1
|
Wen T, Hong Y, Cui Y, Pan J, Wang Y, Luo Y. Downregulation of miR-210-3p Attenuates High Glucose-Induced Angiogenesis of Vascular Endothelial Cells via Targeting FGFRL1. Ophthalmic Res 2023; 66:913-920. [PMID: 37062273 DOI: 10.1159/000530160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/06/2023] [Indexed: 04/18/2023]
Abstract
INTRODUCTION Vascular endothelial cell injury and angiogenesis induced by hyperglycemia are the main pathological basis of vascular complications in diabetes mellitus. Our study aimed to investigate the role and mechanism of miR-210-3p in high glucose (HG)-induced angiogenesis. METHODS Human umbilical vein endothelial cells (HUVECs) were treated with HG to mimic the pathological process of hyperglycemia. HUVECs were divided into the control group, HG group, HG+inhibitor-NC group, and HG+miR-210-3p inhibitor group. Proliferation and migration were tested by wound healing assay, tube formation, and Transwell assay. Quantitation real-time PCR and Western blots were performed to determine the expression of miR-210-3p and relative proteins, respectively. RESULTS The level of miR-210-3p significantly increased in HUVECs treated by HG. The knockdown of miR-210-3p attenuated the tube formation, proliferation, and migration of cultured HUVECs in vitro to inhibit angiogenesis by increasing the expression of fibroblast growth factor receptor-like 1 (FGFRL1) and then attenuating the phosphorylation of signal transducer and activator of transcription 3 (STAT3), extracellular regulated protein kinases, and protein kinase B (Akt). CONCLUSION Our study revealed that miR-210-3p might be a promising target for treating diabetic-associated vascular injury.
Collapse
Affiliation(s)
- Tao Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yiwen Hong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yamei Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jianying Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yishen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yan Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Aprajita, Sharma R. Comprehending fibroblast growth factor receptor like 1: Oncogene or tumor suppressor? Cancer Treat Res Commun 2021; 29:100472. [PMID: 34689016 DOI: 10.1016/j.ctarc.2021.100472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/16/2022]
Abstract
Fibroblast Growth Factor Receptor Like 1 (FGFRL1) signaling has crucial role in a multitude of processes during genetic diseases, embryonic development and various types of cancer. Due to its partial structural similarity with its classical Fibroblast Growth Factor Receptor [FGFR] counterparts and lack of tyrosine kinase domain, FGFRL1 was thought to work as a decoy receptor in FGF/FGFR signaling. Later on, growing number evidences showed that expression of FGFRL1 affects major pathways like ERK1/2, Akt and others, which are dysfunctional in a wide range of human cancers. In this review, we provide an overview of the current understanding of FGFRL1 and its roles in cell differentiation, adhesion and proliferation pathways . Overexpression of FGFRL1 might lead to tumor progression and invasion. In this context, inhibitors for FGFRL1 might have therapeutic benefits in human cancer prognosis.
Collapse
Affiliation(s)
- Aprajita
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| | - Rinu Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India.
| |
Collapse
|
3
|
Dissecting the Interaction of FGF8 with Receptor FGFRL1. Biomolecules 2020; 10:biom10101399. [PMID: 33019532 PMCID: PMC7600612 DOI: 10.3390/biom10101399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
In mammals, the novel protein fibroblast growth factor receptor-like 1 (FGFRL1) is involved in the development of metanephric kidneys. It appears that this receptor controls a crucial transition of the induced metanephric mesenchyme to epithelial renal vesicles, which further develop into functional nephrons. FGFRL1 knockout mice lack metanephric kidneys and do not express any fibroblast growth factor (FGF) 8 in the metanephric mesenchyme, suggesting that FGFRL1 and FGF8 play a decisive role during kidney formation. FGFRL1 consists of three extracellular immunoglobulin (Ig) domains (Ig1-Ig2-Ig3), a transmembrane domain and a short intracellular domain. We have prepared the extracellular domain (Ig123), the three individual Ig domains (Ig1, Ig2, Ig3) as well as all combinations containing two Ig domains (Ig12, Ig23, Ig13) in recombinant form in human cells. All polypeptides that contain the Ig2 domain (Ig123, Ig12, Ig23, Ig2) were found to interact with FGF8 with very high affinity, whereas all constructs that lack the Ig2 domain (Ig1, Ig3, Ig13) poorly interacted with FGF8 as shown by ELISA and surface plasmon resonance. It is therefore likely that FGFRL1 represents a physiological receptor for FGF8 in the kidney and that the ligand primarily binds to the Ig2 domain of the receptor. With Biacore experiments, we also measured the affinity of FGF8 for the different constructs. All constructs containing the Ig2 domain showed a rapid association and a slow dissociation phase, from which a KD of 2–3 × 10−9 M was calculated. Our data support the hypothesis that binding of FGF8 to FGFRL1 could play an important role in driving the formation of nephrons in the developing kidney.
Collapse
|
4
|
Gerber SD, Beauchamp P, Zhuang L, Villiger PM, Trueb B. Functional domains of the FgfrL1 receptor. Dev Biol 2020; 461:43-54. [PMID: 31923383 DOI: 10.1016/j.ydbio.2020.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/27/2019] [Accepted: 01/03/2020] [Indexed: 10/25/2022]
Abstract
FgfrL1 is a novel growth factor receptor that is primarily expressed in musculoskeletal tissues and the kidney. FgfrL1-deficient mice have a malformed diaphragm and no kidneys. Such animals die immediately after birth because they are not able to inflate their lungs. The FgfrL1 molecule is composed of three extracellular Ig domains, a transmembrane helix and a short intracellular domain. To investigate the contribution of each of these domains to the function of the novel receptor, we generated mice with deletions of the individual domains. Mice lacking the intracellular domain are viable and phenotypically normal. Mice lacking the first (N-terminal) Ig domain are also viable and normal, but have a reduced life span. Mice lacking the Ig2 or the Ig3 domain are born alive, but die within 24 h after birth. Ig2-deficient animals exhibit substantially smaller kidneys than wild-type littermates and contain a lower number of glomeruli. Ig3-deficient mice completely lack metanephric kidneys. Interestingly, both the Ig2 and the Ig3-deficient animals show only minor alterations in the diaphragm, which still enables them to inflate their lungs after birth. Our results demonstrate that the principal function of the FgfrL1 receptor is to control the growth of the metanephric kidneys by regulating nephrogenesis. It appears that this function is primarily accomplished by the Ig3 domain with some contribution of the Ig2 domain. It is conceivable that the two domains interact with an Fgf ligand and another molecule from the surface of neighboring cells to induce condensation of the metanephric mesenchyme to renal epithelia and glomeruli.
Collapse
Affiliation(s)
- Simon D Gerber
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Philippe Beauchamp
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Lei Zhuang
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Peter M Villiger
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland; Department of Rheumatology, University Hospital, 3010, Bern, Switzerland
| | - Beat Trueb
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland; Department of Rheumatology, University Hospital, 3010, Bern, Switzerland.
| |
Collapse
|
5
|
Chen R, Li D, Zheng M, Chen B, Wei T, Wang Y, Li M, Huang W, Tong Q, Wang Q, Zhu Y, Fang W, Guo L, Fang S. FGFRL1 affects chemoresistance of small-cell lung cancer by modulating the PI3K/Akt pathway via ENO1. J Cell Mol Med 2020; 24:2123-2134. [PMID: 31957179 PMCID: PMC7011138 DOI: 10.1111/jcmm.14763] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/21/2019] [Accepted: 08/31/2019] [Indexed: 12/18/2022] Open
Abstract
Fibroblast growth factor receptor‐like 1 (FGFRL1), a member of the FGFR family, has been demonstrated to play important roles in various cancers. However, the role of FGFRL1 in small‐cell lung cancer (SCLC) remains unclear. Our study aimed to investigate the role of FGFRL1 in chemoresistance of SCLC and elucidate the possible molecular mechanism. We found that FGFRL1 levels are significantly up‐regulated in multidrug‐resistant SCLC cells (H69AR and H446DDP) compared with the sensitive parental cells (H69 and H446). In addition, clinical samples showed that FGFRL1 was overexpressed in SCLC tissues, and high FGFRL1 expression was associated with the clinical stage, chemotherapy response and survival time of SCLC patients. Knockdown of FGFRL1 in chemoresistant SCLC cells increased chemosensitivity by increasing cell apoptosis and cell cycle arrest, whereas overexpression of FGFRL1 in chemosensitive SCLC cells produced the opposite results. Mechanistic investigations showed that FGFRL1 interacts with ENO1, and FGFRL1 was found to regulate the expression of ENO1 and its downstream signalling pathway (the PI3K/Akt pathway) in SCLC cells. In brief, our study demonstrated that FGFRL1 modulates chemoresistance of SCLC by regulating the ENO1‐PI3K/Akt pathway. FGFRL1 may be a predictor and a potential therapeutic target for chemoresistance in SCLC.
Collapse
Affiliation(s)
- Rui Chen
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Oncology, Jiujiang First People's Hospital, Jiujiang, China
| | - Deyu Li
- Department of Medical Oncology, Provincial Clinical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| | - Meng Zheng
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Chen
- Department of Hepatic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ting Wei
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Wang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Man Li
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weimei Huang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qin Tong
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qi Wang
- Department of Medical Oncology, Provincial Clinical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| | - Yaru Zhu
- Department of Cardiothoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Fang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Linlang Guo
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shun Fang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
The Genetic Basis of Scale-Loss Phenotype in the Rapid Radiation of Takifugu Fishes. Genes (Basel) 2019; 10:genes10121027. [PMID: 31835491 PMCID: PMC6947334 DOI: 10.3390/genes10121027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/01/2019] [Accepted: 12/03/2019] [Indexed: 12/27/2022] Open
Abstract
Rapid radiation associated with phenotypic divergence and convergence provides an opportunity to study the genetic mechanisms of evolution. Here we investigate the genus Takifugu that has undergone explosive radiation relatively recently and contains a subset of closely-related species with a scale-loss phenotype. By using observations during development and genetic mapping approaches, we show that the scale-loss phenotype of two Takifugu species, T. pardalis Temminck & Schlegel and T. snyderi Abe, is largely controlled by an overlapping genomic segment (QTL). A search for candidate genes underlying the scale-loss phenotype revealed that the QTL region contains no known genes responsible for the evolution of scale-loss phenotype in other fishes. These results suggest that the genes used for the scale-loss phenotypes in the two Takifugu are likely the same, but the genes used for the similar phenotype in Takifugu and distantly related fishes are not the same. Meanwhile, Fgfrl1, a gene predicted to function in a pathway known to regulate bone/scale development was identified in the QTL region. Since Fgfr1a1, another memebr of the Fgf signaling pathway, has been implicated in scale loss/scale shape in fish distantly related to Takifugu, our results suggest that the convergence of the scale-loss phenotype may be constrained by signaling modules with conserved roles in scale development.
Collapse
|
7
|
Takei Y, Matsumura T, Watanabe K, Nakamine H, Sudo T, Shimizu K, Shimada Y. FGFRL1 deficiency reduces motility and tumorigenic potential of cells derived from oesophageal squamous cell carcinomas. Oncol Lett 2018; 16:809-814. [PMID: 29963148 PMCID: PMC6019949 DOI: 10.3892/ol.2018.8739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/16/2018] [Indexed: 02/01/2023] Open
Abstract
Oesophageal squamous cell carcinoma (ESCC) is an aggressive cancer that resulted in ~400,000 mortalities worldwide in 2012. It was reported previously that fibroblast growth factor receptor-like 1 (FGFRL1) is highly expressed in ESCC patients with lymph node metastasis and poor prognosis accordingly. FGFRL1 is an FGFR that lacks tyrosine kinase activity, whereas the activity is critical for other FGFRs to activate intracellular signalling. The mechanism by which FGFRL1 promotes the aggressiveness of ESCCs is unknown. In the present study, two independent FGFRL1-deficient cell lines were generated from human ESCC KYSE520 cells, in order to investigate the relationship of FGFRL1 with the aggressiveness of ESCCs. FGFRL1-deficiency did not affect proliferation of KYSE520 cells in vitro. However, a xenograft mouse model demonstrated that FGFRL1-deficiency decelerated tumour growth in vivo. The haematoxylin-eosin staining identified that FGFRL1-deficient cells formed well-differentiated squamous cell carcinomas, whereas wild-type cells formed moderately differentiated squamous cell carcinomas. Microarray analysis of mRNA expression revealed that FGFRL1-depletion resulted in decreased expression of proteins associated with motility and invasion of tumour cells, matrix metalloproteinase-1 and fibroblast growth factor binding protein 1. The wound-healing assay indicated that depleting FGFRL1 reduced cell motility. Furthermore, the invasiveness of FGFRL1-deficient cells was lesser than that of wild-type KYSE520 cells. In the FGFRL1-deficient KYSE520 cells, actin filaments around the nucleus were observed sparsely, whereas the filaments along the plasma membranes were observed as frequently as those in the parent KYSE520 cells. These results demonstrate that FGFRL1 may be involved in regulation of protein expression, actin filament assembly and tumorigenic potential of ESCC cells.
Collapse
Affiliation(s)
- Yoshinori Takei
- Department of Nanobio Drug Discovery, Graduate School of Pharmaceutical Science, Kyoto University, Kyoto 606-8501, Japan
| | - Takafumi Matsumura
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Science, Kyoto University, Kyoto 606-8501, Japan
| | - Kazuaki Watanabe
- Department of Nanobio Drug Discovery, Graduate School of Pharmaceutical Science, Kyoto University, Kyoto 606-8501, Japan
| | - Hirokazu Nakamine
- Division of Pathology and Laboratory Medicine, The Japan Baptist Hospital, Kyoto 606-8273, Japan
| | - Tetsuo Sudo
- Department of Nanobio Drug Discovery, Graduate School of Pharmaceutical Science, Kyoto University, Kyoto 606-8501, Japan
| | - Kazuharu Shimizu
- Department of Nanobio Drug Discovery, Graduate School of Pharmaceutical Science, Kyoto University, Kyoto 606-8501, Japan
| | - Yutaka Shimada
- Department of Nanobio Drug Discovery, Graduate School of Pharmaceutical Science, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
8
|
Yang X, Steinberg F, Zhuang L, Bessey R, Trueb B. Receptor FGFRL1 does not promote cell proliferation but induces cell adhesion. Int J Mol Med 2016; 38:30-8. [PMID: 27220341 PMCID: PMC4899019 DOI: 10.3892/ijmm.2016.2601] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/19/2016] [Indexed: 12/29/2022] Open
Abstract
Fibroblast growth factor receptor (FGFR)-like protein 1 (FGFRL1) is the most recently discovered member of the FGFR family. Owing to the fact that it interacts with FGF ligands, but lacks the intracellular tyrosine kinase domain, several researchers have speculated that it may function as a decoy receptor and exert a negative effect on cell proliferation. In this study, we performed overexpression experiments with TetOn‑inducible cell clones and downregulation experiments with siRNA oligonucleotides, and found that FGFRL1 had absolutely no effect on cell growth and proliferation. Likewise, we did not observe any influence of FGFRL1 on ERK1/2 activation and on the phosphorylation of 250 other signaling proteins analyzed by the Kinexus antibody microarray. On the other hand, with bacterial petri dishes, we observed a clear effect of FGFRL1 on cell adhesion during the initial hours after cell seeding. Our results suggest that FGFRL1 is a cell adhesion protein similar to the nectins rather than a signaling receptor similar to FGFR1-FGFR4.
Collapse
Affiliation(s)
- Xiaochen Yang
- Department of Clinical Research, University of Bern, CH-3008 Bern, Switzerland
| | - Florian Steinberg
- Department of Clinical Research, University of Bern, CH-3008 Bern, Switzerland
| | - Lei Zhuang
- Department of Clinical Research, University of Bern, CH-3008 Bern, Switzerland
| | - Ralph Bessey
- Department of Clinical Research, University of Bern, CH-3008 Bern, Switzerland
| | - Beat Trueb
- Department of Clinical Research, University of Bern, CH-3008 Bern, Switzerland
| |
Collapse
|
9
|
Trepiccione F, Gerber SD, Grahammer F, López-Cayuqueo KI, Baudrie V, Păunescu TG, Capen DE, Picard N, Alexander RT, Huber TB, Chambrey R, Brown D, Houillier P, Eladari D, Simons M. Renal Atp6ap2/(Pro)renin Receptor Is Required for Normal Vacuolar H+-ATPase Function but Not for the Renin-Angiotensin System. J Am Soc Nephrol 2016; 27:3320-3330. [PMID: 27044666 DOI: 10.1681/asn.2015080915] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 02/24/2016] [Indexed: 01/22/2023] Open
Abstract
ATPase H+-transporting lysosomal accessory protein 2 (Atp6ap2), also known as the (pro)renin receptor, is a type 1 transmembrane protein and an accessory subunit of the vacuolar H+-ATPase (V-ATPase) that may also function within the renin-angiotensin system. However, the contribution of Atp6ap2 to renin-angiotensin-dependent functions remains unconfirmed. Using mice with an inducible conditional deletion of Atp6ap2 in mouse renal epithelial cells, we found that decreased V-ATPase expression and activity in the intercalated cells of the collecting duct impaired acid-base regulation by the kidney. In addition, these mice suffered from marked polyuria resistant to desmopressin administration. Immunoblotting revealed downregulation of the medullary Na+-K+-2Cl- cotransporter NKCC2 in these mice compared with wild-type mice, an effect accompanied by a hypotonic medullary interstitium and impaired countercurrent multiplication. This phenotype correlated with strong autophagic defects in epithelial cells of medullary tubules. Notably, cells with high accumulation of the autophagosomal substrate p62 displayed the strongest reduction of NKCC2 expression. Finally, nephron-specific Atp6ap2 depletion did not affect angiotensin II production, angiotensin II-dependent BP regulation, or sodium handling in the kidney. Taken together, our results show that nephron-specific deletion of Atp6ap2 does not affect the renin-angiotensin system but causes a combination of renal concentration defects and distal renal tubular acidosis as a result of impaired V-ATPase activity.
Collapse
Affiliation(s)
- Francesco Trepiccione
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche_S970, Paris Centre de Recherche Cardiovasculaire, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, Paris, France.,Department of Cardio-Thoracic and Respiratory Science, Second University of Naples, Caserta, Italy
| | - Simon D Gerber
- Imagine Institute, Paris Descartes University-Sorbonne Paris Cité, Paris, France
| | - Florian Grahammer
- Renal Division, University Medical Center Freiburg, Freiburg, Germany
| | - Karen I López-Cayuqueo
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche_S970, Paris Centre de Recherche Cardiovasculaire, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, Paris, France.,Centro de Estudios Científicos, Valdivia, Chile
| | - Véronique Baudrie
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche_S970, Paris Centre de Recherche Cardiovasculaire, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Teodor G Păunescu
- Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Diane E Capen
- Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Nicolas Picard
- Centre National de la Recherche Scientifique Equipe de Recherche Labelisée 8228, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche_S1138, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris, France
| | - R Todd Alexander
- Department of Pediatrics, University of Alberta, Edmonton, Canada; and
| | - Tobias B Huber
- Renal Division, University Medical Center Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University, Freiburg, Germany
| | - Regine Chambrey
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche_S970, Paris Centre de Recherche Cardiovasculaire, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Dennis Brown
- Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Pascal Houillier
- Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Dominique Eladari
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche_S970, Paris Centre de Recherche Cardiovasculaire, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, Paris, France;
| | - Matias Simons
- Imagine Institute, Paris Descartes University-Sorbonne Paris Cité, Paris, France;
| |
Collapse
|
10
|
Amann R, Wyder S, Slavotinek AM, Trueb B. The FgfrL1 receptor is required for development of slow muscle fibers. Dev Biol 2014; 394:228-41. [DOI: 10.1016/j.ydbio.2014.08.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 08/13/2014] [Accepted: 08/16/2014] [Indexed: 02/03/2023]
|
11
|
Targeted disruption of the intracellular domain of receptor FgfrL1 in mice. PLoS One 2014; 9:e105210. [PMID: 25126760 PMCID: PMC4134281 DOI: 10.1371/journal.pone.0105210] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/18/2014] [Indexed: 11/19/2022] Open
Abstract
FgfrL1 is the fifth member of the fibroblast growth factor receptor (Fgfr) family. Studies with FgfrL1 deficient mice have demonstrated that the gene plays an important role during embryonic development. FgfrL1 knock-out mice die at birth as they have a malformed diaphragm and lack metanephric kidneys. Similar to the classical Fgfrs, the FgfrL1 protein contains an extracellular part composed of three Ig-like domains that interact with Fgf ligands and heparin. However, the intracellular part of FgfrL1 is not related to the classical receptors and does not possess any tyrosine kinase activity. Curiously enough, the amino acid sequence of this domain is barely conserved among different species, with the exception of three motifs, namely a dileucine peptide, a tandem tyrosine-based motif YXXΦ and a histidine-rich sequence. To investigate the function of the intracellular domain of FgfrL1, we have prepared genetically modified mice that lack the three conserved sequence motifs, but instead contain a GFP cassette (FgfrL1ΔC-GFP). To our surprise, homozygous FgfrL1ΔC-GFP knock-in mice are viable, fertile and phenotypically normal. They do not exhibit any alterations in the diaphragm or the kidney, except for a slight reduction in the number of glomeruli that does not appear to affect life expectancy. In addition, the pancreas of both FgfrL1ΔC-GFP knock-in and FgfrL1 knock-out mice do not show any disturbances in the production of insulin, in contrast to what has been suggested by recent studies. Thus, the conserved motifs of the intracellular FgfrL1 domain are dispensable for organogenesis and normal life. We conclude that the extracellular domain of the protein must conduct the vital functions of FgfrL1.
Collapse
|
12
|
Gene regulatory network of renal primordium development. Pediatr Nephrol 2014; 29:637-44. [PMID: 24104595 DOI: 10.1007/s00467-013-2635-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/06/2013] [Accepted: 09/06/2013] [Indexed: 12/23/2022]
Abstract
Animal development progresses through the stepwise deployment of gene regulatory networks (GRN) encoded in the genome. Comparative analyses in different species and organ systems have revealed that GRN blueprints are composed of subcircuits with stereotypical architectures that are often reused as modular units. In this review, we report the evidence for the GRN underlying renal primordium development. In vertebrates, renal development is initiated by the induction of a field of intermediate mesoderm cells competent to undergo lineage specification and nephric (Wolffian) duct formation. Definition of the renal field leads to the activation of a core regulatory subcircuit composed of the transcription factors Pax2/8, Gata3 and Lim1. These transcription factors turn on a second layer of transcriptional regulators while also activating effectors of tissue morphogenesis and cellular specialization. Elongation and connection of the nephric duct to the cloaca (bladder/urethra primordium) is followed by metanephric kidney induction through signals emanating from the metanephric mesenchyme. Central to this process is the activation and positioning of the glial cell line-derived neurotrophic factor (Gdnf)-Ret signaling pathway by network subcircuits located in the mesenchyme and epithelial tissues of the caudal trunk. Evidence shows that each step of the renal primordium developmental program is regulated by structured GRN subunits organized in a hierarchical manner. Understanding the structure and dynamics of the renal GRN will help us understand the intrinsic phenotypical variability of congenital anomalies of the kidney and urinary tract and guide our approaches to regenerative medicine.
Collapse
|
13
|
Amann R, Trueb B. Evidence that the novel receptor FGFRL1 signals indirectly via FGFR1. Int J Mol Med 2013; 32:983-8. [PMID: 24026051 PMCID: PMC3820611 DOI: 10.3892/ijmm.2013.1484] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/28/2013] [Indexed: 01/12/2023] Open
Abstract
Fibroblast growth factor (FGF) receptor-like protein 1 (FGFRL1) is a recently discovered member of the FGF receptor (FGFR) family. Similar to the classical FGFRs, it contains three extracellular immunoglobulin-like domains and interacts with FGF ligands. However, in contrast to the classical receptors, it does not contain any intracellular tyrosine kinase domain and consequently cannot signal by transphosphorylation. In mouse kidneys, FgfrL1 is expressed primarily at embryonic stages E14–E15 in regions where nascent nephrons develop. In this study, we used whole-mount in situ hybridization to show the spatial pattern of five different Fgfrs in the developing mouse kidney. We compared the expression pattern of FgfrL1 with that of other Fgfrs. The expression pattern of FgfrL1 closely resembled that of Fgfr1, but clearly differed from that of Fgfr2–Fgfr4. It is therefore conceivable that FgfrL1 signals indirectly via Fgfr1. The mechanisms by which FgfrL1 affects the activity of Fgfr1 remain to be elucidated.
Collapse
Affiliation(s)
- Ruth Amann
- Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| | | |
Collapse
|
14
|
Expression analysis of fibroblast growth factor receptor-like 1 (FGFRL1) in esophageal squamous cell carcinoma. Esophagus 2013. [DOI: 10.1007/s10388-013-0394-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
|
15
|
Trueb B, Amann R, Gerber SD. Role of FGFRL1 and other FGF signaling proteins in early kidney development. Cell Mol Life Sci 2013; 70:2505-18. [PMID: 23112089 PMCID: PMC11114036 DOI: 10.1007/s00018-012-1189-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/14/2012] [Accepted: 09/25/2012] [Indexed: 10/27/2022]
Abstract
The mammalian kidney develops from the ureteric bud and the metanephric mesenchyme. In mice, the ureteric bud invades the metanephric mesenchyme at day E10.5 and begins to branch. The tips of the ureteric bud induce the metanephric mesenchyme to condense and form the cap mesenchyme. Some cells of this cap mesenchyme undergo a mesenchymal-to-epithelial transition and differentiate into renal vesicles, which further develop into nephrons. The developing kidney expresses Fibroblast growth factor (Fgf)1, 7, 8, 9, 10, 12 and 20 and Fgf receptors Fgfr1 and Fgfr2. Fgf7 and Fgf10, mainly secreted by the metanephric mesenchyme, bind to Fgfr2b of the ureteric bud and induce branching. Fgfr1 and Fgfr2c are required for formation of the metanephric mesenchyme, however the two receptors can substitute for one another. Fgf8, secreted by renal vesicles, binds to Fgfr1 and supports survival of cells in the nascent nephrons. Fgf9 and Fgf20, expressed in the metanephric mesenchyme, are necessary to maintain survival of progenitor cells in the cortical region of the kidney. FgfrL1 is a novel member of the Fgfr family that lacks the intracellular tyrosine kinase domain. It is expressed in the ureteric bud and all nephrogenic structures. Targeted deletion of FgfrL1 leads to severe kidney dysgenesis due to the lack of renal vesicles. FgfrL1 is known to interact mainly with Fgf8. It is therefore conceivable that FgfrL1 restricts signaling of Fgf8 to the precise location of the nascent nephrons. It might also promote tight adhesion of cells in the condensed metanephric mesenchyme as required for the mesenchymal-to-epithelial transition.
Collapse
Affiliation(s)
- Beat Trueb
- Department of Clinical Research, University of Bern, Murtenstrasse 35, Bern, Switzerland.
| | | | | |
Collapse
|
16
|
Carroll TJ, Das A. Defining the signals that constitute the nephron progenitor niche. J Am Soc Nephrol 2013; 24:873-6. [PMID: 23578945 DOI: 10.1681/asn.2012090931] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
For decades we have known that reciprocal inductive interactions between the embryonic ureteric bud and the metanephric mesenchyme are the basis for kidney development. Signals from the mesenchyme promote the branching of the bud, whereas signals from the bud regulate the survival, proliferation, and differentiation of nephron progenitors. Due to the complex nature of the bud-derived signals, progress in identifying these factors has been slow. However, in the last several years, tremendous advances have been made in identifying specific roles for various secreted proteins in nephron progenitor cell development. Here, we briefly review the roles for Fgfs and Wnts in induction of the nephron progenitors.
Collapse
Affiliation(s)
- Thomas J Carroll
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | | |
Collapse
|