1
|
Doldur-Balli F, Smieszek SP, Keenan BT, Zimmerman AJ, Veatch OJ, Polymeropoulos CM, Birznieks G, Polymeropoulos MH. Screening effects of HCN channel blockers on sleep/wake behavior in zebrafish. Front Neurosci 2024; 18:1375484. [PMID: 38567282 PMCID: PMC10986788 DOI: 10.3389/fnins.2024.1375484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels generate electrical rhythmicity in various tissues although primarily heart, retina and brain. The HCN channel blocker compound, Ivabradine (Corlanor), is approved by the US Food and Drug Administration (FDA) as a medication to lower heart rate by blocking hyperpolarization activated inward current in the sinoatrial node. In addition, a growing body of evidence suggests a role for HCN channels in regulation of sleep/wake behavior. Zebrafish larvae are ideal model organisms for high throughput drug screening, drug repurposing and behavioral phenotyping studies. We leveraged this model system to investigate effects of three HCN channel blockers (Ivabradine, Zatebradine Hydrochloride and ZD7288) at multiple doses on sleep/wake behavior in wild type zebrafish. Results of interest included shorter latency to daytime sleep at 0.1 μM dose of Ivabradine (ANOVA, p: 0.02), moderate reduction in average activity at 30 μM dose of Zatebradine Hydrochloride (ANOVA, p: 0.024) in daytime, and increased nighttime sleep at 4.5 μM dose of ZD7288 (ANOVA, p: 0.036). Taken together, shorter latency to daytime sleep, decrease in daytime activity and increased nighttime sleep indicate that different HCN channel antagonists affected different parameters of sleep and activity.
Collapse
Affiliation(s)
- Fusun Doldur-Balli
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Brendan T. Keenan
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Amber J. Zimmerman
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Olivia J. Veatch
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, KS, United States
| | | | - Gunther Birznieks
- Vanda Pharmaceuticals Inc., Pennsylvania, Washington, DC, United States
| | | |
Collapse
|
2
|
Pirooznia SK, Wang H, Panicker N, Kumar M, Neifert S, Dar MA, Lau E, Kang BG, Redding-Ochoa J, Troncoso JC, Dawson VL, Dawson TM. Deubiquitinase CYLD acts as a negative regulator of dopamine neuron survival in Parkinson's disease. SCIENCE ADVANCES 2022; 8:eabh1824. [PMID: 35363524 PMCID: PMC10938605 DOI: 10.1126/sciadv.abh1824] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Mutations in PINK1 and parkin highlight the mitochondrial axis of Parkinson's disease (PD) pathogenesis. PINK1/parkin regulation of the transcriptional repressor PARIS bears direct relevance to dopamine neuron survival through augmentation of PGC-1α-dependent mitochondrial biogenesis. Notably, knockout of PARIS attenuates dopaminergic neurodegeneration in mouse models, indicating that interventions that prevent dopaminergic accumulation of PARIS could have therapeutic potential in PD. To this end, we have identified the deubiquitinase cylindromatosis (CYLD) to be a regulator of PARIS protein stability and proteasomal degradation via the PINK1/parkin pathway. Knockdown of CYLD in multiple models of PINK1 or parkin inactivation attenuates PARIS accumulation by modulating its ubiquitination levels and relieving its repressive effect on PGC-1α to promote mitochondrial biogenesis. Together, our studies identify CYLD as a negative regulator of dopamine neuron survival, and inhibition of CYLD may potentially be beneficial in PD by lowering PARIS levels and promoting mitochondrial biogenesis.
Collapse
Affiliation(s)
- Sheila K. Pirooznia
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hu Wang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nikhil Panicker
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Manoj Kumar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stewart Neifert
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mohamad Aasif Dar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Evan Lau
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bong Gu Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Javier Redding-Ochoa
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology (Neuropathology), Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Juan C. Troncoso
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology (Neuropathology), Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Ted M. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Akhund-Zade J, Lall S, Gajda E, Yoon D, Ayroles JF, de Bivort BL. Genetic basis of offspring number-body weight tradeoff in Drosophila melanogaster. G3 (BETHESDA, MD.) 2021; 11:6237891. [PMID: 33871609 PMCID: PMC8496212 DOI: 10.1093/g3journal/jkab129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 04/05/2021] [Indexed: 01/09/2023]
Abstract
Drosophila melanogaster egg production, a proxy for fecundity, is an extensively studied life-history trait with a strong genetic basis. As eggs develop into larvae and adults, space and resource constraints can put pressure on the developing offspring, leading to a decrease in viability, body size, and lifespan. Our goal was to map the genetic basis of offspring number and weight under the restriction of a standard laboratory vial. We screened 143 lines from the Drosophila Genetic Reference Panel for offspring numbers and weights to create an “offspring index” that captured the number vs weight tradeoff. We found 18 genes containing 30 variants associated with variation in the offspring index. Validation of hid, Sox21b, CG8312, and mub candidate genes using gene disruption mutants demonstrated a role in adult stage viability, while mutations in Ih and Rbp increased offspring number and increased weight, respectively. The polygenic basis of offspring number and weight, with many variants of small effect, as well as the involvement of genes with varied functional roles, support the notion of Fisher’s “infinitesimal model” for this life-history trait.
Collapse
Affiliation(s)
- Jamilla Akhund-Zade
- Department of Organismic and Evolutionary Biology & Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Shraddha Lall
- Department of Organismic and Evolutionary Biology & Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Erika Gajda
- Department of Organismic and Evolutionary Biology & Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Denise Yoon
- Department of Organismic and Evolutionary Biology & Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Julien F Ayroles
- Department of Ecology and Evolutionary Biology & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton NJ, 08544, USA
| | - Benjamin L de Bivort
- Department of Organismic and Evolutionary Biology & Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
4
|
High-Frequency Neuronal Bursting is Essential for Circadian and Sleep Behaviors in Drosophila. J Neurosci 2020; 41:689-710. [PMID: 33262246 DOI: 10.1523/jneurosci.2322-20.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023] Open
Abstract
Circadian rhythms have been extensively studied in Drosophila; however, still little is known about how the electrical properties of clock neurons are specified. We have performed a behavioral genetic screen through the downregulation of candidate ion channels in the lateral ventral neurons (LNvs) and show that the hyperpolarization-activated cation current Ih is important for the behaviors that the LNvs influence: temporal organization of locomotor activity, analyzed in males, and sleep, analyzed in females. Using whole-cell patch clamp electrophysiology we demonstrate that small LNvs (sLNvs) are bursting neurons, and that Ih is necessary to achieve the high-frequency bursting firing pattern characteristic of both types of LNvs in females. Since firing in bursts has been associated to neuropeptide release, we hypothesized that Ih would be important for LNvs communication. Indeed, herein we demonstrate that Ih is fundamental for the recruitment of pigment dispersing factor (PDF) filled dense core vesicles (DCVs) to the terminals at the dorsal protocerebrum and for their timed release, and hence for the temporal coordination of circadian behaviors.SIGNIFICANCE STATEMENT Ion channels are transmembrane proteins with selective permeability to specific charged particles. The rich repertoire of parameters that may gate their opening state, such as voltage-sensitivity, modulation by second messengers and specific kinetics, make this protein family a determinant of neuronal identity. Ion channel structure is evolutionary conserved between vertebrates and invertebrates, making any discovery easily translatable. Through a screen to uncover ion channels with roles in circadian rhythms, we have identified the Ih channel as an important player in a subset of clock neurons of the fruit fly. We show that lateral ventral neurons (LNvs) need Ih to fire action potentials in a high-frequency bursting mode and that this is important for peptide transport and the control of behavior.
Collapse
|
5
|
Pirooznia SK, Yuan C, Khan MR, Karuppagounder SS, Wang L, Xiong Y, Kang SU, Lee Y, Dawson VL, Dawson TM. PARIS induced defects in mitochondrial biogenesis drive dopamine neuron loss under conditions of parkin or PINK1 deficiency. Mol Neurodegener 2020; 15:17. [PMID: 32138754 PMCID: PMC7057660 DOI: 10.1186/s13024-020-00363-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 02/13/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mutations in PINK1 and parkin cause autosomal recessive Parkinson's disease (PD). Evidence placing PINK1 and parkin in common pathways regulating multiple aspects of mitochondrial quality control is burgeoning. However, compelling evidence to causatively link specific PINK1/parkin dependent mitochondrial pathways to dopamine neuron degeneration in PD is lacking. Although PINK1 and parkin are known to regulate mitophagy, emerging data suggest that defects in mitophagy are unlikely to be of pathological relevance. Mitochondrial functions of PINK1 and parkin are also tied to their proteasomal regulation of specific substrates. In this study, we examined how PINK1/parkin mediated regulation of the pathogenic substrate PARIS impacts dopaminergic mitochondrial network homeostasis and neuronal survival in Drosophila. METHODS The UAS-Gal4 system was employed for cell-type specific expression of the various transgenes. Effects on dopamine neuronal survival and function were assessed by anti-TH immunostaining and negative geotaxis assays. Mitochondrial effects were probed by quantitative analysis of mito-GFP labeled dopaminergic mitochondria, assessment of mitochondrial abundance in dopamine neurons isolated by Fluorescence Activated Cell Sorting (FACS) and qRT-PCR analysis of dopaminergic factors that promote mitochondrial biogenesis. Statistical analyses employed two-tailed Student's T-test, one-way or two-way ANOVA as required and data considered significant when P < 0.05. RESULTS We show that defects in mitochondrial biogenesis drive adult onset progressive loss of dopamine neurons and motor deficits in Drosophila models of PINK1 or parkin insufficiency. Such defects result from PARIS dependent repression of dopaminergic PGC-1α and its downstream transcription factors NRF1 and TFAM that cooperatively promote mitochondrial biogenesis. Dopaminergic accumulation of human or Drosophila PARIS recapitulates these neurodegenerative phenotypes that are effectively reversed by PINK1, parkin or PGC-1α overexpression in vivo. To our knowledge, PARIS is the only co-substrate of PINK1 and parkin to specifically accumulate in the DA neurons and cause neurodegeneration and locomotor defects stemming from disrupted dopamine signaling. CONCLUSIONS Our findings identify a highly conserved role for PINK1 and parkin in regulating mitochondrial biogenesis and promoting mitochondrial health via the PARIS/ PGC-1α axis. The Drosophila models described here effectively recapitulate the cardinal PD phenotypes and thus will facilitate identification of novel regulators of mitochondrial biogenesis for physiologically relevant therapeutic interventions.
Collapse
Affiliation(s)
- Sheila K. Pirooznia
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, Suite 731, Baltimore, MD 21205 USA
- Departments of Neurology, Iowa City, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685 USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685 USA
| | - Changqing Yuan
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, Suite 731, Baltimore, MD 21205 USA
- Departments of Neurology, Iowa City, USA
| | - Mohammed Repon Khan
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, Suite 731, Baltimore, MD 21205 USA
- Departments of Neurology, Iowa City, USA
| | - Senthilkumar S. Karuppagounder
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, Suite 731, Baltimore, MD 21205 USA
- Departments of Neurology, Iowa City, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685 USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685 USA
| | - Luan Wang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, Suite 731, Baltimore, MD 21205 USA
- Departments of Neurology, Iowa City, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685 USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685 USA
| | - Yulan Xiong
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, Suite 731, Baltimore, MD 21205 USA
- Departments of Neurology, Iowa City, USA
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506 USA
| | - Sung Ung Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, Suite 731, Baltimore, MD 21205 USA
- Departments of Neurology, Iowa City, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685 USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685 USA
| | - Yunjong Lee
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, Suite 731, Baltimore, MD 21205 USA
- Departments of Neurology, Iowa City, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685 USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685 USA
| | - Valina L. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, Suite 731, Baltimore, MD 21205 USA
- Departments of Neurology, Iowa City, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685 USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685 USA
- Departments of Physiology, Baltimore, USA
- Solomon H. Snyder Department of Neuroscience, Baltimore, USA
| | - Ted M. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, Suite 731, Baltimore, MD 21205 USA
- Departments of Neurology, Iowa City, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685 USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685 USA
- Solomon H. Snyder Department of Neuroscience, Baltimore, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
6
|
Robles-Murguia M, Rao D, Finkelstein D, Xu B, Fan Y, Demontis F. Muscle-derived Dpp regulates feeding initiation via endocrine modulation of brain dopamine biosynthesis. Genes Dev 2020; 34:37-52. [PMID: 31831628 PMCID: PMC6938663 DOI: 10.1101/gad.329110.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 11/08/2019] [Indexed: 12/26/2022]
Abstract
In animals, the brain regulates feeding behavior in response to local energy demands of peripheral tissues, which secrete orexigenic and anorexigenic hormones. Although skeletal muscle is a key peripheral tissue, it remains unknown whether muscle-secreted hormones regulate feeding. In Drosophila, we found that decapentaplegic (dpp), the homolog of human bone morphogenetic proteins BMP2 and BMP4, is a muscle-secreted factor (a myokine) that is induced by nutrient sensing and that circulates and signals to the brain. Muscle-restricted dpp RNAi promotes foraging and feeding initiation, whereas dpp overexpression reduces it. This regulation of feeding by muscle-derived Dpp stems from modulation of brain tyrosine hydroxylase (TH) expression and dopamine biosynthesis. Consistently, Dpp receptor signaling in dopaminergic neurons regulates TH expression and feeding initiation via the downstream transcriptional repressor Schnurri. Moreover, pharmacologic modulation of TH activity rescues the changes in feeding initiation due to modulation of dpp expression in muscle. These findings indicate that muscle-to-brain endocrine signaling mediated by the myokine Dpp regulates feeding behavior.
Collapse
Affiliation(s)
- Maricela Robles-Murguia
- Division of Developmental Biology, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Deepti Rao
- Division of Developmental Biology, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Beisi Xu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Fabio Demontis
- Division of Developmental Biology, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
7
|
Chang X, Wang J, Jiang H, Shi L, Xie J. Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels: An Emerging Role in Neurodegenerative Diseases. Front Mol Neurosci 2019; 12:141. [PMID: 31231190 PMCID: PMC6560157 DOI: 10.3389/fnmol.2019.00141] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/13/2019] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and spinal muscular atrophy (SMA) are chronic, progressive, and age-associated neurological disorders characterized by neuronal deterioration in specific brain regions. Although the specific pathological mechanisms underlying these disorders have remained elusive, ion channel dysfunction has become increasingly accepted as a potential mechanism for neurodegenerative diseases. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are encoded by the HCN1-4 gene family and conduct the hyperpolarization-activated current (I h). These channels play important roles in modulating cellular excitability, rhythmic activity, dendritic integration, and synaptic transmission. In the present review, we first provide a comprehensive picture of the role of HCN channels in PD by summarizing their role in the regulation of neuronal activity in PD-related brain regions. Dysfunction of I h may participate in 1-methyl-4-phenylpyridinium (MPP+)-induced toxicity and represent a pathogenic mechanism in PD. Given current reports of the critical role of HCN channels in neuroinflammation and depression, we also discussed the putative contribution of HCN channels in inflammatory processes and non-motor symptoms in PD. In the second section, we summarize how HCN channels regulate the formation of β-amyloid peptide in AD and the role of these channels in learning and memory. Finally, we briefly discuss the effects of HCN channels in ALS and SMA based on existing discoveries.
Collapse
Affiliation(s)
- Xiaoli Chang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Jun Wang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Limin Shi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Junxia Xie
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Luo P, He G, Liu D. HCN channels: New targets for the design of an antidepressant with rapid effects. J Affect Disord 2019; 245:764-770. [PMID: 30448761 DOI: 10.1016/j.jad.2018.11.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 10/22/2018] [Accepted: 11/11/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a prevalent neuropsychiatric disease that carries a staggering global burden. Although numerous antidepressants are available on the market, unfortunately, many patients die by committing suicide as a result of the therapeutic lag between treatment initiation and the improvement of depressive symptoms. This therapeutic lag highlights the need for new antidepressants that provide rapid relief of depressive symptoms. METHOD In this review, we discuss the seminal researches on hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in animal models of depression and highlight the substantial evidence supporting the development of rapid-acting antidepressants targeting HCN channels. RESULTS HCN channels are associated with the risk of depression and targeting HCN channels or its auxiliary subunit tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b) function may exert a rapid antidepressant-like effect. CONCLUSIONS Compounds acting on HCN subunits or the TRIP8b-HCN interaction site may be excellent candidates for development into effective drugs with rapid antidepressant action.
Collapse
Affiliation(s)
- Pan Luo
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - GuoFang He
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
9
|
De Lazzari F, Bisaglia M, Zordan MA, Sandrelli F. Circadian Rhythm Abnormalities in Parkinson's Disease from Humans to Flies and Back. Int J Mol Sci 2018; 19:ijms19123911. [PMID: 30563246 PMCID: PMC6321023 DOI: 10.3390/ijms19123911] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022] Open
Abstract
Clinical and research studies have suggested a link between Parkinson’s disease (PD) and alterations in the circadian clock. Drosophila melanogaster may represent a useful model to study the relationship between the circadian clock and PD. Apart from the conservation of many genes, cellular mechanisms, signaling pathways, and neuronal processes, Drosophila shows an organized central nervous system and well-characterized complex behavioral phenotypes. In fact, Drosophila has been successfully used in the dissection of the circadian system and as a model for neurodegenerative disorders, including PD. Here, we describe the fly circadian and dopaminergic systems and report recent studies which indicate the presence of circadian abnormalities in some fly PD genetic models. We discuss the use of Drosophila to investigate whether, in adults, the disruption of the circadian system might be causative of brain neurodegeneration. We also consider approaches using Drosophila, which might provide new information on the link between PD and the circadian clock. As a corollary, since PD develops its symptomatology over a large part of the organism’s lifespan and given the relatively short lifespan of fruit flies, we suggest that genetic models of PD could be used to perform lifelong screens for drug-modulators of general and/or circadian-related PD traits.
Collapse
Affiliation(s)
| | - Marco Bisaglia
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | - Mauro Agostino Zordan
- Department of Biology, University of Padova, 35131 Padova, Italy.
- Cognitive Neuroscience Center, University of Padova, 35100 Padova, Italy.
| | | |
Collapse
|
10
|
Abstract
Heart failure places an enormous burden on health and economic systems worldwide. It is a complex disease that is profoundly influenced by both genetic and environmental factors. Neither the molecular mechanisms underlying heart failure nor effective prevention strategies are fully understood. Fortunately, relevant aspects of human heart failure can be experimentally studied in tractable model animals, including the fruit fly, Drosophila, allowing the in vivo application of powerful and sophisticated molecular genetic and physiological approaches. Heart failure in Drosophila, as in humans, can be classified into dilated cardiomyopathies and hypertrophic cardiomyopathies. Critically, many genes and cellular pathways directing heart development and function are evolutionarily conserved from Drosophila to humans. Studies of molecular mechanisms linking aging with heart failure have revealed that genes involved in aging-associated energy homeostasis and oxidative stress resistance influence cardiac dysfunction through perturbation of IGF and TOR pathways. Importantly, ion channel proteins, cytoskeletal proteins, and integrins implicated in aging of the mammalian heart have been shown to play significant roles in heart failure. A number of genes previously described having roles in development of the Drosophila heart, such as genes involved in Wnt signaling pathways, have recently been shown to play important roles in the adult fly heart. Moreover, the fly model presents opportunities for innovative studies that cannot currently be pursued in the mammalian heart because of technical limitations. In this review, we discuss progress in our understanding of genes, proteins, and molecular mechanisms that affect the Drosophila adult heart and heart failure.
Collapse
Affiliation(s)
- Shasha Zhu
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Zhe Han
- Center for Cancer and Immunology Research, Children's National Medical Center, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Yan Luo
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Yulin Chen
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Qun Zeng
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Xiushan Wu
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.
| | - Wuzhou Yuan
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.
| |
Collapse
|
11
|
Hegle AP, Frank CA, Berndt A, Klose M, Allan DW, Accili EA. The Ih Channel Gene Promotes Synaptic Transmission and Coordinated Movement in Drosophila melanogaster. Front Mol Neurosci 2017; 10:41. [PMID: 28286469 PMCID: PMC5323408 DOI: 10.3389/fnmol.2017.00041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 02/06/2017] [Indexed: 11/13/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated “HCN” channels, which underlie the hyperpolarization-activated current (Ih), have been proposed to play diverse roles in neurons. The presynaptic HCN channel is thought to both promote and inhibit neurotransmitter release from synapses, depending upon its interactions with other presynaptic ion channels. In larvae of Drosophila melanogaster, inhibition of the presynaptic HCN channel by the drug ZD7288 reduces the enhancement of neurotransmitter release at motor terminals by serotonin but this drug has no effect on basal neurotransmitter release, implying that the channel does not contribute to firing under basal conditions. Here, we show that genetic disruption of the sole HCN gene (Ih) reduces the amplitude of the evoked response at the neuromuscular junction (NMJ) of third instar larvae by decreasing the number of released vesicles. The anatomy of the (NMJ) is not notably affected by disruption of the Ih gene. We propose that the presynaptic HCN channel is active under basal conditions and promotes neurotransmission at larval motor terminals. Finally, we demonstrate that Ih partial loss-of-function mutant adult flies have impaired locomotion, and, thus, we hypothesize that the presynaptic HCN channel at the (NMJ) may contribute to coordinated movement.
Collapse
Affiliation(s)
- Andrew P Hegle
- Department of Cellular and Physiological Sciences, The University of British Columbia Vancouver, BC, Canada
| | - C Andrew Frank
- Department of Anatomy and Cell Biology, The University of Iowa Iowa City, IA, USA
| | - Anthony Berndt
- Department of Cellular and Physiological Sciences, The University of British Columbia Vancouver, BC, Canada
| | - Markus Klose
- Department of Cellular and Physiological Sciences, The University of British Columbia Vancouver, BC, Canada
| | - Douglas W Allan
- Department of Cellular and Physiological Sciences, The University of British Columbia Vancouver, BC, Canada
| | - Eric A Accili
- Department of Cellular and Physiological Sciences, The University of British Columbia Vancouver, BC, Canada
| |
Collapse
|
12
|
Preparing for Winter: The Transcriptomic Response Associated with Different Day Lengths in Drosophila montana. G3-GENES GENOMES GENETICS 2016; 6:1373-81. [PMID: 26976440 PMCID: PMC4856088 DOI: 10.1534/g3.116.027870] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
At northern latitudes, the most robust cue for assessing the onset of winter is the shortening of day lengths. Many species use day length as a cue to increase their cold tolerance and/or enter into diapause, but little is known about changes in gene expression that occur under different day lengths. We investigate the gene expression changes associated with differences in light/dark cycles in Drosophila montana, a northerly distributed species with a strong adult photoperiodic reproductive diapause. To examine gene expression changes induced by light both prior to and during diapause, we used both nondiapausing and diapausing flies. We found that the majority of genes that are differentially expressed between different day lengths in nondiapausing and diapausing flies differ. However, the biological processes involved were broadly similar. These included neuron development and metabolism, which are largely consistent with an increase in cold tolerance previously observed to occur in these flies. We also found that many genes associated with reproduction change in expression level between different day lengths, suggesting that D. montana use changes in day length to cue changes in reproduction both before and after entering into diapause. Finally, we also identified several interesting candidate genes for light-induced changes including Lsp2, para, and Ih.
Collapse
|
13
|
Liu LF, Song JX, Lu JH, Huang YY, Zeng Y, Chen LL, Durairajan SSK, Han QB, Li M. Tianma Gouteng Yin, a Traditional Chinese Medicine decoction, exerts neuroprotective effects in animal and cellular models of Parkinson's disease. Sci Rep 2015; 5:16862. [PMID: 26578166 PMCID: PMC4649620 DOI: 10.1038/srep16862] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/21/2015] [Indexed: 11/18/2022] Open
Abstract
Tianma Gouteng Yin (TGY) is a traditional Chinese medicine (TCM) decoction widely used to treat symptoms associated with typical Parkinson's disease (PD). In this study, the neuroprotective effects of water extract of TGY were tested on rotenone-intoxicated and human α-synuclein transgenic Drosophila PD models. In addition, the neuroprotective effect of TGY was also evaluated in the human dopaminergic neuroblastoma SH-SY5Y cell line treated with rotenone and the rotenone intoxicated hemi-parkinsonian rats. In rotenone-induced PD models, TGY improved survival rate, alleviated impaired locomotor function of Drosophila, mitigated the loss of dopaminergic neurons in hemi-parkinsonian rats and alleviated apoptotic cell death in SH-SY5Y cells; in α-synuclein transgenic Drosophila, TGY reduced the level of α-synuclein and prevented degeneration of dopaminergic neurons. Conclusively, TGY is neuroprotective in PD models both in vivo and in vitro.
Collapse
Affiliation(s)
- Liang-Feng Liu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, Hong Kong Baptist University, Hong Kong
| | - Ju-Xian Song
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, Hong Kong Baptist University, Hong Kong
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Ying-Yu Huang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, Hong Kong Baptist University, Hong Kong
| | - Yu Zeng
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, Hong Kong Baptist University, Hong Kong
| | - Lei-Lei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, Hong Kong Baptist University, Hong Kong
| | - Siva Sundara Kumar Durairajan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, Hong Kong Baptist University, Hong Kong
| | - Quan-Bin Han
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, Hong Kong Baptist University, Hong Kong
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, Hong Kong Baptist University, Hong Kong
| |
Collapse
|
14
|
Chadha A, Cook B. The effect of stress on motor function in Drosophila. PLoS One 2014; 9:e112076. [PMID: 25375106 PMCID: PMC4222978 DOI: 10.1371/journal.pone.0112076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 10/13/2014] [Indexed: 01/20/2023] Open
Abstract
Exposure to unpredictable and uncontrollable conditions causes animals to perceive stress and change their behavior. It is unclear how the perception of stress modifies the motor components of behavior and which molecular pathways affect the behavioral change. In order to understand how stress affects motor function, we developed an experimental platform that quantifies walking motions in Drosophila. We found that stress induction using electrical shock results in backwards motions of the forelegs at the end of walking strides. These leg retrogressions persisted during repeated stimulation, although they habituated substantially. The motions also continued for several strides after the end of the shock, indicating that stress induces a behavioral aftereffect. Such aftereffect could also be induced by restricting the motion of the flies via wing suspension. Further, the long-term effects could be amplified by combining either immobilization or electric shock with additional stressors. Thus, retrogression is a lingering form of response to a broad range of stressful conditions, which cause the fly to search for a foothold when it faces extreme and unexpected challenges. Mutants in the cAMP signaling pathway enhanced the stress response, indicating that this pathway regulates the behavioral response to stress. Our findings identify the effect of stress on a specific motor component of behavior and define the role of cAMP signaling in this stress response.
Collapse
Affiliation(s)
- Abhishek Chadha
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California, United States of America
| | - Boaz Cook
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
15
|
Qiao GF, Qian Z, Sun HL, Xu WX, Yan ZY, Liu Y, Zhou JY, Zhang HC, Wang LJ, Pan XD, Fu Y. Remodeling of hyperpolarization-activated current, Ih, in Ah-type visceral ganglion neurons following ovariectomy in adult rats. PLoS One 2013; 8:e71184. [PMID: 23951107 PMCID: PMC3741359 DOI: 10.1371/journal.pone.0071184] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 06/27/2013] [Indexed: 12/21/2022] Open
Abstract
Hyperpolarization-activated currents (Ih) mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels modulate excitability of myelinated A− and Ah-type visceral ganglion neurons (VGN). Whether alterations in Ih underlie the previously reported reduction of excitability of myelinated Ah-type VGNs following ovariectomy (OVX) has remained unclear. Here we used the intact nodose ganglion preparation in conjunction with electrophysiological approaches to examine the role of Ih remodeling in altering Ah-type neuron excitability following ovariectomy in adult rats. Ah-type neurons were identified based on their afferent conduction velocity. Ah-type neurons in nodose ganglia from non-OVX rats exhibited a voltage ‘sag’ as well as ‘rebound’ action potentials immediately following hyperpolarizing current injections, which both were suppressed by the Ih blocker ZD7288. Repetitive spike activity induced afterhyperpolarizations lasting several hundreds of milliseconds (termed post-excitatory membrane hyperpolarizations, PEMHs), which were significantly reduced by ZD7288, suggesting that they resulted from transient deactivation of Ih during the preceding spike trains. Ovariectomy reduced whole-cell Ih density, caused a hyperpolarizing shift of the voltage-dependence of Ih activation, and slowed Ih activation. OVX-induced Ih remodeling was accompanied by a flattening of the stimulus frequency/response curve and loss of PEMHs. Also, HCN1 mRNA levels were reduced by ∼30% in nodose ganglia from OVX rats compared with their non-OVX counterparts. Acute exposure of nodose ganglia to 17beta-estradiol partly restored Ih density and accelerated Ih activation in Ah-type cells. In conclusion, Ih plays a significant role in modulating the excitability of myelinated Ah-type VGNs in adult female rats.
Collapse
Affiliation(s)
- Guo-Fen Qiao
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang, China
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhao Qian
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Hong-Li Sun
- Department of Pharmacology, Da-Qing Campus of Harbin Medical University, Da-Qing, Heilongjiang, China
| | - Wen-Xiao Xu
- Department of Orthopedics, the First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhen-Yu Yan
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yang Liu
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jia-Ying Zhou
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Hao-Cheng Zhang
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Li-Juan Wang
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiao-Dong Pan
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yili Fu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang, China
- * E-mail:
| |
Collapse
|
16
|
Potdar S, Sheeba V. Lessons From Sleeping Flies: Insights fromDrosophila melanogasteron the Neuronal Circuitry and Importance of Sleep. J Neurogenet 2013; 27:23-42. [DOI: 10.3109/01677063.2013.791692] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
17
|
Calcagno B, Eyles D, van Alphen B, van Swinderen B. Transient activation of dopaminergic neurons during development modulates visual responsiveness, locomotion and brain activity in a dopamine ontogeny model of schizophrenia. Transl Psychiatry 2013; 3:e206. [PMID: 23299394 PMCID: PMC3567203 DOI: 10.1038/tp.2012.139] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It has been observed that certain developmental environmental risk factors for schizophrenia when modeled in rodents alter the trajectory of dopaminergic development, leading to persistent behavioural changes in adults. This has recently been articulated as the "dopamine ontogeny hypothesis of schizophrenia". To test one aspect of this hypothesis, namely that transient dopaminergic effects during development modulate attention-like behavior and arousal in adults, we turned to a small-brain model, Drosophila melanogaster. By applying genetic tools allowing transient activation or silencing of dopaminergic neurons in the fly brain, we investigated whether a critical window exists during development when altered dopamine (DA) activity levels could lead to impairments in arousal states in adult animals. We found that increased activity in dopaminergic neurons in later stages of development significantly increased visual responsiveness and locomotion, especially in adult males. This misallocation of visual salience and hyperactivity mimicked the effect of acute methamphetamine feeding to adult flies, suggesting up-regulated DA signaling could result from developmental manipulations. Finally, brain recordings revealed significantly reduced gamma-band activity in adult animals exposed to the transient developmental insult. Together, these data support the idea that transient alterations in DA signaling during development can permanently alter behavior in adults, and that a reductionist model such as Drosophila can be used to investigate potential mechanisms underlying complex cognitive disorders such as schizophrenia.
Collapse
Affiliation(s)
- B Calcagno
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - D Eyles
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia,Queensland Centre for Mental Health Research, The University of Queensland, Wacol, QLD, Australia
| | - B van Alphen
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - B van Swinderen
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia,Queensland Brain Institute, The University of Queensland, Upland Road, St. Lucia, QLD, Australia. E-mail:
| |
Collapse
|