1
|
Chen DY, Husain M. Caspase-Mediated Cleavage of Human Cortactin during Influenza A Virus Infection Occurs in Its Actin-Binding Domains and Is Associated with Released Virus Titres. Viruses 2020; 12:v12010087. [PMID: 31940955 PMCID: PMC7019683 DOI: 10.3390/v12010087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/17/2022] Open
Abstract
Influenza A virus (IAV) exploits host factors to multiply and cause disease. An in-depth knowledge of this interaction of IAV with the host will aid the development of anti-IAV intervention strategies. Previously, we demonstrated that host cortactin, an actin filament-binding protein promotes IAV infection, but undergoes degradation via a lysosome-associated apoptotic pathway during the late stages of IAV infection. Next, we wanted to further understand the mechanisms and significance of this phenomenon. By using the RNA interference screens and site-directed mutagenesis followed by western blotting, we found that lysosome protease, cathepsin C is involved in cortactin degradation in human cells infected with IAV. Furthermore, executioner apoptotic caspase, caspase-3 not caspase-6 or caspase-7 is involved in cortactin degradation during IAV infection, and caspase-3 cleavage site is located in the first actin-binding repeat of cortactin polypeptide. Finally, when expressed ectopically, the cleavage-resistant cortactin mutants decreased the amount of IAV progeny released from infected cells that was enhanced by the cleavage-sensitive cortactin wild type. These data strengthen the hypothesis proposed earlier that host cortactin plays an inhibitory role during the late stages of IAV infection, and IAV is facilitating its degradation to undermine such function.
Collapse
Affiliation(s)
| | - Matloob Husain
- Correspondence: ; Tel.: +64-3-470-3420; Fax: +64-3-479-8540
| |
Collapse
|
2
|
Sharafutdinov I, Backert S, Tegtmeyer N. Cortactin: A Major Cellular Target of the Gastric Carcinogen Helicobacter pylori. Cancers (Basel) 2020; 12:E159. [PMID: 31936446 PMCID: PMC7017262 DOI: 10.3390/cancers12010159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/19/2022] Open
Abstract
Cortactin is an actin binding protein and actin nucleation promoting factor regulating cytoskeletal rearrangements in nearly all eukaryotic cell types. From this perspective, cortactin poses an attractive target for pathogens to manipulate a given host cell to their own benefit. One of the pathogens following this strategy is Helicobacter pylori, which can cause a variety of gastric diseases and has been shown to be the major risk factor for the onset of gastric cancer. During infection of gastric epithelial cells, H. pylori hijacks the cellular kinase signaling pathways, leading to the disruption of key cell functions. Specifically, by overruling the phosphorylation status of cortactin, H. pylori alternates the activity of molecular interaction partners of this important protein, thereby manipulating the performance of actin-cytoskeletal rearrangements and cell movement. In addition, H. pylori utilizes a unique mechanism to activate focal adhesion kinase, which subsequently prevents host epithelial cells from extensive lifting from the extracellular matrix in order to achieve chronic infection in the human stomach.
Collapse
Affiliation(s)
| | | | - Nicole Tegtmeyer
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen-Nuremberg, Staudtstr. 5, D-91058 Erlangen, Germany; (I.S.); (S.B.)
| |
Collapse
|
3
|
Bissinger O, Kolk A, Drecoll E, Straub M, Lutz C, Wolff KD, Götz C. EGFR and Cortactin: Markers for potential double target therapy in oral squamous cell carcinoma. Exp Ther Med 2017; 14:4620-4626. [PMID: 29201160 PMCID: PMC5704320 DOI: 10.3892/etm.2017.5120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/10/2017] [Indexed: 02/06/2023] Open
Abstract
Survival periods of patients following surgical therapy of oral squamous cell carcinoma (OSCC) have previously been demonstrated to decrease over recent decades. Epidermal growth factor receptor (EGFR) and Cortactin are molecular markers that are important in tumour progression and development, and interact within the EGF pathway. Although EGFR antibody therapy exists, sufficient efforts for increased survival are still lacking due to the present limited response rates. The aim of the present study was to examine the association between EGFR and Cortactin expression on survival rates of OSCC patients and to determine whether EGFR and Cortactin expression levels are associated with advanced tumor sizes and lymphnode-metastases. In total, 222 OSCC patients were included in the study. EGFR and Cortactin expression in tumor tissue was evaluated by immunohistochemistry. Cox regression was used for survival analysis. Categories were tested for associations by using cross tabs (Chi-square test). Groups were compared by the non-parametric Mann Whitney U-test. Probabilities of less than 0.05 were considered significant and significant expression of Cortactin was observed in Advanced Union Internationale Contre le Cancer stage (P=0.032), including advanced tumour stage (P=0.021) and lymph node metastasis (P=0.049). High Cortactin expression was significantly associated with poorer survival rates (P=0.037). Further Cortactin expression was not associated with extracapsular spread, however EGFR exhibited a significant association (P=0.034). Neither EGFR nor Cortactin expression was correlated to grading. EGFR and Cortactin co-expression was demonstrated to be significantly associated with poorer survival rates in OSCC patients, suggesting that identification of predictive biomarkers for adjuvant therapies are of primary concern in OSCC. In particular, efficient dual-target therapy may act as an appropriate therapy to improve survival time for patients at advanced OSCC tumor stages.
Collapse
Affiliation(s)
- Oliver Bissinger
- Department of Oral and Maxillofacial Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany
| | - Andreas Kolk
- Department of Oral and Maxillofacial Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany
| | - Enken Drecoll
- Institute of Pathology, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany
| | - Melanie Straub
- Institute of Pathology, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany
| | - Christina Lutz
- Department of Oral and Maxillofacial Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany
| | - Klaus-Dietrich Wolff
- Department of Oral and Maxillofacial Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany
| | - Carolin Götz
- Department of Oral and Maxillofacial Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany
| |
Collapse
|
4
|
Zalli D, Neff L, Nagano K, Shin NY, Witke W, Gori F, Baron R. The Actin-Binding Protein Cofilin and Its Interaction With Cortactin Are Required for Podosome Patterning in Osteoclasts and Bone Resorption In Vivo and In Vitro. J Bone Miner Res 2016; 31:1701-12. [PMID: 27064822 PMCID: PMC5070801 DOI: 10.1002/jbmr.2851] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/29/2016] [Accepted: 04/08/2016] [Indexed: 11/08/2022]
Abstract
The adhesion of osteoclasts (OCs) to bone and bone resorption require the assembly of specific F-actin adhesion structures, the podosomes, and their dense packing into a sealing zone. The OC-specific formation of the sealing zone requires the interaction of microtubule (MT) + ends with podosomes. Here, we deleted cofilin, a cortactin (CTTN)- and actin-binding protein highly expressed in OCs, to determine if it acts downstream of the MT-CTTN axis to regulate actin polymerization in podosomes. Conditional deletion of cofilin in OCs in mice, driven by the cathepsin K promoter (Ctsk-Cre), impaired bone resorption in vivo, increasing bone density. In vitro, OCs were not able to organize podosomes into peripheral belts. The MT network was disorganized, MT stability was decreased, and cell migration impaired. Active cofilin stabilizes MTs and allows podosome belt formation, whereas MT disruption deactivates cofilin via phosphorylation. Cofilin interacts with CTTN in podosomes and phosphorylation of either protein disrupts this interaction, which is critical for belt stabilization and for the maintenance of MT dynamic instability. Accordingly, active cofilin was required to rescue the OC cytoskeletal phenotype in vitro. These findings suggest that the patterning of podosomes into a sealing zone involves the dynamic interaction between cofilin, CTTN, and the MTs + ends. This interaction is critical for the functional organization of OCs and for bone resorption. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Detina Zalli
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Lynn Neff
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Kenichi Nagano
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Nah Young Shin
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Walter Witke
- Institut für Genetik, Universität Bonn, Bonn, Germany
| | - Francesca Gori
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Roland Baron
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
5
|
Chen DY, Husain M. Caspase-mediated degradation of host cortactin that promotes influenza A virus infection in epithelial cells. Virology 2016; 497:146-156. [PMID: 27471953 DOI: 10.1016/j.virol.2016.07.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/18/2016] [Accepted: 07/18/2016] [Indexed: 01/09/2023]
Abstract
Influenza A virus (IAV) is well-known to exploit host factors to its advantage. Here, we report that IAV exploits host cortactin, an actin filament-stabilising protein for infection in epithelial cells. By using RNA interference-mediated knockdown and overexpression approach, we demonstrate that cortactin promotes IAV infection. However, cortactin polypeptide undergoes the degradation during late IAV infection. By perturbing the lysosome and proteasome, two main compartments governing the degradation of mammalian proteins, we demonstrate that a lysosome-associated apoptotic pathway mediates the degradation of cortactin in IAV-infected cells. However, we could not detect cleaved cortactin fragments by western blotting using the antibodies recognising either N-terminal/Central or C-terminal cortactin regions, which suggested the presence of multiple caspase cleavage sites. Indeed, CaspDB, a recently-described database predicted up to 35 caspase cleavage motifs present across cortactin polypeptide. The data presented indicate that host cortactin potentially has a dual but contrasting role during IAV infection.
Collapse
Affiliation(s)
- Da-Yuan Chen
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Matloob Husain
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
6
|
Novel role of cortactin in G protein-coupled receptor agonist-induced nuclear export and degradation of p21Cip1. Sci Rep 2016; 6:28687. [PMID: 27363897 PMCID: PMC4929470 DOI: 10.1038/srep28687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/08/2016] [Indexed: 12/16/2022] Open
Abstract
Monocyte chemotactic protein 1 (MCP1) stimulates phosphorylation of cortactin on Y421 and Y446 residues in a time-dependent manner and phosphorylation at Y446 but not Y421 residue is required for MCP1-induced CDK-interacting protein 1 (p21Cip1) nuclear export and degradation in facilitating human aortic smooth muscle cell (HASMC) proliferation. In addition, MCP1-induced cortactin tyrosine phosphorylation, p21Cip1 degradation and HASMC proliferation are dependent on Fyn activation. Upstream to Fyn, MCP1 stimulated C-C chemokine receptor type 2 (CCR2) and Gi/o and inhibition of either one of these molecules using their specific antagonists or inhibitors attenuated MCP1-induced cortactin tyrosine phosphorylation, p21Cip1 degradation and HASMC proliferation. Cortactin phosphorylation at Y446 residue is also required for another G protein-coupled receptor (GPCR) agonist, thrombin-induced p21Cip1 nuclear export and its degradation in promoting HASMC proliferation. Quite interestingly, the receptor tyrosine kinase (RTK) agonist, platelet-derived growth factor-BB (PDGF-BB)-induced p21Cip1 degradation and HASMC proliferation do not require cortactin tyrosine phosphorylation. Together, these findings demonstrate that tyrosine phosphorylation of cortactin at Y446 residue is selective for only GPCR but not RTK agonist-induced nuclear export and proteolytic degradation of p21Cip1 in HASMC proliferation.
Collapse
|
7
|
Nieto-Pelegrin E, Meiler E, Martín-Villa JM, Benito-León M, Martinez-Quiles N. Crk adaptors negatively regulate actin polymerization in pedestals formed by enteropathogenic Escherichia coli (EPEC) by binding to Tir effector. PLoS Pathog 2014; 10:e1004022. [PMID: 24675776 PMCID: PMC3968158 DOI: 10.1371/journal.ppat.1004022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 02/05/2014] [Indexed: 01/04/2023] Open
Abstract
Infections by enteropathogenic Escherichia coli (EPEC) cause diarrhea linked to high infant mortality in developing countries. EPEC adheres to epithelial cells and induces the formation of actin pedestals. Actin polymerization is driven fundamentally through signaling mediated by Tir bacterial effector protein, which inserts in the plasma membrane of the infected cell. Tir binds Nck adaptor proteins, which in turn recruit and activate N-WASP, a ubiquitous member of the Wiskott-Aldrich syndrome family of proteins. N-WASP activates the Arp2/3 complex to promote actin polymerization. Other proteins aside from components of the Tir-Nck-N-WASP pathway are recruited to the pedestals but their functions are unknown. Here we investigate the function of two alternatively spliced isoforms of Crk adaptors (CrkI/II) and the paralog protein CrkL during pedestal formation by EPEC. We found that the Crk isoforms act as redundant inhibitors of pedestal formation. The SH2 domain of CrkII and CrkL binds to phosphorylated tyrosine 474 of Tir and competes with Nck to bind Tir, preventing its recruitment to pedestals and thereby inhibiting actin polymerization. EPEC infection induces phosphorylation of the major regulatory tyrosine in CrkII and CrkL, possibly preventing the SH2 domain of these proteins from interacting with Tir. Phosphorylated CrkII and CrkL proteins localize specifically to the plasma membrane in contact with EPEC. Our study uncovers a novel role for Crk adaptors at pedestals, opening a new perspective in how these oncoproteins regulate actin polymerization.
Collapse
Affiliation(s)
- Elvira Nieto-Pelegrin
- Department of Microbiology, School of Pharmacy, Complutense University, Madrid, Spain
| | - Eugenia Meiler
- Division of Immunology, School of Medicine, Complutense University, Madrid, Spain
| | | | - María Benito-León
- Division of Immunology, School of Medicine, Complutense University, Madrid, Spain
| | - Narcisa Martinez-Quiles
- Department of Microbiology, School of Pharmacy, Complutense University, Madrid, Spain
- Division of Immunology, School of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
8
|
Microtubule dynamic instability controls podosome patterning in osteoclasts through EB1, cortactin, and Src. Mol Cell Biol 2013; 34:16-29. [PMID: 24144981 DOI: 10.1128/mcb.00578-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In osteoclasts (OCs) podosomes are organized in a belt, a feature critical for bone resorption. Although microtubules (MTs) promote the formation and stability of the belt, the MT and/or podosome molecules that mediate the interaction of the two systems are not identified. Because the growing "plus" ends of MTs point toward the podosome belt, plus-end tracking proteins (+TIPs) might regulate podosome patterning. Among the +TIPs, EB1 increased as OCs matured and was enriched in the podosome belt, and EB1-positive MTs targeted podosomes. Suppression of MT dynamic instability, displacement of EB1 from MT ends, or EB1 depletion resulted in the loss of the podosome belt. We identified cortactin as an Src-dependent interacting partner of EB1. Cortactin-deficient OCs presented a defective MT targeting to, and patterning of, podosomes and reduced bone resorption. Suppression of MT dynamic instability or EB1 depletion increased cortactin phosphorylation, decreasing its acetylation and affecting its interaction with EB1. Thus, dynamic MTs and podosomes interact to control bone resorption.
Collapse
|
9
|
Tomar A, Lawson C, Ghassemian M, Schlaepfer DD. Cortactin as a target for FAK in the regulation of focal adhesion dynamics. PLoS One 2012; 7:e44041. [PMID: 22952866 PMCID: PMC3430618 DOI: 10.1371/journal.pone.0044041] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 08/01/2012] [Indexed: 01/01/2023] Open
Abstract
Background Efficient cell movement requires the dynamic regulation of focal adhesion (FA) formation and turnover. FAs are integrin-associated sites of cell attachment and establish linkages to the cellular actin cytoskeleton. Cells without focal adhesion kinase (FAK), an integrin-activated tyrosine kinase, exhibit defects in FA turnover and cell motility. Cortactin is an actin binding adaptor protein that can influence FA dynamics. FAK and cortactin interact, but the cellular role of this complex remains unclear. Principal Findings Using FAK-null fibroblasts stably reconstituted with green fluorescent protein (GFP) tagged FAK constructs, we find that FAK activity and FAK C-terminal proline-rich region 2 (PRR2) and PRR3 are required for FA turnover and cell motility. Cortactin binds directly to FAK PRR2 and PRR3 sites via its SH3 domain and cortactin expression is important in promoting FA turnover and GFP-FAK release from FAs. FAK-cortactin binding is negatively-regulated by FAK activity and associated with cortactin tyrosine phosphorylation. FAK directly phosphorylates cortactin at Y421 and Y466 and over-expression of cortactin Y421, Y466, and Y482 mutated to phenylalanine (3YF) prevented FAK-enhanced FA turnover and cell motility. However, phospho-mimetic cortactin mutated to glutamic acid (3YE) did not affect FA dynamics and did not rescue FA turnover defects in cells with inhibited FAK activity or with PRR2-mutated FAK that does not bind cortactin. Conclusions Our results support a model whereby FAK-mediated FA remodeling may occur through the formation of a FAK-cortactin signaling complex. This involves a cycle of cortactin binding to FAK, cortactin tyrosine phosphorylation, and subsequent cortactin-FAK dissociation accompanied by FA turnover and cell movement.
Collapse
Affiliation(s)
- Alok Tomar
- Moores University of California San Diego Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Christine Lawson
- Moores University of California San Diego Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Majid Ghassemian
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - David D. Schlaepfer
- Moores University of California San Diego Cancer Center, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Catarino T, Ribeiro L, Santos SD, Carvalho AL. Regulation of Synapse Composition by Protein Acetylation: The Role of Acetylated Cortactin. J Cell Sci 2012; 126:149-62. [DOI: 10.1242/jcs.110742] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein acetylation affects synaptic plasticity and memory, but its effects on synapse composition have not been addressed. We found that protein acetylation promotes the dendritic clustering of the excitatory postsynaptic scaffold protein PSD95 in hippocampal neurons, without affecting the total levels of this protein. Cortactin, an F-actin-binding protein enriched in dendritic spines, is a substrate for acetylation and has a role in spine morphogenesis. Recent studies showed that cortactin acetylation changes its ability to bind F-actin and regulates cellular motility, but the function of cortactin acetylation in neuronal cells is so far unknown. We tested whether acetylation of cortactin influences its morphogenic function by overexpressing wild-type cortactin, or the mimetic mutants for acetylated or deacetylated cortactin, in hippocampal neurons, and found that cortactin acetylation has an impact on PSD95 clustering, independent from its function as actin dynamics regulator. Moreover, acetylated cortactin can rescue the reduction in PSD95 clustering mediated by knockdown of cortactin. We also found that acetylation of cortactin is correlated with decreased cortactin interaction with p140Cap and Shank1, and with lower cortactin phosphorylation at tyrosine 421. The neurotrophin BDNF promoted the acetylation of cortactin in hippocampal neurons, suggesting that BDNF may regulate excitatory synapses and PSD95 dendritic clustering at least in part by changing the acetylation level of cortactin. Our findings unravel an unsuspected role for cortactin acetylation in the regulation of PSD95 dendritic clustering, which may work in concert with cortactin's role in spine development.
Collapse
|