1
|
Godavarthi SK, Hiramoto M, Ignatyev Y, Levin JB, Li HQ, Pratelli M, Borchardt J, Czajkowski C, Borodinsky LN, Sweeney L, Cline HT, Spitzer NC. Postsynaptic receptors regulate presynaptic transmitter stability through transsynaptic bridges. Proc Natl Acad Sci U S A 2024; 121:e2318041121. [PMID: 38568976 PMCID: PMC11009644 DOI: 10.1073/pnas.2318041121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Stable matching of neurotransmitters with their receptors is fundamental to synapse function and reliable communication in neural circuits. Presynaptic neurotransmitters regulate the stabilization of postsynaptic transmitter receptors. Whether postsynaptic receptors regulate stabilization of presynaptic transmitters has received less attention. Here, we show that blockade of endogenous postsynaptic acetylcholine receptors (AChR) at the neuromuscular junction destabilizes the cholinergic phenotype in motor neurons and stabilizes an earlier, developmentally transient glutamatergic phenotype. Further, expression of exogenous postsynaptic gamma-aminobutyric acid type A receptors (GABAA receptors) in muscle cells stabilizes an earlier, developmentally transient GABAergic motor neuron phenotype. Both AChR and GABAA receptors are linked to presynaptic neurons through transsynaptic bridges. Knockdown of specific components of these transsynaptic bridges prevents stabilization of the cholinergic or GABAergic phenotypes. Bidirectional communication can enforce a match between transmitter and receptor and ensure the fidelity of synaptic transmission. Our findings suggest a potential role of dysfunctional transmitter receptors in neurological disorders that involve the loss of the presynaptic transmitter.
Collapse
Affiliation(s)
- Swetha K. Godavarthi
- Neurobiology Department, University of California San Diego, La Jolla, CA92093
- Kavli Institute for Brain & Mind, University of California San Diego, La Jolla, CA92093
| | - Masaki Hiramoto
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA92037
| | - Yuri Ignatyev
- Institute of Science and Technology Austria, Klosterneuburg3400, Austria
| | - Jacqueline B. Levin
- Department of Physiology & Membrane Biology Shriners Hospital for Children Northern California, University of California Davis School of Medicine, Sacramento, CA95817
| | - Hui-quan Li
- Neurobiology Department, University of California San Diego, La Jolla, CA92093
- Kavli Institute for Brain & Mind, University of California San Diego, La Jolla, CA92093
| | - Marta Pratelli
- Neurobiology Department, University of California San Diego, La Jolla, CA92093
- Kavli Institute for Brain & Mind, University of California San Diego, La Jolla, CA92093
| | - Jennifer Borchardt
- Neuroscience Department, University of Wisconsin Madison, Madison, WI53705
| | - Cynthia Czajkowski
- Neuroscience Department, University of Wisconsin Madison, Madison, WI53705
| | - Laura N. Borodinsky
- Department of Physiology & Membrane Biology Shriners Hospital for Children Northern California, University of California Davis School of Medicine, Sacramento, CA95817
| | - Lora Sweeney
- Institute of Science and Technology Austria, Klosterneuburg3400, Austria
| | - Hollis T. Cline
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA92037
| | - Nicholas C. Spitzer
- Neurobiology Department, University of California San Diego, La Jolla, CA92093
- Kavli Institute for Brain & Mind, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
2
|
The excitatory/inhibitory input to orexin/hypocretin neuron soma undergoes day/night reorganization. Brain Struct Funct 2017; 222:3847-3859. [PMID: 28669028 DOI: 10.1007/s00429-017-1466-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 06/20/2017] [Indexed: 02/07/2023]
Abstract
Orexin (OX)/hypocretin-containing neurons are main regulators of wakefulness stability, arousal, and energy homeostasis. Their activity varies in relation to the animal's behavioral state. We here tested whether such variation is subserved by synaptic plasticity phenomena in basal conditions. Mice were sacrificed during day or night, at times when sleep or wake, respectively, predominates, as assessed by electroencephalography in matched mice. Triple immunofluorescence was used to visualize OX-A perikarya and varicosities containing the vesicular glutamate transporter (VGluT)2 or the vesicular GABA transporter (VGAT) combined with synaptophysin (Syn) as a presynaptic marker. Appositions on OX-A+ somata were quantitatively analyzed in pairs of sections in epifluorescence and confocal microscopy. The combined total number of glutamatergic (Syn+/VGluT2+) and GABAergic (Syn+/VGAT+) varicosities apposed to OX-A somata was similar during day and night. However, glutamatergic varicosities were significantly more numerous at night, whereas GABAergic varicosities prevailed in the day. Triple immunofluorescence in confocal microscopy was employed to visualize synapse scaffold proteins as postsynaptic markers and confirmed the nighttime prevalence of VGluT2+ together with postsynaptic density protein 95+ excitatory contacts, and daytime prevalence of VGAT+ together with gephyrin+ inhibitory contacts, while also showing that they formed synapses on OX-A+ cell bodies. The findings reveal a daily reorganization of axosomatic synapses in orexinergic neurons, with a switch from a prevalence of excitatory innervation at a time corresponding to wakefulness to a prevalence of inhibitory innervations in the antiphase, at a time corresponding to sleep. This reorganization could represent a key mechanism of plasticity of the orexinergic network in basal conditions.
Collapse
|
3
|
The effects of target skeletal muscle cells on dorsal root ganglion neuronal outgrowth and migration in vitro. PLoS One 2013; 8:e52849. [PMID: 23341911 PMCID: PMC3544851 DOI: 10.1371/journal.pone.0052849] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 11/21/2012] [Indexed: 11/19/2022] Open
Abstract
Targets of neuronal innervations play a vital role in regulating the survival and differentiation of innervating neurotrophin-responsive neurons. During development, neurons extend axons to their targets, and then their survival become dependent on the trophic substances secreted by their target cells. Sensory endings were present on myoblasts, myotubes, and myofibers in all intrafusal bundles regardless of age. The interdependence of sensory neurons and skeletal muscle (SKM) cells during both embryonic development and the maintenance of the mature functional state has not been fully understood. In the present study, neuromuscular cocultures of organotypic dorsal root ganglion (DRG) explants and dissociate SKM cells were established. Using this culture system, the morphological relationship between DRG neurons and SKM cells, neurites growth and neuronal migration were investigated. The migrating neurons were determined by fluorescent labeling of microtubule-associated protein-2 (MAP-2) and neurofilament 200 (NF-200) or growth-associated protein 43 (GAP-43). The expression of NF-200 and GAP-43 and their mRNAs was evaluated by Western blot assay and real time-PCR analysis. The results reveal that DRG explants showed more dense neurites outgrowth in neuromuscular cocultures as compared with that in the culture of DRG explants alone. The number of total migrating neurons (the MAP-2-expressing neurons) and the percentage NF-200-immunoreactive (IR) and GAP-43-IR neurons increased significantly in the presence of SKM cells. The levels of NF-200 and GAP-43 and their mRNAs increased significantly in neuromuscular cocultures as compared with that in the culture of DRG explants alone. These results suggested that target SKM cells play an important role in regulating neuronal protein synthesis, promoting neuritis outgrowth and neuronal migration of DRG explants in vitro. These results not only provide new clues for a better understanding of the association of SKM cells with DRG sensory neurons during development, they may also have implications for axonal regeneration after nerve injury.
Collapse
|