1
|
Rekvig OP. SLE: a cognitive step forward-a synthesis of rethinking theories, causality, and ignored DNA structures. Front Immunol 2024; 15:1393814. [PMID: 38895113 PMCID: PMC11183320 DOI: 10.3389/fimmu.2024.1393814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/09/2024] [Indexed: 06/21/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is classified by instinctual classification criteria. A valid proclamation is that these formally accepted SLE classification criteria legitimate the syndrome as being difficult to explain and therefore enigmatic. SLE involves scientific problems linked to etiological factors and criteria. Our insufficient understanding of the clinical condition uniformly denoted SLE depends on the still open question of whether SLE is, according to classification criteria, a well-defined one disease entity or represents a variety of overlapping indistinct syndromes. Without rational hypotheses, these problems harm clear definition(s) of the syndrome. Why SLE is not anchored in logic, consequent, downstream interdependent and interactive inflammatory networks may rely on ignored predictive causality principles. Authoritative classification criteria do not reflect consequent causality criteria and do not unify characterization principles such as diagnostic criteria. We need now to reconcile legendary scientific achievements to concretize the delimitation of what SLE really is. Not all classified SLE syndromes are "genuine SLE"; many are theoretically "SLE-like non-SLE" syndromes. In this study, progressive theories imply imperative challenges to reconsider the fundamental impact of "the causality principle". This may offer us logic classification and diagnostic criteria aimed at identifying concise SLE syndromes as research objects. Can a systems science approach solve this problem?
Collapse
Affiliation(s)
- Ole Petter Rekvig
- Fürst Medical Laboratory, Oslo, Norway
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
2
|
Rekvig OP. SLE classification criteria: Science-based icons or algorithmic distractions – an intellectually demanding dilemma. Front Immunol 2022; 13:1011591. [PMID: 36248792 PMCID: PMC9555175 DOI: 10.3389/fimmu.2022.1011591] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/12/2022] [Indexed: 12/01/2022] Open
Abstract
It is, so to say, not a prerogative authority assigned to SLE classification criteria that allow them to declare something definitively important about SLE. This is particularly true as criteria-based classification processes overrule the highly needed evolution of concise diagnostic criteria. It is classification criteria that allocate SLE patients into cohorts intended to describe the nature of their disease. Therefore, all major SLE classification criteria since the 1971 preliminary criteria usurp the role of diagnostic criteria. Today´s practice silently accept that the SLE classification process “diagnose” SLE patients despite the fact that classification criteria are not accepted as diagnostic criteria! This is a central paradox in contemporary SLE research strategies. Contemporary SLE cohorts are designed to investigate SLE´s etiological features. However, each cohort that is categorized by classification criteria has one central inherent problem. From theoretical and practical arguments, they embody multiple distinct clinical phenotypes. This raises the critical and principal question if phenotypically heterogenic SLE cohorts are useful to identify basic SLE-specific etiology(ies) and disease process(es). In times to come, we must prioritize development of firm diagnostic criteria for SLE, as the classification criteria have not contributed to reduce the enigmatic character of the syndrome. No radical improvements are visible in the horizon that may lead to concise investigations of SLE in well-defined homogenous SLE cohorts. We must develop new strategies where studies of phenotypically standardized cohorts of SLE must be central elements. Problems related to contemporary SLE classification criteria are contemplated, analyzed, and critically discussed in this study.
Collapse
Affiliation(s)
- Ole Petter Rekvig
- Fürst Medical Laboratory, Oslo, Norway
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
- *Correspondence: Ole Petter Rekvig,
| |
Collapse
|
3
|
Rekvig OP. The Anti-DNA Antibodies: Their Specificities for Unique DNA Structures and Their Unresolved Clinical Impact-A System Criticism and a Hypothesis. Front Immunol 2022; 12:808008. [PMID: 35087528 PMCID: PMC8786728 DOI: 10.3389/fimmu.2021.808008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is diagnosed and classified by criteria, or by experience, intuition and traditions, and not by scientifically well-defined etiology(ies) or pathogenicity(ies). One central criterion and diagnostic factor is founded on theoretical and analytical approaches based on our imperfect definition of the term “The anti-dsDNA antibody”. “The anti-dsDNA antibody” holds an archaic position in SLE as a unique classification criterium and pathogenic factor. In a wider sense, antibodies to unique transcriptionally active or silent DNA structures and chromatin components may have individual and profound nephritogenic impact although not considered yet – not in theoretical nor in descriptive or experimental contexts. This hypothesis is contemplated here. In this analysis, our state-of-the-art conception of these antibodies is probed and found too deficient with respect to their origin, structural DNA specificities and clinical/pathogenic impact. Discoveries of DNA structures and functions started with Miescher’s Nuclein (1871), via Chargaff, Franklin, Watson and Crick, and continues today. The discoveries have left us with a DNA helix that presents distinct structures expressing unique operations of DNA. All structures are proven immunogenic! Unique autoimmune antibodies are described against e.g. ssDNA, elongated B DNA, bent B DNA, Z DNA, cruciform DNA, or individual components of chromatin. In light of the massive scientific interest in anti-DNA antibodies over decades, it is an unexpected observation that the spectrum of DNA structures has been known for decades without being implemented in clinical immunology. This leads consequently to a critical analysis of historical and contemporary evidence-based data and of ignored and one-dimensional contexts and hypotheses: i.e. “one antibody - one disease”. In this study radical viewpoints on the impact of DNA and chromatin immunity/autoimmunity are considered and discussed in context of the pathogenesis of lupus nephritis.
Collapse
Affiliation(s)
- Ole Petter Rekvig
- Section of Autoimmunity, Fürst Medical Laboratory, Oslo, Norway.,Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
4
|
The Role of NLRP3 Inflammasome in Lupus Nephritis. Int J Mol Sci 2021; 22:ijms222212476. [PMID: 34830358 PMCID: PMC8625721 DOI: 10.3390/ijms222212476] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/15/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
Lupus nephritis (LN) is the most frequent and severe of systemic lupus erythematosus (SLE) clinical manifestations and contributes to the increase of morbidity and mortality of patients due to chronic kidney disease. The NLRP3 (NLR pyrin domain containing 3) is a member of the NLR (NOD-like receptors), and its activation results in the production of pro-inflammatory cytokines, which can contribute to the pathogenesis of LN. In this review manuscript, we approach the relation between the NLRP3 inflammasome, SLE, and LN, highlighting the influence of genetic susceptibility of NLRP3 polymorphisms in the disease; the main functional studies using cellular and animal models of NLRP3 activation; and finally, some mechanisms of NLRP3 inhibition for the development of possible therapeutic drugs for LN.
Collapse
|
5
|
Association between Serum Matrix Metalloproteinase- (MMP-) 3 Levels and Systemic Lupus Erythematosus: A Meta-analysis. DISEASE MARKERS 2019; 2019:9796735. [PMID: 31396295 PMCID: PMC6668546 DOI: 10.1155/2019/9796735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022]
Abstract
Introduction Matrix metalloproteinase (MMP) is an emerging disease marker in rheumatic diseases. This is a meta-analysis aimed at systematically reviewing association between serum MMP-3 levels and systematic lupus erythematosus (SLE) activity, which sought to raise interest in MMP-3 as a putative biomarker. Methods We conducted a meta-analysis of serum MMP-3 levels in patients with SLE and controls. We performed a PubMed search, EMBASE search, and forward search of the retrieved articles published until Oct. 1, 2018. In addition to this, we included data from a case-control study on a national pediatric SLE cohort, in which serum MMP-3 levels were measured in 11 SLE patients and 9 controls (unpublished). Subgroup analyses based on gender and disease activity were performed. Results A total of 662 cases and 771 controls including 651 patients and 762 controls from 11 publications were studied. We observed significantly higher MMP-3 levels in SLE patients compared to healthy controls (P < 0.001, Hedges' g: 2.104, 95% CI 1.426-2.782). In subgroup analyses, we found a significant elevation of MMP-3 in the patients with nephritis compared to those without (P = 0.006, Hedges' g: 0.611, 95% CI 0.611-1.704). This finding was consistent between patients with persistent proteinuria and those without (P = 0.023, Hedges' g: 1.535, 95% CI 0.207-2.862). Meta-analysis showed no association between MMP-3 levels and gender or anti-double strand DNA antibody titer. Conclusions Our meta-analysis demonstrated significantly higher MMP-3 levels in SLE patients than in controls and in patients with renal involvement than in those without.
Collapse
|
6
|
Rekvig OP. The dsDNA, Anti-dsDNA Antibody, and Lupus Nephritis: What We Agree on, What Must Be Done, and What the Best Strategy Forward Could Be. Front Immunol 2019; 10:1104. [PMID: 31156647 PMCID: PMC6529578 DOI: 10.3389/fimmu.2019.01104] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/30/2019] [Indexed: 12/19/2022] Open
Abstract
This study aims to understand what lupus nephritis is, its origin, clinical context, and its pathogenesis. Truly, we encounter many conceptual and immanent tribulations in our attempts to search for the pathogenesis of this disease—and how to explain its assumed link to SLE. Central in the present landscape stay a short history of the early studies that substantiated the structures of isolated or chromatin-assembled mammalian dsDNA, and its assumed, highly controversial role in induction of anti-dsDNA antibodies. Arguments discussed here may provoke the view that anti-dsDNA antibodies are not what we think they are, as they may be antibodies operational in quite different biological contexts, although they bind dsDNA by chance. This may not mean that these antibodies are not pathogenic but they do not inform how they are so. This theoretical study centers the content around the origin and impact of extra-cellular DNA, and if dsDNA has an effect on the adaptive immune system. The pathogenic potential of chromatin-anti-dsDNA antibody interactions is limited to incite lupus nephritis and dermatitis which may be linked in a common pathogenic process. These are major criteria in SLE classification systems but are not shared with other defined manifestations in SLE, which may mean that they are their own disease entities, and not integrated in SLE. Today, the models thought to explain lupus nephritis are divergent and inconsistent. We miss a comprehensive perspective to try the different models against each other. To do this, we need to take all elements of the syndrome SLE into account. This can only be achieved by concentrating on the interactions between autoimmunity, immunopathology, deviant cell death and necrotic chromatin in context of elements of system science. System science provides a framework where data generated by experts can be compared, and tested against each other. This approach open for consensus on central elements making up “lupus nephritis” to separate what we agree on and how to understand the basis for conflicting models. This has not been done yet in a systematic context.
Collapse
Affiliation(s)
- Ole Petter Rekvig
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| |
Collapse
|
7
|
O'Sullivan KM, Ford SL, Longano A, Kitching AR, Holdsworth SR. Intrarenal Toll-like receptor 4 and Toll-like receptor 2 expression correlates with injury in antineutrophil cytoplasmic antibody-associated vasculitis. Am J Physiol Renal Physiol 2018; 315:F1283-F1294. [PMID: 29923769 DOI: 10.1152/ajprenal.00040.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In antineutrophil cytoplasmic antibody-associated vasculitis (AAV), Toll-like receptors (TLRs) may be engaged by infection-associated patterns and by endogenous danger signals, linking infection and innate inflammation with this autoimmune disease. This study examined intrarenal TLR2, TLR4, and TLR9 expression and renal injury in AAV, testing the hypothesis that increased TLR expression correlates with renal injury. Patients with AAV exhibited both glomerular and tubulointerstitial expression of TLR2, TLR4, and TLR9, with TLR4 being the most prominent in both compartments. Glomerular TLR4 expression correlated with glomerular segmental necrosis and cellular crescents, with TLR2 expression correlating with glomerular segmental necrosis. The extent and intensity of glomerular and tubulointerstitial TLR4 expression and the intensity of glomerular TLR2 expression inversely correlated with the presenting estimated glomerular filtration rate. Although myeloid cells within the kidney expressed TLR2, TLR4, and TLR9, TLR2 and TLR4 colocalized with endothelial cells and podocytes, whereas TLR9 was expressed predominantly by podocytes. The functional relevance of intrarenal TLR expression was further supported by the colocalization of TLRs with their endogenous ligands high-mobility group box 1 and fibrinogen. Therefore, in AAV, the extent of intrarenal TLR4 and TLR2 expression and their correlation with renal injury indicates that TLR4, and to a lesser degree TLR2, may be potential therapeutic targets in this disease.
Collapse
Affiliation(s)
- Kim M O'Sullivan
- Centre for Inflammatory Diseases, Monash University Department of Medicine , Clayton, Victoria , Australia
| | - Sharon L Ford
- Centre for Inflammatory Diseases, Monash University Department of Medicine , Clayton, Victoria , Australia
| | - Anthony Longano
- Department of Pathology, Monash Health, Clayton, Victoria , Australia
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of Medicine , Clayton, Victoria , Australia.,Department of Nephrology, Monash Health, Clayton, Victoria , Australia.,Department of Paediatric Nephrology, Monash Health, Clayton, Victoria , Australia
| | - Stephen R Holdsworth
- Centre for Inflammatory Diseases, Monash University Department of Medicine , Clayton, Victoria , Australia.,Department of Nephrology, Monash Health, Clayton, Victoria , Australia
| |
Collapse
|
8
|
Gupta N, Kabeerdoss J, Mohan H, Goel R, Danda D. High Secretion of Interleukin-6 and Increased MINCLE Receptor Expression Upon Exposure to Mycobacterial Cord Factor Analog Trehalose-6, 6-Dibehenate (TDB) in Patients with Takayasu Arteritis. Open Rheumatol J 2018; 12:30-36. [PMID: 29643949 PMCID: PMC5876924 DOI: 10.2174/1874312901812010030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/09/2018] [Accepted: 01/25/2018] [Indexed: 01/13/2023] Open
Abstract
Introduction: Suspicion on the association between Takayasu Arteritis (TA) and Tubcerculosis (TB) has been in vogue for years. Prevalence of TB in TA is reported to be higher. We aimed to study innate immune responses in patients with TA on exposure to Trehalose-6,6-dibehenate (TDB), a synthetic analogue of Trehalose-6,6-Dimycolate (TDM, also known as mycobacterial cord factor) in comparison with healthy controls. Materials and Methods: Patients with type V TA, satisfying 1990 ACR criteria, and age and sex matched healthy controls were recruited. PBMCs were cultured with 5µg/ml, 50µg/ml or without any TDB for 48 hours in RPMI medium inside a 5% Co2 incubator. IL-6, TNF-α and IL-17 were measured in cell culture supernatant, which was separated from the cells at the end of the incubation period. Gene expressions of IL-6, IL-8, TNFα, IFN-γ, MINCLE and BCL-10 were quantified in real time PCR using specific primers and SYBR green chemistry. Results: Twenty two TA patients and 21 healthy controls were recruited. Both patients and controls showed response by secreting IL-6 and TNF-α upon stimulation by TDB. Relative induction (TDB stimulated TA sample / unstimulated control) of IL-6 was significantly higher in TA [31.88(0.74-168)] patients as compared to healthy controls [1.931(0.644-8.21); p<0.002], when co-cultured with 50µg/ml TDB. The expression of MINCLE, the TDB receptor was higher in TA samples than healthy controls upon TDB stimulation. Conclusion: Stimulation with mycobacterial synthetic analogue led to higher secretion of IL-6 and higher expression of MINCLE in PBMCs of patients with TA as compared to healthy controls.
Collapse
Affiliation(s)
- Nikhil Gupta
- Department of Clinical Immunology and Rheumatology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Jayakanthan Kabeerdoss
- Department of Clinical Immunology and Rheumatology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Hindhumathi Mohan
- Department of Clinical Immunology and Rheumatology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Ruchika Goel
- Department of Clinical Immunology and Rheumatology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Debashish Danda
- Department of Clinical Immunology and Rheumatology, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
9
|
Phillips TM, Fadia M, Lea-Henry TN, Smiles J, Walters GD, Jiang SH. MMP2 and MMP9 associate with crescentic glomerulonephritis. Clin Kidney J 2016; 10:215-220. [PMID: 28584626 PMCID: PMC5455255 DOI: 10.1093/ckj/sfw111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/29/2016] [Indexed: 12/30/2022] Open
Abstract
Background: Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by multiple organ involvement. Lupus nephritis (LN) is a common manifestation with a wide variety of histological appearances. Matrix metalloproteinases (MMP) 2 and 9 are gelatinases capable of degrading glomerular basement membrane type IV collagen, which have been associated with LN. We examine the expression of MMP2 and MMP9 in different classes of LN. Methods: MMP2 and MMP9 expression was detected by immunohistochemistry in sections from renal biopsy specimens with class III, class IV and class V LN (total n = 31), crescentic immunoglobulin A nephropathy (n = 6), pauci-immune glomerulonephritis (n = 7), minimal change disease (n = 2), mesangiocapillary glomerulonephritis (n = 7), diabetic nephropathy (n = 12) and histologically normal controls (n = 8). Results: MMP2 and MMP9 were not expressed in all classes of LN, but were observed in LN with cellular and fibrocellular crescents. MMP2/MMP9 was expressed in cellular and fibrocellular crescents regardless of glomerulonephritis but not observed in inactive fibrous crescents or with mesangial proliferation. This suggests that MMP2 and MMP9 are involved in the development of extracapillary proliferative lesions. Conclusions: MMP2/MMP9 is expressed with active extracapillary proliferation. Further study is necessary to define whether the expression of MMP2/MMP9 reflects a role in glomerular repair after injury, a role in organ-level immune responses or a role as a marker of epithelialization.
Collapse
Affiliation(s)
- Tessa M Phillips
- Department of Anatomical Pathology, The Canberra Hospital, Canberra, ACT, Australia
| | - Mitali Fadia
- Department of Anatomical Pathology, The Canberra Hospital, Canberra, ACT, Australia
| | - Tom N Lea-Henry
- Department of Renal Medicine, The Canberra Hospital, Canberra, ACT, Australia
| | - Jonathan Smiles
- Department of Anatomical Pathology, The Canberra Hospital, Canberra, ACT, Australia
| | - Giles D Walters
- Department of Renal Medicine, The Canberra Hospital, Canberra, ACT, Australia
| | - Simon H Jiang
- Department of Renal Medicine, The Canberra Hospital, Canberra, ACT, Australia.,Department of Immunology and Infectious Diseases, John Curtin School of Medical Research, ANU, Canberra, ACT, Australia
| |
Collapse
|
10
|
Anti-dsDNA antibodies and resident renal cells - Their putative roles in pathogenesis of renal lesions in lupus nephritis. Clin Immunol 2016; 185:40-50. [PMID: 27612436 DOI: 10.1016/j.clim.2016.09.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 09/01/2016] [Accepted: 09/04/2016] [Indexed: 01/19/2023]
Abstract
Lupus nephritis affects up to 70% of patients with systemic lupus erythematosus and is an important treatable cause of kidney failure. Cardinal features of lupus nephritis include loss of self-tolerance, production of autoantibodies, immune complex deposition and immune-mediated injury to the kidney, resulting in increased cell proliferation, apoptosis, and induction of inflammatory and fibrotic processes that destroy normal nephrons. The production anti-dsDNA antibodies is a cardinal feature in lupus and their level correlates with disease activity. In addition to the formation of immune complexes thereby triggering complement activation, how anti-dsDNA antibodies home to the kidney and induce pathological processes in the renal parenchyma remain to be fully elucidated. Data from our laboratory and other investigators show that the properties of anti-dsDNA antibodies vary between patients and change over time, and that anti-dsDNA antibodies could bind directly to integral cell surface molecules such as annexin II or α-actinin, or indirectly through chromatin material deposited on the cell surface. The binding of anti-dsDNA antibodies to mesangial cells and proximal renal tubular epithelial cells triggers downstream inflammatory and fibrotic pathways, which include the activation of the PKC and MAPK signaling pathways, increased secretion of pro-inflammatory cytokines and matrix protein deposition that contribute to pathological processes in the renal parenchyma.
Collapse
|
11
|
Pedersen HL, Horvei KD, Thiyagarajan D, Seredkina N, Rekvig OP. Murine and Human Lupus Nephritis: Pathogenic Mechanisms and Theoretical Strategies for Therapy. Semin Nephrol 2016; 35:427-38. [PMID: 26573545 DOI: 10.1016/j.semnephrol.2015.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lupus nephritis is one of the most serious manifestations of systemic lupus erythematosus, and represents one of the criteria implemented to classify systemic lupus erythematosus. Although studied for decades, no consensus has been reached related to the basic cellular, molecular, and immunologic mechanism(s) responsible for lupus nephritis. No causal treatments have been developed; therapy is approached mainly with nonspecific immunosuppressive medications. More detailed insight into disease mechanisms therefore is indispensable to develop new therapeutic strategies. In this review, contemporary knowledge on the pathogenic mechanisms of lupus nephritis is discussed based on recent data in murine and human lupus nephritis. Specific focus is given to the effect of anti-double-stranded DNA/antinucleosome antibodies in the kidneys and whether they bind exposed chromatin fragments in glomeruli or whether they bind inherent glomerular structures by cross-recognition. Overall, the data presented here favor the exposed chromatin model because we did not find any indication to substantiate the anti-double-stranded DNA antibody cross-reacting model. At the end of this review we present data on why chromatin fragments are expressed in the glomeruli of patients with lupus nephritis, and discuss how this knowledge can be used to direct the development of future therapies.
Collapse
Affiliation(s)
- Hege Lynum Pedersen
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway.
| | - Kjersti Daae Horvei
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Dhivya Thiyagarajan
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Natalya Seredkina
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Ole Petter Rekvig
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway; Department of Radiology, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
12
|
Yung S, Chan TM. Mechanisms of Kidney Injury in Lupus Nephritis - the Role of Anti-dsDNA Antibodies. Front Immunol 2015; 6:475. [PMID: 26441980 PMCID: PMC4569852 DOI: 10.3389/fimmu.2015.00475] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 09/01/2015] [Indexed: 01/12/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by a breakdown of self-tolerance, production of auto-antibodies and immune-mediated injury, resulting in damage accrual in multiple organs. Kidney involvement, termed lupus nephritis, is a major cause of morbidity and mortality that affects over half of the SLE population during the course of disease. The etiology of lupus nephritis is multifactorial and remains to be fully elucidated. Accumulating evidence suggests that in addition to forming immune complexes and triggering complement activation, anti-dsDNA antibodies contribute to the pathogenesis of lupus nephritis through binding, either directly or indirectly, to cross-reactive antigens or chromatin materials, respectively, to resident renal cells and/or extracellular matrix components, thereby triggering downstream cellular activation and proliferation as well as inflammatory and fibrotic processes. Several cross-reactive antigens that mediate anti-dsDNA antibody binding have been identified, such as annexin II and alpha-actinin. This review discusses the mechanisms through which anti-dsDNA antibodies contribute to immunopathogenesis in lupus nephritis. Corticosteroids combined with either mycophenolic acid (MPA) or cyclophosphamide is the current standard of care immunosuppressive therapy for severe lupus nephritis. This review also discusses recent data showing distinct effects of MPA and cyclophosphamide on inflammatory and fibrotic processes in resident renal cells.
Collapse
Affiliation(s)
- Susan Yung
- Department of Medicine, Queen Mary Hospital, University of Hong Kong , Hong Kong , China
| | - Tak Mao Chan
- Department of Medicine, Queen Mary Hospital, University of Hong Kong , Hong Kong , China
| |
Collapse
|
13
|
|
14
|
Pan J, Mor G, Ju W, Zhong J, Luo X, Aldo PB, Zhong M, Yu Y, Jenkins EC, Brown WT, Zhong N. Viral Infection-Induced Differential Expression of LncRNAs Associated with Collagen in Mouse Placentas and Amniotic Sacs. Am J Reprod Immunol 2015; 74:237-57. [PMID: 26073538 DOI: 10.1111/aji.12406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/13/2015] [Indexed: 12/29/2022] Open
Abstract
PROBLEM We have previously determined that long non-coding RNAs (lncRNAs) are differentially expressed in preterm premature rupture of membranes (PPROM) and hypothesized that the collagenolysis ubiquitin-proteasome system may be activated by infection and inflammation. However, direct evidence of the involvement of lncRNAs in transcriptional and posttranscriptional regulation of the infection-triggered alteration of collagen is lacking. METHOD OF STUDY A previously developed mouse model with MHV68 viral infection was assessed to determine whether viral infection may induce differential expression of lncRNAs in mouse placentas and amniotic sacs. RESULTS Differential expression of lncRNAs that are associated with collagen was found in HMV68 viral-infected, compared to non-infected, mouse placentas and amniotic sacs. Differential expression of messenger RNAs (mRNAs) of collagen was also documented. CONCLUSIONS Our data demonstrate, for the first time, that viral infection may induce the differential expression of lncRNAs that are associated with collagen. Based on this finding, we propose that lncRNA may have involved in regulating of infection-induced collagen transcription.
Collapse
Affiliation(s)
- Jing Pan
- Center of Translational Medicine for Maternal and Children's Health, Lianyungang Maternal and Children's Hospital, Lianyungang, Jiangsu, China
| | - Gil Mor
- Department of Obstetrics Gynecology and Reproductive Sciences, Reproductive Immunology Unit, School of Medicine, Yale University, New Haven, CT, USA
| | - Weina Ju
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Julia Zhong
- Hunter College High School, New York, NY, USA
| | - Xiucui Luo
- Center of Translational Medicine for Maternal and Children's Health, Lianyungang Maternal and Children's Hospital, Lianyungang, Jiangsu, China
| | - Paulomi Bole Aldo
- Department of Obstetrics Gynecology and Reproductive Sciences, Reproductive Immunology Unit, School of Medicine, Yale University, New Haven, CT, USA
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanhong Yu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Edmund C Jenkins
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - William T Brown
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Nanbert Zhong
- Center of Translational Medicine for Maternal and Children's Health, Lianyungang Maternal and Children's Hospital, Lianyungang, Jiangsu, China.,Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
15
|
Enevold C, Nielsen CH, Jacobsen RS, Hermansen MLF, Molbo D, Avlund K, Bendtzen K, Jacobsen S. Single nucleotide polymorphisms in genes encoding toll-like receptors 7, 8 and 9 in Danish patients with systemic lupus erythematosus. Mol Biol Rep 2014; 41:5755-63. [PMID: 24919757 DOI: 10.1007/s11033-014-3447-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 06/03/2014] [Indexed: 01/10/2023]
Abstract
Several studies indicate a role for toll-like receptors (TLRs) in the pathogenesis of systemic lupus erythematosus (SLE). We aimed to investigate the risk of SLE and typical clinical and serological manifestations of SLE potentially conferred by selected single nucleotide polymorphisms (SNPs) of genes encoding TLR7, TLR8, and TLR9. Using a multiplexed bead-based assay, we analyzed eight SNPs in a cohort of 142 Danish SLE patients and a gender-matched control cohort comprising 443 individuals. Our results showed an association between the rs3853839 polymorphism of TLR7 and SLE (G vs. C, P = 0.008, OR 1.60, 95 % CI 1.12-2.27 in females; P = 0.02, OR 4.50, 95 % CI 1.18-16.7 in males) confirming recent findings in other populations. Additionally, an association between the rs3764879 polymorphism of TLR8 and SLE (G vs. C, P < 0.05, OR 1.36, 95 % CI 0.99-1.86 in females; P = 0.06, OR 4.00, 95 % CI 0.90-17.3 in males) was found. None of the other investigated SNPs were associated with SLE but several SNPs were associated with clinical and serological manifestations. In summary, a previously shown association between the rs3853839 SNP of TLR7 and SLE in Asian patients was also found in Danish patients. Together with the association of several other SNPs of TLR8 and TLR9 with various clinical and serological manifestations of SLE these findings corroborate the pathogenic significance of TLRs in SLE.
Collapse
Affiliation(s)
- C Enevold
- Institute for Inflammation Research, Department of Infectious Medicine and Rheumatology, Rigshospitalet, Copenhagen, Denmark,
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ullal AJ, Marion TN, Pisetsky DS. The role of antigen specificity in the binding of murine monoclonal anti-DNA antibodies to microparticles from apoptotic cells. Clin Immunol 2014; 154:178-87. [PMID: 24873886 DOI: 10.1016/j.clim.2014.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 05/15/2014] [Indexed: 10/25/2022]
Abstract
Antibodies to DNA (anti-DNA) are the serological hallmark of systemic lupus erythematosus and markers of underlying immune system disturbances. These antibodies bind to both single-stranded and double-stranded DNA, mediating pathogenesis by forming immune complexes. As shown recently, DNA in blood exists in both free and particulate forms, with DNA representing an important component of microparticles. Microparticles are membrane-bound vesicles containing nuclear molecules, released by membrane blebbing during cell death and activation. A panel of monoclonal NZB/NZW F1 anti-DNA antibodies was tested for binding to microparticles generated from apoptotic THP-1 and Jurkat cells. These studies showed that only certain anti-DNA antibodies in the panel, specific for double-stranded DNA, bound to microparticles. Binding to particles was reduced by soluble DNA or DNase treatment. Together, these results indicate that particle binding is a feature of only certain anti-DNA antibodies, reflecting immunochemical properties of the antibodies and the nature of the exposed DNA antigens.
Collapse
Affiliation(s)
- Anirudh J Ullal
- Duke University Medical Center, Department of Medicine, Durham, NC 27710, USA
| | - Tony N Marion
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - David S Pisetsky
- Duke University Medical Center, Department of Medicine, Durham, NC 27710, USA; Medical Research Service, Durham Veterans Administration Medical Center, Durham, NC 27705, USA.
| |
Collapse
|
17
|
Tanha N, Troelsen L, From Hermansen ML, Kjær L, Faurschou M, Garred P, Jacobsen S. MBL2 gene variants coding for mannose-binding lectin deficiency are associated with increased risk of nephritis in Danish patients with systemic lupus erythematosus. Lupus 2014; 23:1105-11. [PMID: 24850777 DOI: 10.1177/0961203314536478] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Autoimmunity may in part result from deficiencies in the processing of apoptotic debris. As mannose-binding lectin (MBL) is involved in such processes, we hypothesized that the variants in the MBL2 gene resulting in MBL deficiency confer an increased risk of nephritis in systemic lupus erythematosus (SLE). METHODS A total of 171 SLE patients attending a Danish tertiary rheumatology referral center were included. Common variant alleles in exon 1 of the MBL2 gene (R52C, rs5030737; G54D, rs1800450; G57E, rs1800451) were genotyped. The normal allele and variant alleles are termed A and O, respectively. The follow-up period was defined as the time from fulfillment of the ACR 1987 classification criteria for SLE until the occurrence of an event (nephritis, end-stage renal disease (ESRD), or death) or end of follow-up. Cox regression analyses were controlled for gender, age and race. RESULTS During a median follow-up of 5.7 years, nephritis developed in 94 patients, and ESRD developed in 16 of these patients. Twenty-seven patients died. The distribution of the MBL2 genotypes A/A, A/O and O/O was 58%, 35% and 7.0%, respectively. Compared to the rest, O/O patients had 2.6 times (95% CI: 1.2-5.5) higher risk of developing nephritis, and their risk of death after 10 years was 6.0 times increased (95% CI: 1.0-36). MBL serum levels below 100 ng/ml were associated with a 2.0 (95% CI: 1.2-3.4; p = 0.007) increased risk of developing nephritis. ESRD and histological class of nephritis were not associated with MBL deficiency. CONCLUSIONS Genetically determined MBL deficiency was associated with development of nephritis in SLE patients, but not with histological class of nephritis or ESRD.
Collapse
Affiliation(s)
| | - L Troelsen
- Department of Rheumatology Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Denmark
| | | | - L Kjær
- Department of Rheumatology
| | | | - P Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Denmark
| | | |
Collapse
|
18
|
The pathogenesis and diagnosis of systemic lupus erythematosus: still not resolved. Semin Immunopathol 2014; 36:301-11. [PMID: 24763531 DOI: 10.1007/s00281-014-0428-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 04/01/2014] [Indexed: 12/14/2022]
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease with various clinical manifestations affecting different tissues. A characteristic feature of SLE is the presence of autoantibodies against double-stranded (ds)DNA, histones and nucleosomes, and other chromatin components. SLE is a prototype type III hypersensitivity reaction. Local deposition of anti-nuclear antibodies in complex with released chromatin induces serious inflammatory conditions by activation of the complement system. The severe renal manifestation, lupus nephritis, is classified based on histological findings in renal biopsies. Apoptotic debris, including chromatin, is present in the extracellular matrix and circulation of patients with SLE. This may be due to an aberrant process of apoptosis and/or insufficient clearance of apoptotic cells/chromatin. The non-cleared apoptotic debris may lead to activation of both the innate and adaptive immune systems. In addition, an aberrant presentation of peptides by antigen-presenting cells, disturbed selection processes for lymphocytes, and deregulated lymphocyte responses may be involved in the development of autoimmunity. In the present review, we briefly will summarize current knowledge on the pathogenesis of SLE. We will also critically discuss and challenge central issues that need to be addressed in order to fully understand the pathogenic mechanisms involved in the development of SLE and in order to have an improved diagnosis for SLE. Disappointingly, in our opinion, there are still more questions than answers for the pathogenesis, diagnosis, and treatment of SLE.
Collapse
|
19
|
Seredkina N, Van Der Vlag J, Berden J, Mortensen E, Rekvig OP. Lupus nephritis: enigmas, conflicting models and an emerging concept. Mol Med 2013; 19:161-9. [PMID: 23752208 DOI: 10.2119/molmed.2013.00010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/04/2013] [Indexed: 01/02/2023] Open
Abstract
Autoantibodies to components of chromatin, which include double-stranded DNA (dsDNA), histones and nucleosomes, are central in the pathogenesis of lupus nephritis. How anti-chromatin autoantibodies exert their nephritogenic activity, however, is controversial. One model assumes that autoantibodies initiate inflammation when they cross-react with intrinsic glomerular structures such as components of membranes, matrices or exposed nonchromatin ligands released from cells. Another model suggests glomerular deposition of autoantibodies in complex with chromatin, thereby inducing classic immune complex-mediated tissue damage. Recent data suggest acquired error of renal chromatin degradation due to the loss of renal DNaseI enzyme activity is an important contributing factor to the development of lupus nephritis in lupus-prone (NZBxNZW)F1 mice and in patients with lupus nephritis. Down-regulation of DNaseI expression results in reduced chromatin fragmentation and in deposition of extracellular chromatin-IgG complexes in glomerular basement membranes in individuals who produce IgG anti-chromatin autoantibodies. The main focus of the present review is to discuss whether exposed chromatin fragments in glomeruli are targeted by potentially nephritogenic anti-dsDNA autoantibodies or if the nephritogenic activity of these autoantibodies is explained by cross-reaction with intrinsic glomerular constituents or if both models coexist in diseased kidneys. In addition, the role of silencing of the renal DNaseI gene and the biological consequences of reduced chromatin fragmentation in nephritic kidneys are discussed.
Collapse
Affiliation(s)
- Natalya Seredkina
- Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | | | | | | | | |
Collapse
|
20
|
Fismen S, Thiyagarajan D, Seredkina N, Nielsen H, Jacobsen S, Elung-Jensen T, Kamper AL, Johansen SD, Mortensen ES, Rekvig OP. Impact of the tumor necrosis factor receptor-associated protein 1 (Trap1) on renal DNaseI shutdown and on progression of murine and human lupus nephritis. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 182:688-700. [PMID: 23273922 DOI: 10.1016/j.ajpath.2012.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 10/23/2012] [Accepted: 11/07/2012] [Indexed: 01/22/2023]
Abstract
Recent findings show that transformation of mild glomerulonephritis into end-stage disease coincides with shutdown of renal DNaseI expression in (NZBxNZW)F1 mice. Down-regulation of DNaseI results in reduced chromatin fragmentation and deposition of extracellular chromatin fragments in glomerular basement membranes where they appear in complex with IgG antibodies. Here, we implicate the anti-apoptotic and survival protein, tumor necrosis factor receptor-associated protein 1 (Trap1) in the disease process, based on the observation that annotated transcripts from this gene overlap with transcripts from the DNaseI gene. Furthermore, we translate these observations to human lupus nephritis. In this study, mouse and human DNaseI and Trap1 mRNA levels were determined by real-time quantitative PCR and compared with protein expression levels and clinical data. Cellular localization was analyzed by immune electron microscopy, IHC, and in situ hybridization. Data indicate that silencing of DNaseI gene expression correlates inversely with expression of the Trap1 gene. Our observations suggest that the mouse model is relevant for the aspects of disease progression in human lupus nephritis. Acquired silencing of the renal DNaseI gene has been shown to be important for progression of disease in both the murine and human forms of lupus nephritis. Early mesangial nephritis initiates a cascade of inflammatory signals that lead to up-regulation of Trap1 and a consequent down-regulation of renal DNaseI by transcriptional interference.
Collapse
Affiliation(s)
- Silje Fismen
- Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|