial cells in human GBM specimens and in primary cultures of GBM-derived BTICs, where they form a complex. FOXG1 knockdown in BTICs causes downregulation of neural stem/progenitor and proliferation markers, increased replicative senescence, upregulation of astroglial differentiation genes, and decreased BTIC-initiated tumour growth upon intracranial transplantation into host mice. These effects are phenocopied by Groucho/TLE knockdown or dominant-inhibition of the FOXG1:Groucho/TLE complex. These results provide evidence that transcriptional programs regulated by FOXG1 and Groucho/TLE are important for BTIC-initiated brain tumour growth, implicating FOXG1 and Groucho/TLE in GBM tumorigenesis.
Collapse
|
6
|
Francius C, Clotman F. Generating spinal motor neuron diversity: a long quest for neuronal identity. Cell Mol Life Sci 2014; 71:813-29. [PMID: 23765105 PMCID: PMC11113339 DOI: 10.1007/s00018-013-1398-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/30/2013] [Accepted: 05/31/2013] [Indexed: 03/26/2023]
Abstract
Understanding how thousands of different neuronal types are generated in the CNS constitutes a major challenge for developmental neurobiologists and is a prerequisite before considering cell or gene therapies of nervous lesions or pathologies. During embryonic development, spinal motor neurons (MNs) segregate into distinct subpopulations that display specific characteristics and properties including molecular identity, migration pattern, allocation to specific motor columns, and innervation of defined target. Because of the facility to correlate these different characteristics, the diversification of spinal MNs has become the model of choice for studying the molecular and cellular mechanisms underlying the generation of multiple neuronal populations in the developing CNS. Therefore, how spinal motor neuron subpopulations are produced during development has been extensively studied during the last two decades. In this review article, we will provide a comprehensive overview of the genetic and molecular mechanisms that contribute to the diversification of spinal MNs.
Collapse
Affiliation(s)
- Cédric Francius
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, 55 Avenue Hippocrate, Box (B1.55.11), 1200 Brussels, Belgium
| | - Frédéric Clotman
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, 55 Avenue Hippocrate, Box (B1.55.11), 1200 Brussels, Belgium
| |
Collapse
|
7
|
Ciarapica R, Methot L, Tang Y, Lo R, Dali R, Buscarlet M, Locatelli F, del Sal G, Rota R, Stifani S. Prolyl isomerase Pin1 and protein kinase HIPK2 cooperate to promote cortical neurogenesis by suppressing Groucho/TLE:Hes1-mediated inhibition of neuronal differentiation. Cell Death Differ 2013; 21:321-32. [PMID: 24270405 DOI: 10.1038/cdd.2013.160] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 09/10/2013] [Accepted: 10/09/2013] [Indexed: 01/15/2023] Open
Abstract
The Groucho/transducin-like Enhancer of split 1 (Gro/TLE1):Hes1 transcriptional repression complex acts in cerebral cortical neural progenitor cells to inhibit neuronal differentiation. The molecular mechanisms that regulate the anti-neurogenic function of the Gro/TLE1:Hes1 complex during cortical neurogenesis remain to be defined. Here we show that prolyl isomerase Pin1 (peptidyl-prolyl cis-trans isomerase NIMA-interacting 1) and homeodomain-interacting protein kinase 2 (HIPK2) are expressed in cortical neural progenitor cells and form a complex that interacts with the Gro/TLE1:Hes1 complex. This association depends on the enzymatic activities of both HIPK2 and Pin1, as well as on the association of Gro/TLE1 with Hes1, but is independent of the previously described Hes1-activated phosphorylation of Gro/TLE1. Interaction with the Pin1:HIPK2 complex results in Gro/TLE1 hyperphosphorylation and weakens both the transcriptional repression activity and the anti-neurogenic function of the Gro/TLE1:Hes1 complex. These results provide evidence that HIPK2 and Pin1 work together to promote cortical neurogenesis, at least in part, by suppressing Gro/TLE1:Hes1-mediated inhibition of neuronal differentiation.
Collapse
Affiliation(s)
- R Ciarapica
- 1] Montreal Neurological Institute, McGill University, 3801 rue University, Montreal, Quebec H3A2B4, Canada [2] Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - L Methot
- Montreal Neurological Institute, McGill University, 3801 rue University, Montreal, Quebec H3A2B4, Canada
| | - Y Tang
- Montreal Neurological Institute, McGill University, 3801 rue University, Montreal, Quebec H3A2B4, Canada
| | - R Lo
- Montreal Neurological Institute, McGill University, 3801 rue University, Montreal, Quebec H3A2B4, Canada
| | - R Dali
- Montreal Neurological Institute, McGill University, 3801 rue University, Montreal, Quebec H3A2B4, Canada
| | - M Buscarlet
- Montreal Neurological Institute, McGill University, 3801 rue University, Montreal, Quebec H3A2B4, Canada
| | - F Locatelli
- 1] Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy [2] University of Pavia, Pavia, Italy
| | - G del Sal
- 1] Laboratorio Nazionale CIB, Area Science Park, Trieste, Italy [2] Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
| | - R Rota
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - S Stifani
- Montreal Neurological Institute, McGill University, 3801 rue University, Montreal, Quebec H3A2B4, Canada
| |
Collapse
|
8
|
Francius C, Harris A, Rucchin V, Hendricks TJ, Stam FJ, Barber M, Kurek D, Grosveld FG, Pierani A, Goulding M, Clotman F. Identification of multiple subsets of ventral interneurons and differential distribution along the rostrocaudal axis of the developing spinal cord. PLoS One 2013; 8:e70325. [PMID: 23967072 PMCID: PMC3744532 DOI: 10.1371/journal.pone.0070325] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 06/17/2013] [Indexed: 01/06/2023] Open
Abstract
The spinal cord contains neuronal circuits termed Central Pattern Generators (CPGs) that coordinate rhythmic motor activities. CPG circuits consist of motor neurons and multiple interneuron cell types, many of which are derived from four distinct cardinal classes of ventral interneurons, called V0, V1, V2 and V3. While significant progress has been made on elucidating the molecular and genetic mechanisms that control ventral interneuron differentiation, little is known about their distribution along the antero-posterior axis of the spinal cord and their diversification. Here, we report that V0, V1 and V2 interneurons exhibit distinct organizational patterns at brachial, thoracic and lumbar levels of the developing spinal cord. In addition, we demonstrate that each cardinal class of ventral interneurons can be subdivided into several subsets according to the combinatorial expression of different sets of transcription factors, and that these subsets are differentially distributed along the rostrocaudal axis of the spinal cord. This comprehensive molecular profiling of ventral interneurons provides an important resource for investigating neuronal diversification in the developing spinal cord and for understanding the contribution of specific interneuron subsets on CPG circuits and motor control.
Collapse
Affiliation(s)
- Cédric Francius
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium
| | - Audrey Harris
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium
| | - Vincent Rucchin
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium
| | - Timothy J. Hendricks
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Floor J. Stam
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Melissa Barber
- CNRS UMR 7592, Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Dorota Kurek
- Erasmus MC Stem Cell Institute, Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Frank G. Grosveld
- Erasmus MC Stem Cell Institute, Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Alessandra Pierani
- CNRS UMR 7592, Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Martyn Goulding
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Frédéric Clotman
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium
- * E-mail:
| |
Collapse
|