1
|
Doremus-Fitzwater TL, Deak T. Adolescent neuroimmune function and its interaction with alcohol. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:167-208. [PMID: 34801169 DOI: 10.1016/bs.irn.2021.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Adolescence is an evolutionarily conserved developmental period associated with behavioral change, including increased risk-taking and alcohol use. Experimentation with alcohol typically begins in adolescence and transitions to binge-like patterns of consumption. Alcohol exposure during adolescence can alter normative changes in brain structure and function. Understanding mechanisms by which ethanol impacts neurodevelopmental processes is important for preventing and ameliorating the deleterious consequences of adolescent alcohol abuse. This review focuses on the neuroimmune system as a key contributor to ethanol-induced changes in adolescent brain and behavior. After brief review of neuroimmune system development, acute and chronic effects of ethanol on adolescent neuroimmune functioning are addressed. Comparisons between stress/immunological challenges and ethanol on adolescent neuroimmunity are reviewed, as cross-sensitization is relevant during adolescence. The mechanisms by which ethanol alters neuroimmune functioning are then discussed, as they may portend development of neuropathological consequences and thus increase vulnerability to subsequent challenges and potentiate addictive behaviors.
Collapse
Affiliation(s)
- T L Doremus-Fitzwater
- Department of Psychology, Ithaca College, Ithaca, NY, United States; Developmental Exposure Alcohol Research Center (DEARC), Binghamton, NY, United States.
| | - T Deak
- Developmental Exposure Alcohol Research Center (DEARC), Binghamton, NY, United States; Binghamton University-SUNY, Binghamton, NY, United States
| |
Collapse
|
2
|
Cortez I, Rodgers SP, Kosten TA, Leasure JL. Sex and Age Effects on Neurobehavioral Toxicity Induced by Binge Alcohol. Brain Plast 2020; 6:5-25. [PMID: 33680843 PMCID: PMC7902983 DOI: 10.3233/bpl-190094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Historically, most alcohol neurotoxicity studies were conducted in young adult males and focused on chronic intake. There has been a shift towards studying the effects of alcohol on the adolescent brain, due to alcohol consumption during this formative period disrupting the brain's developmental trajectory. Because the most typical pattern of adolescent alcohol intake is heavy episodic (binge) drinking, there has also been a shift towards the study of binge alcohol-induced neurobehavioral toxicity. It has thus become apparent that binge alcohol damages the adolescent brain and there is increasing attention to sex-dependent effects. Significant knowledge gaps remain in our understanding of the effects of binge alcohol on the female brain, however. Moreover, it is unsettling that population-level studies indicate that the prevalence of binge drinking is increasing among American women, particularly those in older age groups. Although study of adolescents has made it apparent that binge alcohol disrupts ongoing brain maturational processes, we know almost nothing about how it impacts the aging brain, as studies of its effects on the aged brain are relatively scarce, and the study of sex-dependent effects is just beginning. Given the rapidly increasing population of older Americans, it is crucial that studies address age-dependent effects of binge alcohol, and given the increase in binge drinking in older women who are at higher risk for cognitive decline relative to men, studies must encompass both sexes. Because adolescence and older age are both characterized by age-typical brain changes, and because binge drinking is the most common pattern of alcohol intake in both age groups, the knowledge that we have amassed on binge alcohol effects on the adolescent brain can inform our study of its effects on the aging brain. In this review, we therefore cover the current state of knowledge of sex and age-dependent effects of binge alcohol, as well as statistical and methodological considerations for studies aimed at addressing them.
Collapse
Affiliation(s)
- Ibdanelo Cortez
- Department of Psychology, University of Houston, Houston, TX, USA
| | | | | | - J. Leigh Leasure
- Department of Psychology, University of Houston, Houston, TX, USA
- Department of Biology & Biochemistry, University of Houston, Houston, TX, USA
| |
Collapse
|
3
|
Neurochemical insights into the radiation protection of astronauts: Distinction between low- and moderate-LET radiation components. Phys Med 2018; 57:7-16. [PMID: 30738534 DOI: 10.1016/j.ejmp.2018.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/13/2018] [Accepted: 12/05/2018] [Indexed: 01/19/2023] Open
Abstract
Radiation protection of astronauts remains an ongoing challenge in preparation of deep space exploratory missions. Exposure to space radiation consisting of multiple radiation components is associated with a significant risk of experiencing central nervous system (CNS) detriments, potentially influencing the crew operational decisions. Developing of countermeasures protecting CNS from the deleterious exposure requires understanding the mechanistic nature of cognitive impairments induced by different components of space radiation. The current study was designed to identify differences in neurochemical modifications caused by exposure to low- and moderate-LET radiations and to elucidate a distinction between the observed outcomes. We exposed rats to accelerated protons (170 MeV; 0.5 keV/μm) or to carbon ions (12C; 500 MeV/u; 10.5 keV/μm) delivered at the same dose of 1 Gy. Neurochemical alterations were evaluated 1, 30, and 90 days after exposure via indices of the monoamine metabolism measured in five brain structures, including prefrontal cortex, hypothalamus, nucleus accumbens, hippocampus and striatum. We obtained the detailed patterns of neurochemical modifications after exposure to the mentioned radiation modalities. Our data show that the enhancement in the radiation LET from relatively low to moderate values leads to different neurochemical outcomes and that a particular effect depends on the irradiated brain structure. We also hypothesized that exposure to the moderate-LET radiations can induce a hyperactivation of feedback neurochemical mechanisms, which blur metabolic deviations and lead to the delayed impairments in brain functions. Based on our findings we discuss possible contribution of the observed changes to behavioural impairments.
Collapse
|
4
|
Sanchez-Marin L, Pavon FJ, Decara J, Suarez J, Gavito A, Castilla-Ortega E, Rodriguez de Fonseca F, Serrano A. Effects of Intermittent Alcohol Exposure on Emotion and Cognition: A Potential Role for the Endogenous Cannabinoid System and Neuroinflammation. Front Behav Neurosci 2017; 11:15. [PMID: 28223925 PMCID: PMC5293779 DOI: 10.3389/fnbeh.2017.00015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 01/16/2017] [Indexed: 01/30/2023] Open
Abstract
Intermittent alcohol exposure is a common pattern of adolescent alcohol use that can lead to binge drinking episodes. Alcohol use is known to modulate the endocannabinoid system (ECS), which is involved in neuronal communication, neuroplasticity, neuroinflammation and behavior. Adolescent male Wistar rats were exposed to 4-week intermittent alcohol intoxication (3 g/kg injections for 4 days/week) or saline (N = 12 per group). After alcohol deprivation, adult rats were assessed for emotionality and cognition and the gene expression of the ECS and other factors related to behavior and neuroinflammation was examined in the brain. Alcohol-exposed rats exhibited anxiogenic-like responses and impaired recognition memory but no motor alterations. There were brain region-dependent changes in the mRNA levels of the ECS and molecular signals compared with control rats. Thus, overall, alcohol-exposed rats expressed higher mRNA levels of endocannabinoid synthetic enzymes (N-acyl-phosphatidylethanolamine phospholipase D and diacylglycerol lipases) in the medial-prefrontal cortex (mPFC) but lower mRNA levels in the amygdala. Furthermore, we observed lower mRNA levels of receptors CB1 CB2 and peroxisome proliferator-activated receptor-α in the striatum. Regarding neuropeptide signaling, alcohol-exposed rats displayed lower mRNA levels of the neuropeptide Y signaling, particularly NPY receptor-2, in the amygdala and hippocampus and higher mRNA levels of corticotropin-releasing factor in the hippocampus. Additionally, we observed changes of several neuroinflammation-related factors. Whereas, the mRNA levels of toll-like receptor-4, tumor necrosis factor-α, cyclooxygenase-2 and glial fibrillary acidic protein were significantly increased in the mPFC, the mRNA levels of cyclooxygenase-2 and glial fibrillary acidic protein were decreased in the striatum and hippocampus. However, nuclear factor-κβ mRNA levels were lower in the mPFC and striatum and allograft inflammatory factor-1 levels were differentially expressed in the amygdala and hippocampus. In conclusion, rats exposed to adolescent intermittent alcohol displayed anxiety-like behavior and cognitive deficits in adulthood and these alterations were accompanied by brain region-dependent changes in the gene expression of the ECS and other signals associated with neuroinflammation and behavior. An intermittent adolescent alcohol exposure has behavioral and molecular consequences in the adult brain, which might be linked to higher vulnerability to addictive behaviors and psychopathologies.
Collapse
Affiliation(s)
- Laura Sanchez-Marin
- Unidad de Gestion Clinica de Salud Mental, Instituto de Investigacion Biomedica de Malaga, Hospital Regional Universitario de Malaga, Universidad de Malaga Malaga, Spain
| | - Francisco J Pavon
- Unidad de Gestion Clinica de Salud Mental, Instituto de Investigacion Biomedica de Malaga, Hospital Regional Universitario de Malaga, Universidad de Malaga Malaga, Spain
| | - Juan Decara
- Unidad de Gestion Clinica de Salud Mental, Instituto de Investigacion Biomedica de Malaga, Hospital Regional Universitario de Malaga, Universidad de Malaga Malaga, Spain
| | - Juan Suarez
- Unidad de Gestion Clinica de Salud Mental, Instituto de Investigacion Biomedica de Malaga, Hospital Regional Universitario de Malaga, Universidad de Malaga Malaga, Spain
| | - Ana Gavito
- Unidad de Gestion Clinica de Salud Mental, Instituto de Investigacion Biomedica de Malaga, Hospital Regional Universitario de Malaga, Universidad de Malaga Malaga, Spain
| | - Estela Castilla-Ortega
- Unidad de Gestion Clinica de Salud Mental, Instituto de Investigacion Biomedica de Malaga, Hospital Regional Universitario de Malaga, Universidad de Malaga Malaga, Spain
| | - Fernando Rodriguez de Fonseca
- Unidad de Gestion Clinica de Salud Mental, Instituto de Investigacion Biomedica de Malaga, Hospital Regional Universitario de Malaga, Universidad de Malaga Malaga, Spain
| | - Antonia Serrano
- Unidad de Gestion Clinica de Salud Mental, Instituto de Investigacion Biomedica de Malaga, Hospital Regional Universitario de Malaga, Universidad de Malaga Malaga, Spain
| |
Collapse
|
5
|
Gallego X, Cox RJ, Funk E, Foster RA, Ehringer MA. Voluntary exercise decreases ethanol preference and consumption in C57BL/6 adolescent mice: sex differences and hippocampal BDNF expression. Physiol Behav 2014; 138:28-36. [PMID: 25447477 DOI: 10.1016/j.physbeh.2014.10.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/24/2014] [Accepted: 10/09/2014] [Indexed: 12/13/2022]
Abstract
Adolescence is a period of high vulnerability for alcohol use and abuse. Early alcohol use has been shown to increase the risk for alcohol-related problems later in life; therefore effective preventive treatments targeted toward adolescents would be very valuable. Many epidemiological and longitudinal studies in humans have revealed the beneficial effects of exercise for prevention and treatment of alcohol addiction. Pre-clinical studies have demonstrated that access to a running wheel leads to decreased voluntary alcohol consumption in adult mice, hamsters, and rats. However, age and sex may also influence the effects of exercise on alcohol use. Herein, we studied male and female C57BL/6 adolescent mice using a 24-hour two-bottle choice paradigm to evaluate 21 days of concurrent voluntary exercise on alcohol consumption and preference. Given previously known effects of exercise in increasing the expression of brain-derived neurotrophic factor (BDNF) in the hippocampus and its role in regulating the reward system, BDNF mRNA and protein levels were measured at the end of the behavioral experiment. Our results demonstrate sex differences in the efficacy of voluntary exercise and its effects on decreasing alcohol consumption and preference. We also report increased BDNF expression after 21 days of voluntary exercise in both male and female mice. Interestingly, the distance traveled played an important role in alcohol consumption and preference in female mice but not in male mice. Overall, this study demonstrates sex differences in the effects of voluntary exercise on alcohol consumption in adolescent mice and points out the importance of distance traveled as a limiting factor to the beneficial effects of wheel running in female mice.
Collapse
Affiliation(s)
- X Gallego
- Institute for Behavioral Genetics, University of Colorado Boulder, CO 80303, USA
| | - R J Cox
- Institute for Behavioral Genetics, University of Colorado Boulder, CO 80303, USA
| | - E Funk
- Institute for Behavioral Genetics, University of Colorado Boulder, CO 80303, USA
| | - R A Foster
- Institute for Behavioral Genetics, University of Colorado Boulder, CO 80303, USA
| | - M A Ehringer
- Institute for Behavioral Genetics, University of Colorado Boulder, CO 80303, USA; Department of Integrative Physiology, University of Colorado Boulder, CO 80303, USA.
| |
Collapse
|
6
|
Przybycien-Szymanska MM, Rao YS, Prins SA, Pak TR. Parental binge alcohol abuse alters F1 generation hypothalamic gene expression in the absence of direct fetal alcohol exposure. PLoS One 2014; 9:e89320. [PMID: 24586686 PMCID: PMC3930730 DOI: 10.1371/journal.pone.0089320] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 01/17/2014] [Indexed: 11/26/2022] Open
Abstract
Adolescent binge alcohol exposure has long-lasting effects on the expression of hypothalamic genes that regulate the stress response, even in the absence of subsequent adult alcohol exposure. This suggests that alcohol can induce permanent gene expression changes, potentially through epigenetic modifications to specific genes. Epigenetic modifications can be transmitted to future generations therefore, and in these studies we investigated the effects of adolescent binge alcohol exposure on hypothalamic gene expression patterns in the F1 generation offspring. It has been well documented that maternal alcohol exposure during fetal development can have devastating neurological consequences. However, less is known about the consequences of maternal and/or paternal alcohol exposure outside of the gestational time frame. Here, we exposed adolescent male and female rats to a repeated binge EtOH exposure paradigm and then mated them in adulthood. Hypothalamic samples were taken from the offspring of these animals at postnatal day (PND) 7 and subjected to a genome-wide microarray analysis followed by qRT-PCR for selected genes. Importantly, the parents were not intoxicated at the time of mating and were not exposed to EtOH at any time during gestation therefore the offspring were never directly exposed to EtOH. Our results showed that the offspring of alcohol-exposed parents had significant differences compared to offspring from alcohol-naïve parents. Specifically, major differences were observed in the expression of genes that mediate neurogenesis and synaptic plasticity during neurodevelopment, genes important for directing chromatin remodeling, posttranslational modifications or transcription regulation, as well as genes involved in regulation of obesity and reproductive function. These data demonstrate that repeated binge alcohol exposure during pubertal development can potentially have detrimental effects on future offspring even in the absence of direct fetal alcohol exposure.
Collapse
Affiliation(s)
- Magdalena M. Przybycien-Szymanska
- Loyola University Chicago Health Science Division, Department of Cell and Molecular Physiology, Maywood, Illinois, United States of America
| | - Yathindar S. Rao
- Loyola University Chicago Health Science Division, Department of Cell and Molecular Physiology, Maywood, Illinois, United States of America
| | - Sarah A. Prins
- Loyola University Chicago Health Science Division, Department of Cell and Molecular Physiology, Maywood, Illinois, United States of America
| | - Toni R. Pak
- Loyola University Chicago Health Science Division, Department of Cell and Molecular Physiology, Maywood, Illinois, United States of America
- * E-mail:
| |
Collapse
|
7
|
Matveeva MI, Shtemberg AS, Timoshenko GN, Krasavin EA, Narkevich VB, Klodt PM, Kudrin VS, Bazyan AS. The effects of irradiation by 12C carbon ions on monoamine exchange in several rat brain structures. NEUROCHEM J+ 2013. [DOI: 10.1134/s1819712413040065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Gulley JM, Juraska JM. The effects of abused drugs on adolescent development of corticolimbic circuitry and behavior. Neuroscience 2013; 249:3-20. [PMID: 23711583 DOI: 10.1016/j.neuroscience.2013.05.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 05/13/2013] [Accepted: 05/16/2013] [Indexed: 01/01/2023]
Abstract
Adolescence is a period of significant neurobiological change that occurs as individuals transition from childhood to adulthood. Because the nervous system is in a relatively labile state during this stage of development, it may be especially sensitive to experience-induced plasticity. One such experience that is relatively common to adolescents is the exposure to drugs of abuse, particularly alcohol and psychostimulants. In this review, we highlight recent findings on the long-lasting effects of exposure to these drugs during adolescence in humans as well as in animal models. Whenever possible, our focus is on studies that use comparison groups of adolescent- and adult-exposed subjects as this is a more direct test of the hypothesis that adolescence represents a period of enhanced vulnerability to the effects of drug-induced plasticity. Lastly, we suggest areas of future investigation that are needed and methodological concerns that should be addressed.
Collapse
Affiliation(s)
- J M Gulley
- Department of Psychology and Neuroscience Program, University of Illinois at Urbana-Champaign, IL, USA.
| | | |
Collapse
|
9
|
Klintsova AY, Hamilton GF, Boschen KE. Long-term consequences of developmental alcohol exposure on brain structure and function: therapeutic benefits of physical activity. Brain Sci 2012; 3:1-38. [PMID: 24961305 PMCID: PMC4061829 DOI: 10.3390/brainsci3010001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/01/2012] [Accepted: 12/10/2012] [Indexed: 02/07/2023] Open
Abstract
Developmental alcohol exposure both early in life and during adolescence can have a devastating impact on normal brain structure and functioning, leading to behavioral and cognitive impairments that persist throughout the lifespan. This review discusses human work as well as animal models used to investigate the effect of alcohol exposure at various time points during development, as well as specific behavioral and neuroanatomical deficits caused by alcohol exposure. Further, cellular and molecular mediators contributing to these alcohol-induced changes are examined, such as neurotrophic factors and apoptotic markers. Next, this review seeks to support the use of aerobic exercise as a potential therapeutic intervention for alcohol-related impairments. To date, few interventions, behavioral or pharmacological, have been proven effective in mitigating some alcohol-related deficits. Exercise is a simple therapy that can be used across species and also across socioeconomic status. It has a profoundly positive influence on many measures of learning and neuroplasticity; in particular, those measures damaged by alcohol exposure. This review discusses current evidence that exercise may mitigate damage caused by developmental alcohol exposure and is a promising therapeutic target for future research and intervention strategies.
Collapse
Affiliation(s)
- Anna Y Klintsova
- Department of Psychology, University of Delaware, Newark, DE 19716, USA.
| | - Gillian F Hamilton
- Department of Psychology, University of Delaware, Newark, DE 19716, USA.
| | - Karen E Boschen
- Department of Psychology, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|