1
|
James BA, Williams JL, Nemesure B. A systematic review of genetic ancestry as a risk factor for incidence of non-small cell lung cancer in the US. Front Genet 2023; 14:1141058. [PMID: 37082203 PMCID: PMC10110850 DOI: 10.3389/fgene.2023.1141058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/14/2023] [Indexed: 04/22/2023] Open
Abstract
Background: Non-Small Cell Lung Cancer (NSCLC), the leading cause of cancer-related death in the United States, is the most diagnosed form of lung cancer. While lung cancer incidence has steadily declined over the last decade, disparities in incidence and mortality rates persist among African American (AA), Caucasian American (CA), and Hispanic American (HA) populations. Researchers continue to explore how genetic ancestry may influence differential outcomes in lung cancer risk and development. The purpose of this evaluation is to highlight experimental research that investigates the differential impact of genetic mutations and ancestry on NSCLC incidence. Methods: This systematic review was conducted using PubMed and Google Scholar search engines. The following key search terms were used to select articles published between 2011 and 2022: "African/European/Latin American Ancestry NSCLC"; "Racial Disparities NSCLC"; "Genetic Mutations NSCLC"; "NSCLC Biomarkers"; "African Americans/Hispanic Americans/Caucasian Americans NSCLC incidence." Systematic reviews, meta-analyses, and studies outside of the US were excluded. A total of 195 articles were initially identified and after excluding 156 which did not meet eligibility criteria, 38 were included in this investigation. Results: Studies included in this analysis focused on racial/ethnic disparities in the following common genetic mutations observed in NSCLC: KRAS, EGFR, TP53, PIK3CA, ALK Translocations, ROS-1 Rearrangements, STK11, MET, and BRAF. Results across studies varied with respect to absolute differential expression. No significant differences in frequencies of specific genetic mutational profiles were noted between racial/ethnic groups. However, for HAs, lower mutational frequencies in KRAS and STK11 genes were observed. In genetic ancestry level analyses, multiple studies suggest that African ancestry is associated with a higher frequency of EGFR mutations. Conversely, Latin ancestry is associated with TP53 mutations. At the genomic level, several novel predisposing variants associated with African ancestry and increased risk of NSCLC were discovered. Family history among all racial/ethnic groups was also considered a risk factor for NSCLC. Conclusion: Results from racially and ethnically diverse studies can elucidate driving factors that may increase susceptibility and subsequent lung cancer risk across different racial/ethnic groups. Identification of biomarkers that can be used as diagnostic, prognostic, and therapeutic tools may help improve lung cancer survival among high-risk populations.
Collapse
Affiliation(s)
| | - Jennie L. Williams
- Stony Brook Medicine, Department of Family, Population, and Preventive Medicine, Stony Brook, NY, United States
| | - Barbara Nemesure
- Stony Brook Medicine, Department of Family, Population, and Preventive Medicine, Stony Brook, NY, United States
| |
Collapse
|
2
|
Koenigstein F, Boekstegers F, Wilson JF, Fuentes-Guajardo M, Gonzalez-Jose R, Bedoya G, Bortolini MC, Acuña-Alonzo V, Gallo C, Linares AR, Rothhammer F, Bermejo JL. Inbreeding, native American ancestry and child mortality: Linking human selection and paediatric medicine. Hum Mol Genet 2021; 31:975-984. [PMID: 34673976 PMCID: PMC8947305 DOI: 10.1093/hmg/ddab302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
The children of related parents show increased risk of early mortality. The Native American genome typically exhibits long stretches of homozygosity, and Latin Americans are highly heterogeneous regarding the individual burden of homozygosity, the proportion, and the type of Native American ancestry. We analysed nationwide mortality and genome-wide genotype data from admixed Chileans to investigate the relationship between common causes of child mortality, homozygosity and Native American ancestry. Results from two-stage linear-Poisson regression revealed a strong association between the sum length of runs of homozygosity (SROH) above 1.5 Megabases (Mb) in each genome and mortality due to intracranial non-traumatic haemorrhage of foetus and new-born (5% increased risk of death per Mb in SROH, P = 1 × 10-3) and disorders related to short gestation and low birth weight (P = 3 × 10-4). The major indigenous populations in Chile are Aymara-Quechua in the north of the country, and the Mapuche-Huilliche in the south. The individual proportion of Aymara-Quechua ancestry was associated with an increased risk of death due to anencephaly and similar malformations (P = 4 × 10-5), and the risk of death due to Edwards and Patau trisomy syndromes decreased 4% per 1% Aymara-Quechua ancestry proportion (P = 4 × 10-4) and 5% per 1% Mapuche-Huilliche ancestry proportion (P = 2 × 10-3). The present results suggest that short gestation, low birth weight and intracranial non-traumatic haemorrhage mediate the negative effect of inbreeding on human selection. Independent validation of the identified associations between common causes of child death, homozygosity and fine-scale ancestry proportions may inform paediatric medicine.
Collapse
Affiliation(s)
- Fabienne Koenigstein
- Statistical Genetics Research Group, Institute of Medical Biometry, Heidelberg University, Heidelberg, Germany
| | - Felix Boekstegers
- Statistical Genetics Research Group, Institute of Medical Biometry, Heidelberg University, Heidelberg, Germany
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland.,MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
| | - Macarena Fuentes-Guajardo
- Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Tarapacá University, Arica, Chile
| | - Rolando Gonzalez-Jose
- Instituto Patagónico de Ciencias Sociales y Humanas, Centro Nacional Patagónico, CONICET, Puerto Madryn, Argentina
| | - Gabriel Bedoya
- Instituto de Biología, Grupo Genmol, Universidad de Antioquía, Medellín, Colombia
| | - Maria Cátira Bortolini
- Instituto de Biociências, Universidad Federal do Rio Grande do Sul, Puerto Alegre, Brazil
| | | | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Andres Ruiz Linares
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China.,Aix-Marseille Université, CNRS, EFS, ADES, Marseille, France.,Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London, UK
| | | | - Justo Lorenzo Bermejo
- Statistical Genetics Research Group, Institute of Medical Biometry, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
3
|
Almeida OAC, Moreira GCM, Rezende FM, Boschiero C, de Oliveira Peixoto J, Ibelli AMG, Ledur MC, de Novais FJ, Coutinho LL. Identification of selection signatures involved in performance traits in a paternal broiler line. BMC Genomics 2019; 20:449. [PMID: 31159736 PMCID: PMC6547531 DOI: 10.1186/s12864-019-5811-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/20/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Natural and artificial selection leads to changes in certain regions of the genome resulting in selection signatures that can reveal genes associated with the selected traits. Selection signatures may be identified using different methodologies, of which some are based on detecting contiguous sequences of homozygous identical-by-descent haplotypes, called runs of homozygosity (ROH), or estimating fixation index (FST) of genomic windows that indicates genetic differentiation. This study aimed to identify selection signatures in a paternal broiler TT line at generations 7th and 16th of selection and to investigate the genes annotated in these regions as well as the biological pathways involved. For such purpose, ROH and FST-based analysis were performed using whole genome sequence of twenty-eight chickens from two different generations. RESULTS ROH analysis identified homozygous regions of short and moderate size. Analysis of ROH patterns revealed regions commonly shared among animals and changes in ROH abundance and size between the two generations. Results also suggest that whole genome sequencing (WGS) outperforms SNPchip data avoiding overestimation of ROH size and underestimation of ROH number; however, sequencing costs can limited the number of animals analyzed. FST-based analysis revealed genetic differentiation in several genomic windows. Annotation of the consensus regions of ROH and FST windows revealed new and previously identified genes associated with traits of economic interest, such as APOB, IGF1, IGFBP2, POMC, PPARG, and ZNF423. Over-representation analysis of the genes resulted in biological terms of skeletal muscle, matrilin proteins, adipose tissue, hyperglycemia, diabetes, Salmonella infections and tyrosine. CONCLUSIONS Identification of ROH and FST-based analyses revealed selection signatures in TT line and genes that have important role in traits of economic interest. Changes in the genome of the chickens were observed between the 7th and 16th generations showing that ancient and recent selection in TT line may have acted over genomic regions affecting diseases and performance traits.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Francisco José de Novais
- University of São Paulo (USP) / Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo Brazil
| | - Luiz Lehmann Coutinho
- University of São Paulo (USP) / Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo Brazil
| |
Collapse
|
4
|
Ujvari B, Klaassen M, Raven N, Russell T, Vittecoq M, Hamede R, Thomas F, Madsen T. Genetic diversity, inbreeding and cancer. Proc Biol Sci 2019; 285:rspb.2017.2589. [PMID: 29563261 DOI: 10.1098/rspb.2017.2589] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/28/2018] [Indexed: 12/13/2022] Open
Abstract
Genetic diversity is essential for adaptive capacities, providing organisms with the potential of successfully responding to intrinsic and extrinsic challenges. Although a clear reciprocal link between genetic diversity and resistance to parasites and pathogens has been established across taxa, the impact of loss of genetic diversity by inbreeding on the emergence and progression of non-communicable diseases, such as cancer, has been overlooked. Here we provide an overview of such associations and show that low genetic diversity and inbreeding associate with an increased risk of cancer in both humans and animals. Cancer being a multifaceted disease, loss of genetic diversity can directly (via accumulation of oncogenic homozygous mutations) and indirectly (via increased susceptibility to oncogenic pathogens) impact abnormal cell emergence and escape of immune surveillance. The observed link between reduced genetic diversity and cancer in wildlife may further imperil the long-term survival of numerous endangered species, highlighting the need to consider the impact of cancer in conservation biology. Finally, the somewhat incongruent data originating from human studies suggest that the association between genetic diversity and cancer development is multifactorial and may be tumour specific. Further studies are therefore crucial in order to elucidate the underpinnings of the interactions between genetic diversity, inbreeding and cancer.
Collapse
Affiliation(s)
- Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia.,School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - Marcel Klaassen
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Nynke Raven
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Tracey Russell
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Marion Vittecoq
- Institut de Recherche de la Tour du Valat, le Sambuc, 13200 Arles, France
| | - Rodrigo Hamede
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia.,School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - Frédéric Thomas
- CREEC/MIVEGEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | - Thomas Madsen
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia .,School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
5
|
Wanchai V, Jin J, Bircan E, Eng C, Orloff M. Genome-wide tracts of homozygosity and exome analyses reveal repetitive elements with Barrets esophagus/esophageal adenocarcinoma risk. BMC Bioinformatics 2019; 20:98. [PMID: 30871476 PMCID: PMC6419328 DOI: 10.1186/s12859-019-2622-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Barrett's esophagus (BE) is most commonly seen as the condition in which the normal squamous epithelium lining of the esophagus is replaced by goblet cells. Many studies show that BE is a predisposing factor for the development of esophageal adenocarcinoma (EAC), a particularly lethal cancer. The use of single nucleotide polymorphisms (SNPs) to map BE/EAC genes has previously provided insufficient genetic information to fully characterize the heterogeneous nature of the disease. We therefore hypothesize that rigorous interrogation of other types of genomic changes, e.g. tracts of homozygosity (TOH), repetitive elements, and insertion/deletions, may provide a comprehensive understanding of the development of BE/EAC. RESULTS First, we used a case-control framework to identify TOHs by using SNPs and tested for association with BE/EAC. Second, we used a case only approach on a validation series of eight samples subjected to exome sequencing to identify repeat elements and insertion/deletions. Third, insertion/deletions and repeat elements identified in the exomes were then mapped onto genes in the significant TOH regions. Overall, 24 TOH regions were significantly differentially represented among cases, as compared to controls (adjusted-P = 0.002-0.039). Interestingly, four BE/EAC-associated genes within the TOH regions consistently showed insertions and deletions that overlapped across eight exomes. Predictive functional analysis identified NOTCH, WNT, and G-protein inflammation pathways that affect BE and EAC. CONCLUSIONS The integration of common TOHs (cTOHs) with repetitive elements, insertions, and deletions within exomes can help functionally prioritize factors contributing to low to moderate penetrance predisposition to BE/EAC.
Collapse
Affiliation(s)
- Visanu Wanchai
- Arkansas Center for Genomic Epidemiology & Medicine and The Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Jing Jin
- The Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Emine Bircan
- The Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Charis Eng
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Mohammed Orloff
- The Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| |
Collapse
|
6
|
Apopa PL, Alley L, Penney RB, Arnaoutakis K, Steliga MA, Jeffus S, Bircan E, Gopalan B, Jin J, Patumcharoenpol P, Jenjaroenpun P, Wongsurawat T, Shah N, Boysen G, Ussery D, Nookaew I, Fagan P, Bebek G, Orloff MS. PARP1 Is Up-Regulated in Non-small Cell Lung Cancer Tissues in the Presence of the Cyanobacterial Toxin Microcystin. Front Microbiol 2018; 9:1757. [PMID: 30127774 PMCID: PMC6087756 DOI: 10.3389/fmicb.2018.01757] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/13/2018] [Indexed: 12/20/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the major form of lung cancer, with adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) being its major subtypes. Smoking alone cannot completely explain the lung cancer etiology. We hypothesize that altered lung microbiome and chronic inflammatory insults in lung tissues contribute to carcinogenesis. Here we explore the microbiome composition of LUAD samples, compared to LUSC and normal samples. Extraction of microbiome DNA in formalin-fixed, paraffin-embedded (FFPE) lung tumor and normal adjacent tissues was meticulously performed. The 16S rRNA product from extracted microbiota was subjected to microbiome amplicon sequencing. To assess the contribution of the host genome, CD36 expression levels were analyzed then integrated with altered NSCLC subtype-specific microbe sequence data. Surprisingly phylum Cyanobacteria was consistently observed in LUAD samples. Across the NSCLC subtypes, differential abundance across four phyla (Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes) was identified based on the univariate analysis (p-value < 6.4e-4 to 3.2e-2). In silico metagenomic and pathway analyses show that presence of microcystin correlates with reduced CD36 and increased PARP1 levels. This was confirmed in microcystin challenged NSCLC (A427) cell lines and Cyanobacteria positive LUAD tissues. Controlling the influx of Cyanobacteria-like particles or microcystin and the inhibition of PARP1 can provide a potential targeted therapy and prevention of inflammation-associated lung carcinogenesis.
Collapse
Affiliation(s)
- Patrick L Apopa
- Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Lisa Alley
- Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Rosalind B Penney
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Konstantinos Arnaoutakis
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Mathew A Steliga
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Susan Jeffus
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Emine Bircan
- Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | | | - Jing Jin
- Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Preecha Patumcharoenpol
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Piroon Jenjaroenpun
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Thidathip Wongsurawat
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Nishi Shah
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Gunnar Boysen
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - David Ussery
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Intawat Nookaew
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Pebbles Fagan
- Department of Health Behavior and Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Gurkan Bebek
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH, United States.,Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH, United States.,Department of Nutrition, Case Western Reserve University, Cleveland, OH, United States
| | - Mohammed S Orloff
- Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
7
|
Ceballos FC, Hazelhurst S, Ramsay M. Assessing runs of Homozygosity: a comparison of SNP Array and whole genome sequence low coverage data. BMC Genomics 2018; 19:106. [PMID: 29378520 PMCID: PMC5789638 DOI: 10.1186/s12864-018-4489-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 01/19/2018] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Runs of Homozygosity (ROH) are genomic regions where identical haplotypes are inherited from each parent. Since their first detection due to technological advances in the late 1990s, ROHs have been shedding light on human population history and deciphering the genetic basis of monogenic and complex traits and diseases. ROH studies have predominantly exploited SNP array data, but are gradually moving to whole genome sequence (WGS) data as it becomes available. WGS data, covering more genetic variability, can add value to ROH studies, but require additional considerations during analysis. RESULTS Using SNP array and low coverage WGS data from 1885 individuals from 20 world populations, our aims were to compare ROH from the two datasets and to establish software conditions to get comparable results, thus providing guidelines for combining disparate datasets in joint ROH analyses. By allowing heterozygous SNPs per window, using the PLINK homozygosity function and non-parametric analysis, we were able to obtain non-significant differences in number ROH, mean ROH size and total sum of ROH between data sets using the different technologies for almost all populations. CONCLUSIONS By allowing 3 heterozygous SNPs per ROH when dealing with WGS low coverage data, it is possible to establish meaningful comparisons between data using SNP array and WGS low coverage technologies.
Collapse
Affiliation(s)
- Francisco C Ceballos
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Scott Hazelhurst
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- School of Electrical & Information Engineering, University of the Witwatersrand, Johannesburg, South Africa
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Human Genetics, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
8
|
Ceballos FC, Joshi PK, Clark DW, Ramsay M, Wilson JF. Runs of homozygosity: windows into population history and trait architecture. Nat Rev Genet 2018; 19:220-234. [PMID: 29335644 DOI: 10.1038/nrg.2017.109] [Citation(s) in RCA: 473] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Long runs of homozygosity (ROH) arise when identical haplotypes are inherited from each parent and thus a long tract of genotypes is homozygous. Cousin marriage or inbreeding gives rise to such autozygosity; however, genome-wide data reveal that ROH are universally common in human genomes even among outbred individuals. The number and length of ROH reflect individual demographic history, while the homozygosity burden can be used to investigate the genetic architecture of complex disease. We discuss how to identify ROH in genome-wide microarray and sequence data, their distribution in human populations and their application to the understanding of inbreeding depression and disease risk.
Collapse
Affiliation(s)
- Francisco C Ceballos
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, Johannesburg, South Africa.,Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK
| | - David W Clark
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, Johannesburg, South Africa.,Division of Human Genetics, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Braamfontein 2000, Johannesburg, South Africa
| | - James F Wilson
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK.,Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK
| |
Collapse
|
9
|
Denic S, Agarwal MM. Breast cancer protection by genomic imprinting in close kin families. BMC MEDICAL GENETICS 2017; 18:136. [PMID: 29157216 PMCID: PMC5696730 DOI: 10.1186/s12881-017-0498-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/09/2017] [Indexed: 12/31/2022]
Abstract
Human inbreeding generally reduces breast cancer risk (BCR). When the parents are biologically related, their infants have a lower birth weight due to smaller body organs. The undersized breasts, because of fewer mammary stem cells, have a lower likelihood of malignant conversion. Fetal growth is regulated by genomically imprinted genes which are in conflict; they promote growth when derived from the father and suppress growth when derived from the mother. The kinship theory explicates that the intensity of conflict between these genes affects growth and therefore the size of the newborn. In descendants of closely related parents, this gene clash is less resulting in a smaller infant. In this review, we elucidate the different mechanisms by which human inbreeding affects BCR, and why this risk is dissimilar in different inbred populations.
Collapse
Affiliation(s)
- Srdjan Denic
- Department of Medicine, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, UAE.
| | - Mukesh M Agarwal
- Department of Pathology, California University of Science and Medicine, 217 E Club Center Drive, San Bernardino, CA, 92408, USA
| |
Collapse
|
10
|
Thomsen H, Filho MIDS, Woltmann A, Johansson R, Eyfjörd JE, Hamann U, Manjer J, Enquist-Olsson K, Henriksson R, Herms S, Hoffmann P, Chen B, Huhn S, Hemminki K, Lenner P, Försti A. Inbreeding and homozygosity in breast cancer survival. Sci Rep 2015; 5:16467. [PMID: 26558712 PMCID: PMC4642301 DOI: 10.1038/srep16467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/14/2015] [Indexed: 02/07/2023] Open
Abstract
Genome-wide association studies (GWASs) help to understand the effects of single nucleotide polymorphisms (SNPs) on breast cancer (BC) progression and survival. We performed multiple analyses on data from a previously conducted GWAS for the influence of individual SNPs, runs of homozygosity (ROHs) and inbreeding on BC survival. (I.) The association of individual SNPs indicated no differences in the proportions of homozygous individuals among short-time survivors (STSs) and long-time survivors (LTSs). (II.) The analysis revealed differences among the populations for the number of ROHs per person and the total and average length of ROHs per person and among LTSs and STSs for the number of ROHs per person. (III.) Common ROHs at particular genomic positions were nominally more frequent among LTSs than in STSs. Common ROHs showed significant evidence for natural selection (iHS, Tajima's D, Fay-Wu's H). Most regions could be linked to genes related to BC progression or treatment. (IV.) Results were supported by a higher level of inbreeding among LTSs. Our results showed that an increased level of homozygosity may result in a preference of individuals during BC treatment. Although common ROHs were short, variants within ROHs might favor survival of BC and may function in a recessive manner.
Collapse
Affiliation(s)
- Hauke Thomsen
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Andrea Woltmann
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Robert Johansson
- Department of Radiation Sciences & Oncology, Umeå University, Umeå, Sweden
| | - Jorunn E. Eyfjörd
- Cancer Research Laboratory, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jonas Manjer
- The Malmö Diet and Cancer Study, Lund University, Malmö, Sweden
- Department of Plastic Surgery, Skåne University Hospital, Malmö, Lund University, Malmö, Sweden
| | - Kerstin Enquist-Olsson
- Department of Public Health and Clinical Medicine/Nutritional Research, Umeå University, Umeå, Sweden
| | - Roger Henriksson
- Department of Radiation Sciences & Oncology, Umeå University, Umeå, Sweden
- Cancer Center Stockholm Gotland, Stockholm, Sweden
| | - Stefan Herms
- Institute of Human Genetics, Department of Genomics, University of Bonn, Bonn, Germany
- Division of Medical Genetics and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Per Hoffmann
- Institute of Human Genetics, Department of Genomics, University of Bonn, Bonn, Germany
- Division of Medical Genetics and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Bowang Chen
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefanie Huhn
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Primary Health Care Research, Clinical Research Center, Lund University, Malmö, Sweden
| | - Per Lenner
- Department of Radiation Sciences & Oncology, Umeå University, Umeå, Sweden
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Primary Health Care Research, Clinical Research Center, Lund University, Malmö, Sweden
| |
Collapse
|
11
|
Wang C, Xu Z, Jin G, Hu Z, Dai J, Ma H, Jiang Y, Hu L, Chu M, Cao S, Shen H. Genome-wide analysis of runs of homozygosity identifies new susceptibility regions of lung cancer in Han Chinese. J Biomed Res 2013; 27:208-14. [PMID: 23720676 PMCID: PMC3664727 DOI: 10.7555/jbr.27.20130017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 02/27/2013] [Accepted: 03/14/2013] [Indexed: 12/02/2022] Open
Abstract
Runs of homozygosity (ROHs) are a class of important but poorly studied genomic variations and may be involved in individual susceptibility to diseases. To better understand ROH and its relationship with lung cancer, we performed a genome-wide ROH analysis of a subset of a previous genome-wide case-control study (1,473 cases and 1,962 controls) in a Han Chinese population. ROHs were classified into two classes, based on lengths, intermediate and long ROHs, to evaluate their association with lung cancer risk using existing genome-wide single nucleotide polymorphism (SNP) data. We found that the overall level of intermediate ROHs was significantly associated with a decreased risk of lung cancer (odds ratio = 0.63; 95% confidence interval: 0.51-0.77; P = 4.78×10−6 ), while the long ROHs seemed to be a risk factor of lung cancer. We also identified one ROH region at 14q23.1 that was consistently associated with lung cancer risk in the study. These results indicated that ROHs may be a new class of variation which may be associated with lung cancer risk, and genetic variants at 14q23.1 may be involved in the development of lung cancer.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhang L, Orloff MS, Reber S, Li S, Zhao Y, Eng C. cgaTOH: extended approach for identifying tracts of homozygosity. PLoS One 2013; 8:e57772. [PMID: 23469237 PMCID: PMC3585782 DOI: 10.1371/journal.pone.0057772] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 01/25/2013] [Indexed: 11/19/2022] Open
Abstract
Identification of disease variants via homozygosity mapping and investigation of the effects of genome-wide homozygosity regions on traits of biomedical importance have been widely applied recently. Nonetheless, the existing methods and algorithms to identify long tracts of homozygosity (TOH) are not able to provide efficient and rigorous regions for further downstream association investigation. We expanded current methods to identify TOHs by defining "surrogate-TOH", a region covering a cluster of TOHs with specific characteristics. Our defined surrogate-TOH includes cTOH, viz a common TOH region where at least ten TOHs present; gTOH, whereby a group of highly overlapping TOHs share proximal boundaries; and aTOH, which are allelically-matched TOHs. Searching for gTOH and aTOH was based on a repeated binary spectral clustering algorithm, where a hierarchy of clusters is created and represented by a TOH cluster tree. Based on the proposed method of identifying different species of surrogate-TOH, our cgaTOH software was developed. The software provides an intuitive and interactive visualization tool for better investigation of the high-throughput output with special interactive navigation rings, which will find its applicability in both conventional association studies and more sophisticated downstream analyses. NCBI genome map viewer is incorporated into the system. Moreover, we discuss the choice of implementing appropriate empirical ranges of critical parameters by applying to disease models. This method identifies various patterned clusters of SNPs demonstrating extended homozygosity, thus one can observe different aspects of the multi-faceted characteristics of TOHs.
Collapse
Affiliation(s)
- Li Zhang
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America.
| | | | | | | | | | | |
Collapse
|