1
|
Lei D, Qin K, Li W, Pinaya WHL, Tallman MJ, Zhang J, Patino LR, Strawn JR, Fleck DE, Klein CC, Gong Q, Adler CM, Mechelli A, Sweeney JA, DelBello MP. Brain structural connectomic topology predicts medication response in youth with bipolar disorder: A randomized clinical trial. J Affect Disord 2025; 371:324-332. [PMID: 39577502 DOI: 10.1016/j.jad.2024.11.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 10/05/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Response to pharmacotherapy varies considerably among youths with bipolar disorder (BD) and is poorly predicted by clinical or demographic features. It can take several weeks to determine whether medication for BD is clinically effective. Although neuroimaging biomarkers are promising predictors, few studies examined the predictive value of the brain connectomic topology. METHODS BD-I youth (N = 121) with no prior psychopharmacotherapy were randomized to 6-weeks of double-blind quetiapine or lithium. Structural magnetic resonance imaging (MRI) was performed before medication and at one week after medication initiation. Brain structural connectome was established from the MRI scans, and topological metrics were calculated for each patient. Deep learning-based prediction model was built using baseline and one-week connectome topology to predict medication response at week 6. RESULTS Both baseline topological metrics and one-week topological changes could predict treatment response with significant accuracy (73.8 % - 86.8 %). A longitudinally joint model combining baseline and one-week topology provided the highest accuracy (91.3 %). The transferability between models for quetiapine and lithium was relatively poor. In addition, predictions for the two drugs were driven by similar baseline but distinct one-week salient topological patterns. LIMITATIONS Independent replication is needed to validate our preliminary findings. CONCLUSION Brain structural connectomic topology at baseline and its acute changes within the first week enable accurate BD medication response prediction. The most contributive brain regions differed between prediction models for quetiapine and lithium after one week. These findings provide preliminary evidence for the development of neuroimaging-based biomarkers for guiding therapeutic interventions in youth with BD.
Collapse
Affiliation(s)
- Du Lei
- College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA; Key Laboratory of Major Brain Disease and Aging Research(Ministry of Education), Chongqing Medical University, Chongqing 400016, China.
| | - Kun Qin
- Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
| | - Wenbin Li
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA; Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Walter H L Pinaya
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, Westminster Bridge Road, London, UK
| | - Maxwell J Tallman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
| | - Jingbo Zhang
- College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China
| | - L Rodrigo Patino
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
| | - Jeffrey R Strawn
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
| | - David E Fleck
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
| | - Christina C Klein
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Caleb M Adler
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
| | - Andrea Mechelli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA; Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Melissa P DelBello
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
| |
Collapse
|
2
|
Luo Z, Yin E, Yan Y, Zhao S, Xie L, Shen H, Zeng LL, Wang L, Hu D. Sleep deprivation changes frequency-specific functional organization of the resting human brain. Brain Res Bull 2024; 210:110925. [PMID: 38493835 DOI: 10.1016/j.brainresbull.2024.110925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/13/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
Previous resting-state functional magnetic resonance imaging (rs-fMRI) studies have widely explored the temporal connection changes in the human brain following long-term sleep deprivation (SD). However, the frequency-specific topological properties of sleep-deprived functional networks remain virtually unclear. In this study, thirty-seven healthy male subjects underwent resting-state fMRI during rested wakefulness (RW) and after 36 hours of SD, and we examined frequency-specific spectral connection changes (0.01-0.08 Hz, interval = 0.01 Hz) caused by SD. First, we conducted a multivariate pattern analysis combining linear SVM classifiers with a robust feature selection algorithm, and the results revealed that accuracies of 74.29%-84.29% could be achieved in the classification between RW and SD states in leave-one-out cross-validation at different frequency bands, moreover, the spectral connection at the lowest and highest frequency bands exhibited higher discriminative power. Connection involving the cingulo-opercular network increased most, while connection involving the default-mode network decreased most following SD. Then we performed a graph-theoretic analysis and observed reduced low-frequency modularity and high-frequency global efficiency in the SD state. Moreover, hub regions, which were primarily situated in the cerebellum and the cingulo-opercular network after SD, exhibited high discriminative power in the aforementioned classification consistently. The findings may indicate the frequency-dependent effects of SD on the functional network topology and its efficiency of information exchange, providing new insights into the impact of SD on the human brain.
Collapse
Affiliation(s)
- Zhiguo Luo
- Defense Innovation Institute, Academy of Military Sciences (AMS), Beijing 100071, China; Intelligent Game and Decision Laboratory, Beijing 100071, China; Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin 300450, China; College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Erwei Yin
- Defense Innovation Institute, Academy of Military Sciences (AMS), Beijing 100071, China; Intelligent Game and Decision Laboratory, Beijing 100071, China; Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin 300450, China.
| | - Ye Yan
- Defense Innovation Institute, Academy of Military Sciences (AMS), Beijing 100071, China; Intelligent Game and Decision Laboratory, Beijing 100071, China; Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin 300450, China
| | - Shaokai Zhao
- Defense Innovation Institute, Academy of Military Sciences (AMS), Beijing 100071, China; Intelligent Game and Decision Laboratory, Beijing 100071, China; Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin 300450, China
| | - Liang Xie
- Defense Innovation Institute, Academy of Military Sciences (AMS), Beijing 100071, China; Intelligent Game and Decision Laboratory, Beijing 100071, China; Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin 300450, China
| | - Hui Shen
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Ling-Li Zeng
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Lubin Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 102206, China
| | - Dewen Hu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China.
| |
Collapse
|
3
|
Kumar VA, Lee J, Liu HL, Allen JW, Filippi CG, Holodny AI, Hsu K, Jain R, McAndrews MP, Peck KK, Shah G, Shimony JS, Singh S, Zeineh M, Tanabe J, Vachha B, Vossough A, Welker K, Whitlow C, Wintermark M, Zaharchuk G, Sair HI. Recommended Resting-State fMRI Acquisition and Preprocessing Steps for Preoperative Mapping of Language and Motor and Visual Areas in Adult and Pediatric Patients with Brain Tumors and Epilepsy. AJNR Am J Neuroradiol 2024; 45:139-148. [PMID: 38164572 PMCID: PMC11285996 DOI: 10.3174/ajnr.a8067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/12/2023] [Indexed: 01/03/2024]
Abstract
Resting-state (rs) fMRI has been shown to be useful for preoperative mapping of functional areas in patients with brain tumors and epilepsy. However, its lack of standardization limits its widespread use and hinders multicenter collaboration. The American Society of Functional Neuroradiology, American Society of Pediatric Neuroradiology, and the American Society of Neuroradiology Functional and Diffusion MR Imaging Study Group recommend specific rs-fMRI acquisition approaches and preprocessing steps that will further support rs-fMRI for future clinical use. A task force with expertise in fMRI from multiple institutions provided recommendations on the rs-fMRI steps needed for mapping of language, motor, and visual areas in adult and pediatric patients with brain tumor and epilepsy. These were based on an extensive literature review and expert consensus.Following rs-fMRI acquisition parameters are recommended: minimum 6-minute acquisition time; scan with eyes open with fixation; obtain rs-fMRI before both task-based fMRI and contrast administration; temporal resolution of ≤2 seconds; scanner field strength of 3T or higher. The following rs-fMRI preprocessing steps and parameters are recommended: motion correction (seed-based correlation analysis [SBC], independent component analysis [ICA]); despiking (SBC); volume censoring (SBC, ICA); nuisance regression of CSF and white matter signals (SBC); head motion regression (SBC, ICA); bandpass filtering (SBC, ICA); and spatial smoothing with a kernel size that is twice the effective voxel size (SBC, ICA).The consensus recommendations put forth for rs-fMRI acquisition and preprocessing steps will aid in standardization of practice and guide rs-fMRI program development across institutions. Standardized rs-fMRI protocols and processing pipelines are essential for multicenter trials and to implement rs-fMRI as part of standard clinical practice.
Collapse
Affiliation(s)
- V A Kumar
- From the The University of Texas MD Anderson Cancer Center (V.A.K., J.L., H.-L.L., M.W.), Houston, Texas
| | - J Lee
- From the The University of Texas MD Anderson Cancer Center (V.A.K., J.L., H.-L.L., M.W.), Houston, Texas
| | - H-L Liu
- From the The University of Texas MD Anderson Cancer Center (V.A.K., J.L., H.-L.L., M.W.), Houston, Texas
| | - J W Allen
- Emory University (J.W.A.), Atlanta, Georgia
| | - C G Filippi
- Tufts University (C.G.F.), Boston, Massachusetts
| | - A I Holodny
- Memorial Sloan Kettering Cancer Center (A.I.H., K.K.P.), New York, New York
| | - K Hsu
- New York University (K.H., R.J.), New York, New York
| | - R Jain
- New York University (K.H., R.J.), New York, New York
| | - M P McAndrews
- University of Toronto (M.P.M.), Toronto, Ontario, Canada
| | - K K Peck
- Memorial Sloan Kettering Cancer Center (A.I.H., K.K.P.), New York, New York
| | - G Shah
- University of Michigan (G.S.), Ann Arbor, Michigan
| | - J S Shimony
- Washington University School of Medicine (J.S.S.), St. Louis, Missouri
| | - S Singh
- University of Texas Southwestern Medical Center (S.S.), Dallas, Texas
| | - M Zeineh
- Stanford University (M.Z., G.Z.), Palo Alto, California
| | - J Tanabe
- University of Colorado (J.T.), Aurora, Colorado
| | - B Vachha
- University of Massachusetts (B.V.), Worcester, Massachusetts
| | - A Vossough
- Children's Hospital of Philadelphia, University of Pennsylvania (A.V.), Philadelphia, Pennsylvania
| | - K Welker
- Mayo Clinic (K.W.), Rochester, Minnesota
| | - C Whitlow
- Wake Forest University (C.W.), Winston-Salem, North Carolina
| | - M Wintermark
- From the The University of Texas MD Anderson Cancer Center (V.A.K., J.L., H.-L.L., M.W.), Houston, Texas
| | - G Zaharchuk
- Stanford University (M.Z., G.Z.), Palo Alto, California
| | - H I Sair
- Johns Hopkins University (H.I.S.), Baltimore, Maryland
| |
Collapse
|
4
|
Liu M, Huang Q, Huang L, Ren S, Cui L, Zhang H, Guan Y, Guo Q, Xie F, Shen D. Dysfunctions of multiscale dynamic brain functional networks in subjective cognitive decline. Brain Commun 2024; 6:fcae010. [PMID: 38304005 PMCID: PMC10833653 DOI: 10.1093/braincomms/fcae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/22/2023] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
Subjective cognitive decline is potentially the earliest symptom of Alzheimer's disease, whose objective neurological basis remains elusive. To explore the potential biomarkers for subjective cognitive decline, we developed a novel deep learning method based on multiscale dynamical brain functional networks to identify subjective cognitive declines. We retrospectively constructed an internal data set (with 112 subjective cognitive decline and 64 healthy control subjects) to develop and internally validate the deep learning model. Conventional deep learning methods based on static and dynamic brain functional networks are compared. After the model is established, we prospectively collect an external data set (26 subjective cognitive decline and 12 healthy control subjects) for testing. Meanwhile, our method provides monitoring of the transitions between normal and abnormal (subjective cognitive decline-related) dynamical functional network states. The features of abnormal dynamical functional network states are quantified by network and variability metrics and associated with individual cognitions. Our method achieves an area under the receiver operating characteristic curve of 0.807 ± 0.046 in the internal validation data set and of 0.707 (P = 0.007) in the external testing data set, which shows improvements compared to conventional methods. The method further suggests that, at the local level, the abnormal dynamical functional network states are characterized by decreased connectivity strength and increased connectivity variability at different spatial scales. At the network level, the abnormal states are featured by scale-specifically altered modularity and all-scale decreased efficiency. Low tendencies to stay in abnormal states and high state transition variabilities are significantly associated with high general, language and executive functions. Overall, our work supports the deficits in multiscale brain dynamical functional networks detected by the deep learning method as reliable and meaningful neural alternation underpinning subjective cognitive decline.
Collapse
Affiliation(s)
- Mianxin Liu
- Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China
- School of Biomedical Engineering, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Qi Huang
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lin Huang
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Shuhua Ren
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Liang Cui
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Han Zhang
- School of Biomedical Engineering, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yihui Guan
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qihao Guo
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Fang Xie
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Dinggang Shen
- School of Biomedical Engineering, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200230, China
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China
| |
Collapse
|
5
|
Zhang SP, Mao B, Zhou T, Su CW, Li C, Jiang J, An S, Yao N, Li Y, Huang ZG. Frequency dependent whole-brain coactivation patterns analysis in Alzheimer's disease. Front Neurosci 2023; 17:1198839. [PMID: 37946728 PMCID: PMC10631782 DOI: 10.3389/fnins.2023.1198839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/21/2023] [Indexed: 11/12/2023] Open
Abstract
Background The brain in resting state has complex dynamic properties and shows frequency dependent characteristics. The frequency-dependent whole-brain dynamic changes of resting state across the scans have been ignored in Alzheimer's disease (AD). Objective Coactivation pattern (CAP) analysis can identify different brain states. This paper aimed to investigate the dynamic characteristics of frequency dependent whole-brain CAPs in AD. Methods We utilized a multiband CAP approach to model the state space and study brain dynamics in both AD and NC. The correlation between the dynamic characteristics and the subjects' clinical index was further analyzed. Results The results showed similar CAP patterns at different frequency bands, but the occurrence of patterns was different. In addition, CAPs associated with the default mode network (DMN) and the ventral/dorsal visual network (dorsal/ventral VN) were altered significantly between the AD and NC groups. This study also found the correlation between the altered dynamic characteristics of frequency dependent CAPs and the patients' clinical Mini-Mental State Examination assessment scale scores. Conclusion This study revealed that while similar CAP spatial patterns appear in different frequency bands, their dynamic characteristics in subbands vary. In addition, delineating subbands was more helpful in distinguishing AD from NC in terms of CAP.
Collapse
Affiliation(s)
- Si-Ping Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, The Key Laboratory of Neuro-Informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, China
- Research Center for Brain-Inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bi Mao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, The Key Laboratory of Neuro-Informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, China
- Research Center for Brain-Inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tianlin Zhou
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, The Key Laboratory of Neuro-Informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, China
- Research Center for Brain-Inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chun-Wang Su
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, The Key Laboratory of Neuro-Informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, China
- Research Center for Brain-Inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chenxi Li
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, Shaanxi, China
| | - Junjie Jiang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, The Key Laboratory of Neuro-Informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, China
- Research Center for Brain-Inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Simeng An
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, The Key Laboratory of Neuro-Informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, China
- Research Center for Brain-Inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Nan Yao
- Research Center for Brain-Inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Applied Physics, Xi'an University of Technology, Xi'an, China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, The Key Laboratory of Neuro-Informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, China
- Research Center for Brain-Inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zi-Gang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, The Key Laboratory of Neuro-Informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, China
- Research Center for Brain-Inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- The State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | | |
Collapse
|
6
|
Kawaguchi A. Network-based diagnostic probability estimation from resting-state functional magnetic resonance imaging. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:17702-17725. [PMID: 38052533 DOI: 10.3934/mbe.2023787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Brain functional connectivity is a useful biomarker for diagnosing brain disorders. Connectivity is measured using resting-state functional magnetic resonance imaging (rs-fMRI). Previous studies have used a sequential application of the graphical model for network estimation and machine learning to construct predictive formulas for determining outcomes (e.g., disease or health) from the estimated network. However, the resulting network had limited utility for diagnosis because it was estimated independent of the outcome. In this study, we proposed a regression method with scores from rs-fMRI based on supervised sparse hierarchical components analysis (SSHCA). SSHCA has a hierarchical structure that consists of a network model (block scores at the individual level) and a scoring model (super scores at the population level). A regression model, such as the multiple logistic regression model with super scores as the predictor, was used to estimate diagnostic probabilities. An advantage of the proposed method was that the outcome-related (supervised) network connections and multiple scores corresponding to the sub-network estimation were helpful for interpreting the results. Our results in the simulation study and application to real data show that it is possible to predict diseases with high accuracy using the constructed model.
Collapse
|
7
|
Zhang Y, Hu Q, Liang J, Hu Z, Qian T, Li K, Zhao X, Liang P. Shorter TR combined with finer atlas positively modulate topological organization of brain network: A resting state fMRI study. NETWORK (BRISTOL, ENGLAND) 2023; 34:174-189. [PMID: 37218163 DOI: 10.1080/0954898x.2023.2215860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND The use of shorter TR and finer atlases in rs-fMRI can provide greater detail on brain function and anatomy. However, there is limited understanding of the effect of this combination on brain network properties. METHODS A study was conducted with 20 healthy young volunteers who underwent rs-fMRI scans with both shorter (0.5s) and long (2s) TR. Two atlases with different degrees of granularity (90 vs 200 regions) were used to extract rs-fMRI signals. Several network metrics, including small-worldness, Cp, Lp, Eloc, and Eg, were calculated. Two-factor ANOVA and two-sample t-tests were conducted for both the single spectrum and five sub-frequency bands. RESULTS The network constructed using the combination of shorter TR and finer atlas showed significant enhancements in Cp, Eloc, and Eg, as well as reductions in Lp and γ in both the single spectrum and subspectrum (p < 0.05, Bonferroni correction). Network properties in the 0.082-0.1 Hz frequency range were weaker than those in the 0.01-0.082 Hz range. CONCLUSION Our findings suggest that the use of shorter TR and finer atlas can positively affect the topological characteristics of brain networks. These insights can inform the development of brain network construction methods.
Collapse
Affiliation(s)
- Yan Zhang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, China
| | - Qili Hu
- Department of Imaging, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Jiali Liang
- MR department, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenghui Hu
- Center for Optics and Optoelectronics Research, College of Science, Zhejiang University of Technology, Hangzhou, China
| | - Tianyi Qian
- MR Collaboration, Siemens Healthcare China, Beijing, China
| | - Kuncheng Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Lab of MRI and Brain Informatics, Beijing, China
| | - Xiaohu Zhao
- Department of Imaging, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Peipeng Liang
- School of Psychology, Capital Normal University, Beijing, China
| |
Collapse
|
8
|
Xi Z, Liu T, Shi H, Jiao Z. Hypergraph representation of multimodal brain networks for patients with end-stage renal disease associated with mild cognitive impairment. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:1882-1902. [PMID: 36899513 DOI: 10.3934/mbe.2023086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The structure and function of brain networks (BN) may be altered in patients with end-stage renal disease (ESRD). However, there are relatively few attentions on ESRD associated with mild cognitive impairment (ESRDaMCI). Most studies focus on the pairwise relationships between brain regions, without taking into account the complementary information of functional connectivity (FC) and structural connectivity (SC). To address the problem, a hypergraph representation method is proposed to construct a multimodal BN for ESRDaMCI. First, the activity of nodes is determined by connection features extracted from functional magnetic resonance imaging (fMRI) (i.e., FC), and the presence of edges is determined by physical connections of nerve fibers extracted from diffusion kurtosis imaging (DKI) (i.e., SC). Then, the connection features are generated through bilinear pooling and transformed into an optimization model. Next, a hypergraph is constructed according to the generated node representation and connection features, and the node degree and edge degree of the hypergraph are calculated to obtain the hypergraph manifold regularization (HMR) term. The HMR and L1 norm regularization terms are introduced into the optimization model to achieve the final hypergraph representation of multimodal BN (HRMBN). Experimental results show that the classification performance of HRMBN is significantly better than that of several state-of-the-art multimodal BN construction methods. Its best classification accuracy is 91.0891%, at least 4.3452% higher than that of other methods, verifying the effectiveness of our method. The HRMBN not only achieves better results in ESRDaMCI classification, but also identifies the discriminative brain regions of ESRDaMCI, which provides a reference for the auxiliary diagnosis of ESRD.
Collapse
Affiliation(s)
- Zhengtao Xi
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China
| | - Tongqiang Liu
- Department of Nephrology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Haifeng Shi
- Department of Radiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Zhuqing Jiao
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China
| |
Collapse
|
9
|
Jung K, Florin E, Patil KR, Caspers J, Rubbert C, Eickhoff SB, Popovych OV. Whole-brain dynamical modelling for classification of Parkinson's disease. Brain Commun 2022; 5:fcac331. [PMID: 36601625 PMCID: PMC9798283 DOI: 10.1093/braincomms/fcac331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/29/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Simulated whole-brain connectomes demonstrate enhanced inter-individual variability depending on the data processing and modelling approach. By considering the human brain connectome as an individualized attribute, we investigate how empirical and simulated whole-brain connectome-derived features can be utilized to classify patients with Parkinson's disease against healthy controls in light of varying data processing and model validation. To this end, we applied simulated blood oxygenation level-dependent signals derived by a whole-brain dynamical model simulating electrical signals of neuronal populations to reveal differences between patients and controls. In addition to the widely used model validation via fitting the dynamical model to empirical neuroimaging data, we invented a model validation against behavioural data, such as subject classes, which we refer to as behavioural model fitting and show that it can be beneficial for Parkinsonian patient classification. Furthermore, the results of machine learning reported in this study also demonstrated that the performance of the patient classification can be improved when the empirical data are complemented by the simulation results. We also showed that the temporal filtering of blood oxygenation level-dependent signals influences the prediction results, where filtering in the low-frequency band is advisable for Parkinsonian patient classification. In addition, composing the feature space of empirical and simulated data from multiple brain parcellation schemes provided complementary features that improved prediction performance. Based on our findings, we suggest that combining the simulation results with empirical data is effective for inter-individual research and its clinical application.
Collapse
Affiliation(s)
- Kyesam Jung
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, 52425 Jülich, Germany,Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Esther Florin
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Kaustubh R Patil
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, 52425 Jülich, Germany,Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Julian Caspers
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich-Heine University Dusseldorf, 40225 Düsseldorf, Germany
| | - Christian Rubbert
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich-Heine University Dusseldorf, 40225 Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, 52425 Jülich, Germany,Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Oleksandr V Popovych
- Correspondence to: Oleksandr V. Popovych Institute of Neuroscience and Medicine Brain and Behaviour (INM-7) Research Centre Jülich, 52425 Jülich, Germany E-mail:
| |
Collapse
|
10
|
Yue J, Zhao N, Qiao Y, Feng Z, Hu Y, Ge Q, Zhang T, Zhang Z, Wang J, Zang Y. Higher reliability and validity of Wavelet-ALFF of resting-state fMRI: From multicenter database and application to rTMS modulation. Hum Brain Mapp 2022; 44:1105-1117. [PMID: 36394386 PMCID: PMC9875929 DOI: 10.1002/hbm.26142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/26/2022] [Accepted: 10/15/2022] [Indexed: 11/18/2022] Open
Abstract
Amplitude of low-frequency fluctuation (ALFF) has been widely used for localization of abnormal activity at the single-voxel level in resting-state fMRI (RS-fMRI) studies. However, previous ALFF studies were based on fast Fourier transform (FFT-ALFF). Our recent study found that ALFF based on wavelet transform (Wavelet-ALFF) showed better sensitivity and reproducibility than FFT-ALFF. The current study aimed to test the reliability and validity of Wavelet-ALFF, and apply Wavelet-ALFF to investigate the modulation effect of repetitive transcranial magnetic stimulation (rTMS). The reliability and validity were assessed on multicenter RS-fMRI datasets under eyes closed (EC) and eyes open (EO) conditions (248 healthy participants in total). We then detected the sensitivity of Wavelet-ALFF using a rTMS modulation dataset (24 healthy participants). For each dataset, Wavelet-ALFF based on five mother wavelets (i.e., db2, bior4.4, morl, meyr and sym3) and FFT-ALFF were calculated in the conventional band and five frequency sub-bands. The results showed that the reliability of both inter-scanner and intra-scanner was higher with Wavelet-ALFF than with FFT-ALFF across multiple frequency bands, especially db2-ALFF in the higher frequency band slow-2 (0.1992-0.25 Hz). In terms of validity, the multicenter ECEO datasets showed that the effect sizes of Wavelet-ALFF with all mother wavelets (especially for db2-ALFF) were larger than those of FFT-ALFF across multiple frequency bands. Furthermore, Wavelet-ALFF detected a larger modulation effect than FFT-ALFF. Collectively, Wavelet db2-ALFF showed the best reliability and validity, suggesting that db2-ALFF may offer a powerful metric for inspecting regional spontaneous brain activities in future studies.
Collapse
Affiliation(s)
- Juan Yue
- TMS Center, Hangzhou Normal University Affiliated Deqing HospitalHuzhouChina,Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina,Institute of Psychological SciencesHangzhou Normal UniversityHangzhouChina,Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouChina
| | - Na Zhao
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina,Institute of Psychological SciencesHangzhou Normal UniversityHangzhouChina,Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouChina,Unit of Psychiatry, Department of Public Health and Medicinal Administration, & Institute of Translational Medicine, Faculty of Health SciencesUniversity of MacauMacao SARChina,Centre for Cognitive and Brain SciencesUniversity of MacauMacao SARChina
| | - Yang Qiao
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina,Institute of Psychological SciencesHangzhou Normal UniversityHangzhouChina,Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouChina,Centre for Cognitive and Brain SciencesUniversity of MacauMacao SARChina,Faculty of Health SciencesUniversity of MacauMacao SARChina
| | - Zi‐Jian Feng
- TMS Center, Hangzhou Normal University Affiliated Deqing HospitalHuzhouChina
| | - Yun‐Song Hu
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina,Institute of Psychological SciencesHangzhou Normal UniversityHangzhouChina,Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouChina
| | - Qiu Ge
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina,Institute of Psychological SciencesHangzhou Normal UniversityHangzhouChina,Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouChina
| | | | - Zhu‐Qian Zhang
- School of MedicineHangzhou Normal UniversityHangzhouChina
| | - Jue Wang
- Institute of sports medicine and healthChengdu Sport UniversityChengduChina
| | - Yu‐Feng Zang
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina,Institute of Psychological SciencesHangzhou Normal UniversityHangzhouChina,Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouChina
| |
Collapse
|
11
|
Zhang J, Zhou L, Wang L, Liu M, Shen D. Diffusion Kernel Attention Network for Brain Disorder Classification. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:2814-2827. [PMID: 35471877 DOI: 10.1109/tmi.2022.3170701] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Constructing and analyzing functional brain networks (FBN) has become a promising approach to brain disorder classification. However, the conventional successive construct-and-analyze process would limit the performance due to the lack of interactions and adaptivity among the subtasks in the process. Recently, Transformer has demonstrated remarkable performance in various tasks, attributing to its effective attention mechanism in modeling complex feature relationships. In this paper, for the first time, we develop Transformer for integrated FBN modeling, analysis and brain disorder classification with rs-fMRI data by proposing a Diffusion Kernel Attention Network to address the specific challenges. Specifically, directly applying Transformer does not necessarily admit optimal performance in this task due to its extensive parameters in the attention module against the limited training samples usually available. Looking into this issue, we propose to use kernel attention to replace the original dot-product attention module in Transformer. This significantly reduces the number of parameters to train and thus alleviates the issue of small sample while introducing a non-linear attention mechanism to model complex functional connections. Another limit of Transformer for FBN applications is that it only considers pair-wise interactions between directly connected brain regions but ignores the important indirect connections. Therefore, we further explore diffusion process over the kernel attention to incorporate wider interactions among indirectly connected brain regions. Extensive experimental study is conducted on ADHD-200 data set for ADHD classification and on ADNI data set for Alzheimer's disease classification, and the results demonstrate the superior performance of the proposed method over the competing methods.
Collapse
|
12
|
Feng J, Zhang SW, Chen L. Extracting ROI-Based Contourlet Subband Energy Feature From the sMRI Image for Alzheimer's Disease Classification. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:1627-1639. [PMID: 33434134 DOI: 10.1109/tcbb.2021.3051177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Structural magnetic resonance imaging (sMRI)-based Alzheimer's disease (AD) classification and its prodromal stage-mild cognitive impairment (MCI) classification have attracted many attentions and been widely investigated in recent years. Owing to the high dimensionality, representation of the sMRI image becomes a difficult issue in AD classification. Furthermore, regions of interest (ROI) reflected in the sMRI image are not characterized properly by spatial analysis techniques, which has been a main cause of weakening the discriminating ability of the extracted spatial feature. In this study, we propose a ROI-based contourlet subband energy (ROICSE) feature to represent the sMRI image in the frequency domain for AD classification. Specifically, a preprocessed sMRI image is first segmented into 90 ROIs by a constructed brain mask. Instead of extracting features from the 90 ROIs in the spatial domain, the contourlet transform is performed on each of these ROIs to obtain their energy subbands. And then for an ROI, a subband energy (SE) feature vector is constructed to capture its energy distribution and contour information. Afterwards, SE feature vectors of the 90 ROIs are concatenated to form a ROICSE feature of the sMRI image. Finally, support vector machine (SVM) classifier is used to classify 880 subjects from ADNI and OASIS databases. Experimental results show that the ROICSE approach outperforms six other state-of-the-art methods, demonstrating that energy and contour information of the ROI are important to capture differences between the sMRI images of AD and HC subjects. Meanwhile, brain regions related to AD can also be found using the ROICSE feature, indicating that the ROICSE feature can be a promising assistant imaging marker for the AD diagnosis via the sMRI image. Code and Sample IDs of this paper can be downloaded at https://github.com/NWPU-903PR/ROICSE.git.
Collapse
|
13
|
Zhang T, Liao Q, Zhang D, Zhang C, Yan J, Ngetich R, Zhang J, Jin Z, Li L. Predicting MCI to AD Conversation Using Integrated sMRI and rs-fMRI: Machine Learning and Graph Theory Approach. Front Aging Neurosci 2021; 13:688926. [PMID: 34421570 PMCID: PMC8375594 DOI: 10.3389/fnagi.2021.688926] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/23/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Graph theory and machine learning have been shown to be effective ways of classifying different stages of Alzheimer's disease (AD). Most previous studies have only focused on inter-subject classification with single-mode neuroimaging data. However, whether this classification can truly reflect the changes in the structure and function of the brain region in disease progression remains unverified. In the current study, we aimed to evaluate the classification framework, which combines structural Magnetic Resonance Imaging (sMRI) and resting-state functional Magnetic Resonance Imaging (rs-fMRI) metrics, to distinguish mild cognitive impairment non-converters (MCInc)/AD from MCI converters (MCIc) by using graph theory and machine learning. METHODS With the intra-subject (MCInc vs. MCIc) and inter-subject (MCIc vs. AD) design, we employed cortical thickness features, structural brain network features, and sub-frequency (full-band, slow-4, slow-5) functional brain network features for classification. Three feature selection methods [random subset feature selection algorithm (RSFS), minimal redundancy maximal relevance (mRMR), and sparse linear regression feature selection algorithm based on stationary selection (SS-LR)] were used respectively to select discriminative features in the iterative combinations of MRI and network measures. Then support vector machine (SVM) classifier with nested cross-validation was employed for classification. We also compared the performance of multiple classifiers (Random Forest, K-nearest neighbor, Adaboost, SVM) and verified the reliability of our results by upsampling. RESULTS We found that in the classifications of MCIc vs. MCInc, and MCIc vs. AD, the proposed RSFS algorithm achieved the best accuracies (84.71, 89.80%) than the other algorithms. And the high-sensitivity brain regions found with the two classification groups were inconsistent. Specifically, in MCIc vs. MCInc, the high-sensitivity brain regions associated with both structural and functional features included frontal, temporal, caudate, entorhinal, parahippocampal, and calcarine fissure and surrounding cortex. While in MCIc vs. AD, the high-sensitivity brain regions associated only with functional features included frontal, temporal, thalamus, olfactory, and angular. CONCLUSIONS These results suggest that our proposed method could effectively predict the conversion of MCI to AD, and the inconsistency of specific brain regions provides a novel insight for clinical AD diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhenlan Jin
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Li
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
14
|
Gan J, Peng Z, Zhu X, Hu R, Ma J, Wu G. Brain functional connectivity analysis based on multi-graph fusion. Med Image Anal 2021; 71:102057. [PMID: 33957559 PMCID: PMC8934107 DOI: 10.1016/j.media.2021.102057] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/13/2022]
Abstract
In this paper, we propose a framework for functional connectivity network (FCN) analysis, which conducts the brain disease diagnosis on the resting state functional magnetic resonance imaging (rs-fMRI) data, aiming at reducing the influence of the noise, the inter-subject variability, and the heterogeneity across subjects. To this end, our proposed framework investigates a multi-graph fusion method to explore both the common and the complementary information between two FCNs, i.e., a fully-connected FCN and a 1 nearest neighbor (1NN) FCN, whereas previous methods only focus on conducting FCN analysis from a single FCN. Specifically, our framework first conducts the graph fusion to produce the representation of the rs-fMRI data with high discriminative ability, and then employs the L1SVM to jointly conduct brain region selection and disease diagnosis. We further evaluate the effectiveness of the proposed framework on various data sets of the neuro-diseases, i.e., Fronto-Temporal Dementia (FTD), Obsessive-Compulsive Disorder (OCD), and Alzheimers Disease (AD). The experimental results demonstrate that the proposed framework achieves the best diagnosis performance via selecting reasonable brain regions for the classification tasks, compared to state-of-the-art FCN analysis methods.
Collapse
Affiliation(s)
- Jiangzhang Gan
- Center for Future Media and School of Computer Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; School of natural and Computational Science, Massey University Auckland Campus, Auckland 0745, New Zealand
| | - Ziwen Peng
- Center for the Study of Applied Psychology, Guangdong Key Laboratory of Mental Health and Cognitive Science and School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Xiaofeng Zhu
- Center for Future Media and School of Computer Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; School of natural and Computational Science, Massey University Auckland Campus, Auckland 0745, New Zealand
| | - Rongyao Hu
- School of natural and Computational Science, Massey University Auckland Campus, Auckland 0745, New Zealand
| | - Junbo Ma
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Guorong Wu
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
15
|
Wu Y, Zhou Y, Song M. Classification of patients with AD from healthy controls using entropy-based measures of causality brain networks. J Neurosci Methods 2021; 361:109265. [PMID: 34171311 DOI: 10.1016/j.jneumeth.2021.109265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/26/2021] [Accepted: 06/17/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Machine learning and pattern recognition have been widely used in rs-fMRI data to investigate Alzheimer's disease (AD). However, many previous methods extracted discriminative features based on functional correlations, which may ignore the asynchronous causality influence of neural activities. NEW METHOD We propose a novel method for AD diagnosis using Sample Entropy to measure the neural complexity of the brain causality network. Granger Causality analysis with a sliding time window was applied on rs-fMRI data of 29 AD patients and 30 cognitive normal (CN) controls to compute the whole brain's causality series. We further grouped these causality series into clusters by agglomerative hierarchical clustering algorithm and computed Sample Entropy of the clusters as the classification features. RESULTS We explored four different classifiers, i.e., XGBoost, SVM cluster, Random Forest, and SVM, based on the above features. An accuracy of 89.83%, with a sensitivity of 90.00% and a specificity of 89.66%, was achieved with the optimal feature subsets using the SVM classifier. COMPARISON WITH EXISTING METHODS With the same dataset, the performances of the proposed method were generally higher than those of conventional methods for AD classification based on Pearson's correlation network, dynamic Pearson's correlation network, High-order correlation network, and causality correlation network. CONCLUSIONS Our method demonstrates the measure of Sample Entropy with causality connection as a powerful tool to classify AD patients from CN controls, and provides a deep insight into the neuropathogenesis of AD.
Collapse
Affiliation(s)
- Yuanchen Wu
- School of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Yuan Zhou
- School of Logistics Engineering, Shanghai Maritime University, Shanghai, China.
| | - Miao Song
- School of Information Engineering, Shanghai Maritime University, Shanghai, China
| |
Collapse
|
16
|
Koeppel CJ, Herrmann T, Weidner K, Linn J, Croy I. Same salience, different consequences: Disturbed inter-network connectivity during a social oddball paradigm in major depressive disorder. NEUROIMAGE-CLINICAL 2021; 31:102731. [PMID: 34174690 PMCID: PMC8234357 DOI: 10.1016/j.nicl.2021.102731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 05/28/2021] [Accepted: 06/12/2021] [Indexed: 11/25/2022]
Abstract
No significant difference in BOLD responses in the SN between controls and patients. Anhedonic symptomatology relates to diminished BOLD signals in the left amygdala. Enhanced functional connectivity from the SN to the DMN in depression. Reduced functional connectivity from the SN to the VAN in depression. Altered processing in depression is coded in disturbed inter-network connectivity.
Background So far findings on emotional face processing among depressed individuals reveal an inconsistent image, with only some studies supporting a mood-congruent bias in salience processing. Thereby, many results are based on the processing of sad emotions and mostly focused on resting-state connectivity analysis. The present study aimed to target this misbalance by implementing a social oddball paradigm, with a special focus on the amygdala, the ACC, the insula and subdivisions of insula and ACC. Methods Twenty-seven depressed patients and twenty-seven non-depressed controls took part in a fMRI event-related social oddball paradigm based on smiling facial expressions as target stimuli embedded in a stream of neutral facial expressions. FMRI activation and functional connectivity analysis were calculated for the pre-defined ROIs of the salience network (SN), with a special focus on twelve insular subdivisions and six ACC subdivisions. Results For both groups the social oddball paradigm triggered similar BOLD responses within the pre-defined ROIs, while the quality of functional connectivity showed pronounced alterations from the salience network to the ventral attention- and default mode network (DMN). Conclusion On a first level of target detection, smiling faces are equally processed and trigger similar bold responses in structures of the salience network. On a second level of inter-network communication the brain of depressed participants tends to be pre-formed for self-referential processing and rumination instead of fast goal directed behavior and socio-emotional cognitive processing.
Collapse
Affiliation(s)
- Carina J Koeppel
- Department of Psychotherapy and Psychosomatics Medicine, TU Dresden, Dresden, Germany.
| | | | - Kerstin Weidner
- Department of Psychotherapy and Psychosomatics Medicine, TU Dresden, Dresden, Germany
| | - Jennifer Linn
- Department of Neuroradiology, TU Dresden, Dresden, Germany
| | - Ilona Croy
- Department of Psychotherapy and Psychosomatics Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
17
|
Joseph JE, Sekar S, Kannath SK, Menon RN, Thomas B. Impaired intrinsic functional connectivity among medial temporal lobe and sub-regions related to memory deficits in intracranial dural arteriovenous fistula. Neuroradiology 2021; 63:1679-1687. [PMID: 33837804 DOI: 10.1007/s00234-021-02707-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE The functional changes concerning memory deficits in dural arteriovenous fistula (dAVF) brain are inadequately understood. This study aimed to understand the functional connectivity alterations of brain regions widely affirmed for explicit and implicit memory functions in dAVF patients (DP) and look into the frequency effects of the altered functional networks. METHODS Resting-state functional magnetic resonance imaging (rsfMRI) analysis was done in the memory-associated regions of 30 DP and 30 healthy controls (HC). Frequency decomposition was used to determine potential frequency-dependent functional connectivity changes. They underwent neuropsychological tests and were correlated with changes in memory networks compared with HC. RESULTS The results showed weaker functional connectivity among the medial temporal lobe and sub-regions in DP suggestive of dysfunction of explicit and implicit memory functions, which corroborated with the positive correlation between memory scores and hippocampal-parahippocampal connectivity of DP, along with a significant group difference of lower memory and cognitive performance in DP assessed by neuropsychological tests. A frequency-dependent study of the altered rsFC revealed lower functional connectivity strength and impaired neural coupling manifested at some sub-band frequencies indicative of disturbed cortical rhythm in DP. CONCLUSION This pilot study gives insights into significant intrinsic functional connectivity changes in the memory regions of the dAVF brain. The results may have clinical implications in the choice of interventional management of dAVF and can impact clinical decision making for realizable prevention of progressive memory impairment and irreversible brain damage in such patients.
Collapse
Affiliation(s)
- Josline Elsa Joseph
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, 695011, India
| | - Sabarish Sekar
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, 695011, India
| | - Santhosh Kumar Kannath
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, 695011, India
| | - Ramshekhar N Menon
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Bejoy Thomas
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, 695011, India.
| |
Collapse
|
18
|
Individual odor hedonic perception is coded in temporal joint network activity. Neuroimage 2021; 229:117782. [PMID: 33497777 DOI: 10.1016/j.neuroimage.2021.117782] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/22/2022] Open
Abstract
INTRO The human sense of smell is highly individual and characterized by a strong variability in the perception and evaluation of olfactory stimuli, depending on cultural imprint and current physiological conditions. Since this individual perspective has often been neglected in fMRI studies on olfactory hedonic coding, this study focuses on the neuronal activity and connectivity patterns resulting from subject-specific olfactory stimulation. METHODS Thirty-one normosmic participants took part in a fMRI block designed paradigm consisting of three olfactory stimulation sessions. The most pleasant and unpleasant odors were individually specified during a pre-test for each participant and validated in the main experiment. Mean activation and functional connectivity analysis focusing on the right and left piriform cortex were performed for the predefined olfactory regions-of-interest (ROIs) and compared between the three olfactory conditions. RESULTS Individual unpleasant olfactory stimulation as compared to pleasant or neutral did not alter mean BOLD activation in the predefined olfactory ROIs but led to a change in connectivity pattern in the right piriform cortex. CONCLUSION Our data suggests that the individual pleasantness of odors is not detectable by average BOLD magnitude changes in primary or secondary olfactory brain areas, but reflected in temporal patterns of joint activation that create a network between the right piriform cortex, the left insular cortex, the orbitofrontal cortex, and the precentral gyrus. This network may serve the evolutionary defense mechanism of olfaction by preparing goal-directed action.
Collapse
|
19
|
Hu Z, Wang J, Zhang C, Luo Z, Luo X, Xiao L, Shi J. Uncertainty Modeling for Multi center Autism Spectrum Disorder Classification Using Takagi-Sugeno-Kang Fuzzy Systems. IEEE Trans Cogn Dev Syst 2021. [DOI: 10.1109/tcds.2021.3073368] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhongyi Hu
- Intelligent Information Systems Institute, Wenzhou University, Wenzhou 325035, China. (e-mail: )
| | - Jun Wang
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai Ins titute for Advanced Communication and Data Science, School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
| | - Chunxiang Zhang
- School of Artificial Intelligence and Computer Science, Jiangnan University, WuXi 214122, China
| | - Zhenzhen Luo
- Intelligent Information Systems Institute, Wenzhou University, Wenzhou 325035, China
| | - Xiaoqing Luo
- School of Artificial Intelligence and Computer Science, Jiangnan University, WuXi 214122, China
| | - Lei Xiao
- Intelligent Information Systems Institute, Wenzhou University, Wenzhou 325035, China
| | - Jun Shi
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai Ins titute for Advanced Communication and Data Science, School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
20
|
Feng J, Zhang SW, Chen L, Xia J. Alzheimer’s disease classification using features extracted from nonsubsampled contourlet subband-based individual networks. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Penalized logistic regression using functional connectivity as covariates with an application to mild cognitive impairment. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS 2020. [DOI: 10.29220/csam.2020.27.6.603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Kargl D, Kaczanowska J, Ulonska S, Groessl F, Piszczek L, Lazovic J, Buehler K, Haubensak W. The amygdala instructs insular feedback for affective learning. eLife 2020; 9:60336. [PMID: 33216712 PMCID: PMC7679142 DOI: 10.7554/elife.60336] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
Affective responses depend on assigning value to environmental predictors of threat or reward. Neuroanatomically, this affective value is encoded at both cortical and subcortical levels. However, the purpose of this distributed representation across functional hierarchies remains unclear. Using fMRI in mice, we mapped a discrete cortico-limbic loop between insular cortex (IC), central amygdala (CE), and nucleus basalis of Meynert (NBM), which decomposes the affective value of a conditioned stimulus (CS) into its salience and valence components. In IC, learning integrated unconditioned stimulus (US)-evoked bodily states into CS valence. In turn, CS salience in the CE recruited these CS representations bottom-up via the cholinergic NBM. This way, the CE incorporated interoceptive feedback from IC to improve discrimination of CS valence. Consequently, opto-/chemogenetic uncoupling of hierarchical information flow disrupted affective learning and conditioned responding. Dysfunctional interactions in the IC↔CE/NBM network may underlie intolerance to uncertainty, observed in autism and related psychiatric conditions.
Collapse
Affiliation(s)
- Dominic Kargl
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Joanna Kaczanowska
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Sophia Ulonska
- VRVis Zentrum für Virtual Reality und Visualisierung Forschungs-GmbH (VRVis), Vienna, Austria
| | - Florian Groessl
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Lukasz Piszczek
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Jelena Lazovic
- Preclinical Imaging Facility (pcIMAG), Vienna Biocenter Core Facilities (VBCF), Vienna, Austria
| | - Katja Buehler
- VRVis Zentrum für Virtual Reality und Visualisierung Forschungs-GmbH (VRVis), Vienna, Austria
| | - Wulf Haubensak
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
23
|
Fusion of ULS Group Constrained High- and Low-Order Sparse Functional Connectivity Networks for MCI Classification. Neuroinformatics 2020; 18:1-24. [PMID: 30982183 DOI: 10.1007/s12021-019-09418-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Functional connectivity networks, derived from resting-state fMRI data, have been found as effective biomarkers for identifying mild cognitive impairment (MCI) from healthy elderly. However, the traditional functional connectivity network is essentially a low-order network with the assumption that the brain activity is static over the entire scanning period, ignoring temporal variations among the correlations derived from brain region pairs. To overcome this limitation, we proposed a new type of sparse functional connectivity network to precisely describe the relationship of temporal correlations among brain regions. Specifically, instead of using the simple pairwise Pearson's correlation coefficient as connectivity, we first estimate the temporal low-order functional connectivity for each region pair based on an ULS Group constrained-UOLS regression algorithm, where a combination of ultra-least squares (ULS) criterion with a Group constrained topology structure detection algorithm is applied to detect the topology of functional connectivity networks, aided by an Ultra-Orthogonal Least Squares (UOLS) algorithm to estimate connectivity strength. Compared to the classical least squares criterion which only measures the discrepancy between the observed signals and the model prediction function, the ULS criterion takes into consideration the discrepancy between the weak derivatives of the observed signals and the model prediction function and thus avoids the overfitting problem. By using a similar approach, we then estimate the high-order functional connectivity from the low-order connectivity to characterize signal flows among the brain regions. We finally fuse the low-order and the high-order networks using two decision trees for MCI classification. Experimental results demonstrate the effectiveness of the proposed method on MCI classification.
Collapse
|
24
|
Lei D, Pinaya WHL, van Amelsvoort T, Marcelis M, Donohoe G, Mothersill DO, Corvin A, Gill M, Vieira S, Huang X, Lui S, Scarpazza C, Young J, Arango C, Bullmore E, Qiyong G, McGuire P, Mechelli A. Detecting schizophrenia at the level of the individual: relative diagnostic value of whole-brain images, connectome-wide functional connectivity and graph-based metrics. Psychol Med 2020; 50:1852-1861. [PMID: 31391132 PMCID: PMC7477363 DOI: 10.1017/s0033291719001934] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 06/25/2019] [Accepted: 07/11/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Previous studies using resting-state functional neuroimaging have revealed alterations in whole-brain images, connectome-wide functional connectivity and graph-based metrics in groups of patients with schizophrenia relative to groups of healthy controls. However, it is unclear which of these measures best captures the neural correlates of this disorder at the level of the individual patient. METHODS Here we investigated the relative diagnostic value of these measures. A total of 295 patients with schizophrenia and 452 healthy controls were investigated using resting-state functional Magnetic Resonance Imaging at five research centres. Connectome-wide functional networks were constructed by thresholding correlation matrices of 90 brain regions, and their topological properties were analyzed using graph theory-based methods. Single-subject classification was performed using three machine learning (ML) approaches associated with varying degrees of complexity and abstraction, namely logistic regression, support vector machine and deep learning technology. RESULTS Connectome-wide functional connectivity allowed single-subject classification of patients and controls with higher accuracy (average: 81%) than both whole-brain images (average: 53%) and graph-based metrics (average: 69%). Classification based on connectome-wide functional connectivity was driven by a distributed bilateral network including the thalamus and temporal regions. CONCLUSION These results were replicated across the three employed ML approaches. Connectome-wide functional connectivity permits differentiation of patients with schizophrenia from healthy controls at single-subject level with greater accuracy; this pattern of results is consistent with the 'dysconnectivity hypothesis' of schizophrenia, which states that the neural basis of the disorder is best understood in terms of system-level functional connectivity alterations.
Collapse
Affiliation(s)
- Du Lei
- Departments of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Walter H. L. Pinaya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
- Center of Mathematics, Computation, and Cognition, Universidade Federal do ABC, Santo André, Brazil
| | - Therese van Amelsvoort
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherland
| | - Machteld Marcelis
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherland
- Mental Health Care Institute Eindhoven (GGzE), Eindhoven, The Netherlands
| | - Gary Donohoe
- School of Psychology & Center for neuroimaging and Cognitive genomics, NUI Galway University, Galway, Ireland
| | - David O. Mothersill
- School of Psychology & Center for neuroimaging and Cognitive genomics, NUI Galway University, Galway, Ireland
| | - Aiden Corvin
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Michael Gill
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Sandra Vieira
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Xiaoqi Huang
- Departments of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- Departments of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Cristina Scarpazza
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
- Department of General Psychology, University of Padua, Padua, Italy
| | - Jonathan Young
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
- IXICO plc, London, UK
| | - Celso Arango
- Hospital General Universitario Gregorio Marañon. School of Medicine, Universidad Complutense Madrid. IiSGM, CIBERSAM, Madrid, Spain
| | - Edward Bullmore
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Gong Qiyong
- Departments of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Andrea Mechelli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| |
Collapse
|
25
|
Feng J, Zhang SW, Chen L. Identification of Alzheimer's disease based on wavelet transformation energy feature of the structural MRI image and NN classifier. Artif Intell Med 2020; 108:101940. [DOI: 10.1016/j.artmed.2020.101940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/01/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
|
26
|
Huang J, Zhou L, Wang L, Zhang D. Attention-Diffusion-Bilinear Neural Network for Brain Network Analysis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:2541-2552. [PMID: 32070948 DOI: 10.1109/tmi.2020.2973650] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Brain network provides essential insights in diagnosing many brain disorders. Integrative analysis of multiple types of connectivity, e.g, functional connectivity (FC) and structural connectivity (SC), can take advantage of their complementary information and therefore may help to identify patients. However, traditional brain network methods usually focus on either FC or SC for describing node interactions and only consider the interaction between paired network nodes. To tackle this problem, in this paper, we propose an Attention-Diffusion-Bilinear Neural Network (ADB-NN) framework for brain network analysis, which is trained in an end-to-end manner. The proposed network seamlessly couples FC and SC to learn wider node interactions and generates a joint representation of FC and SC for diagnosis. Specifically, a brain network (graph) is first defined, where each node corresponding to a brain region is governed by the features of brain activities (i.e., FC) extracted from functional magnetic resonance imaging (fMRI), and the presence of edges is determined by neural fiber physical connections (i.e., SC) extracted from Diffusion Tensor Imaging (DTI). Based on this graph, we train two Attention-Diffusion-Bilinear (ADB) modules jointly. In each module, an attention model is utilized to automatically learn the strength of node interactions. This information further guides a diffusion process that generates new node representations by considering the influence from other nodes as well. After that, the second-order statistics of these node representations are extracted by bilinear pooling to form connectivity-based features for disease prediction. The two ADB modules correspond to the one-step and two-step diffusion, respectively. Experiments on a real epilepsy dataset demonstrate the effectiveness and advantages of our proposed method.
Collapse
|
27
|
Frequency-Specific Changes of Resting Brain Activity in Parkinson’s Disease: A Machine Learning Approach. Neuroscience 2020; 436:170-183. [DOI: 10.1016/j.neuroscience.2020.01.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/24/2022]
|
28
|
Effective differentiation of mild cognitive impairment by functional brain graph analysis and computerized testing. PLoS One 2020; 15:e0230099. [PMID: 32176709 PMCID: PMC7075594 DOI: 10.1371/journal.pone.0230099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 02/21/2020] [Indexed: 11/25/2022] Open
Abstract
Community-dwelling African American elders are twice as likely to develop mild cognitive impairment (MCI) or Alzheimer’s disease and related dementias than older white Americans and therefore represent a significant at-risk group in need of early monitoring. More extensive imaging or cerebrospinal fluid studies represent significant barriers due to cost and burden. We combined functional connectivity and graph theoretical measures, derived from resting-state electroencephalography (EEG) recordings, with computerized cognitive testing to identify differences between persons with MCI and healthy controls based on a sample of community-dwelling African American elders. We found a significant decrease in functional connectivity and a less integrated graph topology in persons with MCI. A combination of functional connectivity, topological and cognition measurements is powerful for prediction of MCI and combined measures are clearly more effective for prediction than using a single approach. Specifically, by combining cognition features with functional connectivity and topological features the prediction improved compared with the classification using features from single cognitive or EEG domains, with an accuracy of 86.5%, compared with the accuracy of 77.5% of the best single approach. Community-dwelling African American elders find EEG and computerized testing acceptable and results are promising in terms of differentiating between healthy controls and persons with MCI living in the community.
Collapse
|
29
|
Li Y, Sun C, Li P, Zhao Y, Mensah GK, Xu Y, Guo H, Chen J. Hypernetwork Construction and Feature Fusion Analysis Based on Sparse Group Lasso Method on fMRI Dataset. Front Neurosci 2020; 14:60. [PMID: 32116508 PMCID: PMC7029661 DOI: 10.3389/fnins.2020.00060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/15/2020] [Indexed: 01/21/2023] Open
Abstract
Recent works have shown that the resting-state brain functional connectivity hypernetwork, where multiple nodes can be connected, are an effective technique for brain disease diagnosis and classification research. The lasso method was used to construct hypernetworks by solving sparse linear regression models in previous research. But, constructing a hypernetwork based on the lasso method simply selects a single variable, in that it lacks the ability to interpret the grouping effect. Considering the group structure problem, the previous study proposed to create a hypernetwork based on the elastic net and the group lasso methods, and the results showed that the former method had the best classification performance. However, the highly correlated variables selected by the elastic net method were not necessarily in the active set in the group. Therefore, we extended our research to address this issue. Herein, we propose a new method that introduces the sparse group lasso method to improve the construction of the hypernetwork by solving the group structure problem of the brain regions. We used the traditional lasso, group lasso method, and sparse group lasso method to construct a hypernetwork in patients with depression and normal subjects. Meanwhile, other clustering coefficients (clustering coefficients based on pairs of nodes) were also introduced to extract features with traditional clustering coefficients. Two types of features with significant differences obtained after feature selection were subjected to multi-kernel learning for feature fusion and classification using each method, respectively. The network topology results revealed differences among the three networks, where hypernetwork using the lasso method was the strictest; the group lasso, most lenient; and the sgLasso method, moderate. The network topology of the sparse group lasso method was similar to that of the group lasso method but different from the lasso method. The classification results show that the sparse group lasso method achieves the best classification accuracy by using multi-kernel learning, which indicates that better classification performance can be achieved when the group structure exists and is properly extended.
Collapse
Affiliation(s)
- Yao Li
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Chao Sun
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Pengzu Li
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Yunpeng Zhao
- College of Arts, Taiyuan University of Technology, Taiyuan, China
| | - Godfred Kim Mensah
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Yong Xu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hao Guo
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Junjie Chen
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
30
|
Xing X, Jin L, Li Q, Yang Q, Han H, Xu C, Wei Z, Zhan Y, Zhou XS, Xue Z, Chu X, Peng Z, Shi F. Modeling essential connections in obsessive-compulsive disorder patients using functional MRI. Brain Behav 2020; 10:e01499. [PMID: 31893565 PMCID: PMC7010589 DOI: 10.1002/brb3.1499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 11/08/2022] Open
Abstract
OBJECT Obsessive-compulsive disorder (OCD) is a mental disease in which people experience uncontrollable and repetitive thoughts or behaviors. Clinical diagnosis of OCD is achieved by using neuropsychological assessment metrics, which are often subjectively affected by psychologists and patients. In this study, we propose a classification model for OCD diagnosis using functional MR images. METHODS Using functional connectivity (FC) matrices calculated from brain region of interest (ROI) pairs, a novel Riemann Kernel principal component analysis (PCA) model is employed for feature extraction, which preserves the topological information in the FC matrices. Hierarchical features are then fed into an ensemble classifier based on the XGBoost algorithm. Finally, decisive features extracted during classification are used to investigate the brain FC variations between patients with OCD and healthy controls. RESULTS The proposed algorithm yielded a classification accuracy of 91.8%. Additionally, the well-known cortico-striatal-thalamic-cortical (CSTC) circuit and cerebellum were found as highly related regions with OCD. To further analyze the cerebellar-related function in OCD, we demarcated cerebellum into three subregions according to their anatomical and functional property. Using these three functional cerebellum regions as seeds for brain connectivity computation, statistical results showed that patients with OCD have decreased posterior cerebellar connections. CONCLUSIONS This study provides a new and efficient method to characterize patients with OCD using resting-state functional MRI. We also provide a new perspective to analyze disease-related features. Despite of CSTC circuit, our model-driven feature analysis reported cerebellum as an OCD-related region. This paper may provide novel insight to the understanding of genetic etiology of OCD.
Collapse
Affiliation(s)
- Xiaodan Xing
- Medical Imaging Center, Shanghai Advanced Research Institute, Shanghai, China.,Shanghai United Imaging Intelligence, Co., Ltd., Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lili Jin
- Center for the Study of Applied Psychology, South China Normal University, Guangzhou, China
| | - Qingfeng Li
- Shanghai United Imaging Intelligence, Co., Ltd., Shanghai, China.,School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Qiong Yang
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongying Han
- Department of Psychiatry, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chuanyong Xu
- Center for the Study of Applied Psychology, South China Normal University, Guangzhou, China
| | - Zhen Wei
- Department of Child Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
| | - Yiqiang Zhan
- Shanghai United Imaging Intelligence, Co., Ltd., Shanghai, China
| | - Xiang Sean Zhou
- Shanghai United Imaging Intelligence, Co., Ltd., Shanghai, China
| | - Zhong Xue
- Shanghai United Imaging Intelligence, Co., Ltd., Shanghai, China
| | - Xu Chu
- Medical Imaging Center, Shanghai Advanced Research Institute, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ziwen Peng
- Center for the Study of Applied Psychology, South China Normal University, Guangzhou, China.,Department of Child Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China.,Department of Child Psychiatry, The Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Feng Shi
- Shanghai United Imaging Intelligence, Co., Ltd., Shanghai, China
| |
Collapse
|
31
|
Liu L, Zhang H, Wu J, Yu Z, Chen X, Rekik I, Wang Q, Lu J, Shen D. Overall survival time prediction for high-grade glioma patients based on large-scale brain functional networks. Brain Imaging Behav 2020; 13:1333-1351. [PMID: 30155788 DOI: 10.1007/s11682-018-9949-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
High-grade glioma (HGG) is a lethal cancer with poor outcome. Accurate preoperative overall survival (OS) time prediction for HGG patients is crucial for treatment planning. Traditional presurgical and noninvasive OS prediction studies have used radiomics features at the local lesion area based on the magnetic resonance images (MRI). However, the highly complex lesion MRI appearance may have large individual variability, which could impede accurate individualized OS prediction. In this paper, we propose a novel concept, namely brain connectomics-based OS prediction. It is based on presurgical resting-state functional MRI (rs-fMRI) and the non-local, large-scale brain functional networks where the global and systemic prognostic features rather than the local lesion appearance are used to predict OS. We propose that the connectomics features could capture tumor-induced network-level alterations that are associated with prognosis. We construct both low-order (by means of sparse representation with regional rs-fMRI signals) and high-order functional connectivity (FC) networks (characterizing more complex multi-regional relationship by synchronized dynamics FC time courses). Then, we conduct a graph-theoretic analysis on both networks for a jointly, machine-learning-based individualized OS prediction. Based on a preliminary dataset (N = 34 with bad OS, mean OS, ~400 days; N = 34 with good OS, mean OS, ~1030 days), we achieve a promising OS prediction accuracy (86.8%) on separating the individuals with bad OS from those with good OS. However, if using only conventionally derived descriptive features (e.g., age and tumor characteristics), the accuracy is low (63.2%). Our study highlights the importance of the rs-fMRI and brain functional connectomics for treatment planning.
Collapse
Affiliation(s)
- Luyan Liu
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Han Zhang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jinsong Wu
- Glioma Surgery Division, Neurosurgery Department of Huashan Hospital, Fudan University, Shanghai, 200040, China.,Shanghai Key Lab of Medical Image Computing and Computer-Assisted Intervention, Shanghai, 200040, China.,Neurosurgery Department of Huashan Hospital, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Zhengda Yu
- Glioma Surgery Division, Neurosurgery Department of Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiaobo Chen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Islem Rekik
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,BASIRA Lab, CVIP Group, School of Science and Engineering, Computing, University of Dundee, Dundee, UK
| | - Qian Wang
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.
| | - Junfeng Lu
- Glioma Surgery Division, Neurosurgery Department of Huashan Hospital, Fudan University, Shanghai, 200040, China. .,Shanghai Key Lab of Medical Image Computing and Computer-Assisted Intervention, Shanghai, 200040, China. .,Neurosurgery Department of Huashan Hospital, 12 Wulumuqi Zhong Road, Shanghai, 200040, China.
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
32
|
Jia XZ, Sun JW, Ji GJ, Liao W, Lv YT, Wang J, Wang Z, Zhang H, Liu DQ, Zang YF. Percent amplitude of fluctuation: A simple measure for resting-state fMRI signal at single voxel level. PLoS One 2020; 15:e0227021. [PMID: 31914167 PMCID: PMC6948733 DOI: 10.1371/journal.pone.0227021] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 12/09/2019] [Indexed: 01/25/2023] Open
Abstract
The amplitude of low-frequency fluctuation (ALFF) measures resting-state functional magnetic resonance imaging (RS-fMRI) signal of each voxel. However, the unit of blood oxygenation level-dependent (BOLD) signal is arbitrary and hence ALFF is sensitive to the scale of raw signal. A well-accepted standardization procedure is to divide each voxel's ALFF by the global mean ALFF, named mALFF. Although fractional ALFF (fALFF), a ratio of the ALFF to the total amplitude within the full frequency band, offers possible solution of the standardization, it actually mixes with the fluctuation power within the full frequency band and thus cannot reveal the true amplitude characteristics of a given frequency band. The current study borrowed the percent signal change in task fMRI studies and proposed percent amplitude of fluctuation (PerAF) for RS-fMRI. We firstly applied PerAF and mPerAF (i.e., divided by global mean PerAF) to eyes open (EO) vs. eyes closed (EC) RS-fMRI data. PerAF and mPerAF yielded prominently difference between EO and EC, being well consistent with previous studies. We secondly performed test-retest reliability analysis and found that (PerAF ≈ mPerAF ≈ mALFF) > (fALFF ≈ mfALFF). Head motion regression (Friston-24) increased the reliability of PerAF, but decreased all other metrics (e.g. mPerAF, mALFF, fALFF, and mfALFF). The above results suggest that mPerAF is a valid, more reliable, more straightforward, and hence a promising metric for voxel-level RS-fMRI studies. Future study could use both PerAF and mPerAF metrics. For prompting future application of PerAF, we implemented PerAF in a new version of REST package named RESTplus.
Collapse
Affiliation(s)
- Xi-Ze Jia
- Center for Cognition and Brain Disorders, Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Jia-Wei Sun
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Gong-Jun Ji
- Center for Cognition and Brain Disorders, Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
- Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, Hefei, China
| | - Wei Liao
- Center for Cognition and Brain Disorders, Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Ya-Ting Lv
- Center for Cognition and Brain Disorders, Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Jue Wang
- Center for Cognition and Brain Disorders, Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Ze Wang
- Center for Cognition and Brain Disorders, Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Han Zhang
- Center for Cognition and Brain Disorders, Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Dong-Qiang Liu
- Center for Cognition and Brain Disorders, Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Yu-Feng Zang
- Center for Cognition and Brain Disorders, Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| |
Collapse
|
33
|
Smith PJ. Pathways of Prevention: A Scoping Review of Dietary and Exercise Interventions for Neurocognition. Brain Plast 2019; 5:3-38. [PMID: 31970058 PMCID: PMC6971820 DOI: 10.3233/bpl-190083] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease and related dementias (ADRD) represent an increasingly urgent public health concern, with an increasing number of baby boomers now at risk. Due to a lack of efficacious therapies among symptomatic older adults, an increasing emphasis has been placed on preventive measures that can curb or even prevent ADRD development among middle-aged adults. Lifestyle modification using aerobic exercise and dietary modification represents one of the primary treatment modalities used to mitigate ADRD risk, with an increasing number of trials demonstrating that exercise and dietary change, individually and together, improve neurocognitive performance among middle-aged and older adults. Despite several optimistic findings, examination of treatment changes across lifestyle interventions reveals a variable pattern of improvements, with large individual differences across trials. The present review attempts to synthesize available literature linking lifestyle modification to neurocognitive changes, outline putative mechanisms of treatment improvement, and discuss discrepant trial findings. In addition, previous mechanistic assumptions linking lifestyle to neurocognition are discussed, with a focus on potential solutions to improve our understanding of individual neurocognitive differences in response to lifestyle modification. Specific recommendations include integration of contemporary causal inference approaches for analyzing parallel mechanistic pathways and treatment-exposure interactions. Methodological recommendations include trial multiphase optimization strategy (MOST) design approaches that leverage individual differences for improved treatment outcomes.
Collapse
Affiliation(s)
- Patrick J. Smith
- Department of Psychiatry and Behavioral Sciences (Primary), Duke University Medical Center, NC, USA
- Department of Medicine (Secondary), Duke University Medical Center, NC, USA
- Department of Population Health Sciences (Secondary), Duke University, NC, USA
| |
Collapse
|
34
|
Miri Ashtiani SN, Behnam H, Daliri MR, Hossein-Zadeh GA, Mehrpour M. Analysis of brain functional connectivity network in MS patients constructed by modular structure of sparse weights from cognitive task-related fMRI. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2019; 42:921-938. [PMID: 31452057 DOI: 10.1007/s13246-019-00790-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/12/2019] [Indexed: 12/17/2022]
Abstract
Cognitive dysfunction in multiple sclerosis (MS) seems to be the result of neural disconnections, leading to a wide range of brain functional network alterations. It is assumed that the analysis of the topological structure of brain connectivity network can be used to assess cognitive impairments in MS disease. We aimed to identify these brain connectivity pattern alterations and detect the significant features for the distinction of MS patients from healthy controls (HC). In this regard, the importance of functional brain networks construction for better exhibition of changes, inducing the improved reflection of functional organization structure should be precisely considered. In this paper, we strove to introduce a framework for modeling the functional connectivity network by considering the two most important intrinsic sparse and modular structures of brain. For the proposed approach, we first derived group-wise sparse representation via learning a common over-complete dictionary matrix from the aggregated cognitive task-based functional magnetic resonance imaging (fMRI) data of all subjects of the two groups to be able to investigate between-group differences. We then applied the modularity concept on achieved sparse coefficients to compute the connectivity strength between the two brain regions. We examined the changes in network topological properties between relapsing-remitting MS (RRMS) and matched HC groups by considering the pairwise connections of regions of the resulted weighted networks and extracting graph-based measures. We found that the informative brain regions were related to their important connectivity weights, which could distinguish MS patients from the healthy controls. The experimental findings also proved the discrimination ability of the modularity measure among all the global features. In addition, we identified such local feature subsets as eigenvector centrality, eccentricity, node strength, and within-module degree, which significantly differed between the two groups. Moreover, these nodal graph measures have been served as the detectors of brain regions, affected by different cognitive deficits. In general, our findings illustrated that integration of sparse representation, modular structure, and pairwise connectivity strength in combination with the graph properties could help us with the early diagnosis of cognitive alterations in the case of MS.
Collapse
Affiliation(s)
- Seyedeh Naghmeh Miri Ashtiani
- Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Hamid Behnam
- Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Mohammad Reza Daliri
- Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran.
| | - Gholam-Ali Hossein-Zadeh
- School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.,Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, University College of Engineering, University of Tehran, Tehran, Iran
| | - Masoud Mehrpour
- Department of Neurology, Firoozgar Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Zhang T, Zhao Z, Zhang C, Zhang J, Jin Z, Li L. Classification of Early and Late Mild Cognitive Impairment Using Functional Brain Network of Resting-State fMRI. Front Psychiatry 2019; 10:572. [PMID: 31555157 PMCID: PMC6727827 DOI: 10.3389/fpsyt.2019.00572] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/22/2019] [Indexed: 01/25/2023] Open
Abstract
Using the Pearson correlation coefficient to constructing functional brain network has been evidenced to be an effective means to diagnose different stages of mild cognitive impairment (MCI) disease. In this study, we investigated the efficacy of a classification framework to distinguish early mild cognitive impairment (EMCI) from late mild cognitive impairment (LMCI) by using the effective features derived from functional brain network of three frequency bands (full-band: 0.01-0.08 Hz; slow-4: 0.027-0.08 Hz; slow-5: 0.01-0.027 Hz) at Rest. Graphic theory was performed to calculate and analyze the relationship between changes in network connectivity. Subsequently, three different algorithms [minimal redundancy maximal relevance (mRMR), sparse linear regression feature selection algorithm based on stationary selection (SS-LR), and Fisher Score (FS)] were applied to select the features of network attributes, respectively. Finally, we used the support vector machine (SVM) with nested cross validation to classify the samples into two categories to obtain unbiased results. Our results showed that the global efficiency, the local efficiency, and the average clustering coefficient were significantly higher in the slow-5 band for the LMCI-EMCI comparison, while the characteristic path length was significantly longer under most threshold values. The classification results showed that the features selected by the mRMR algorithm have higher classification performance than those selected by the SS-LR and FS algorithms. The classification results obtained by using mRMR algorithm in slow-5 band are the best, with 83.87% accuracy (ACC), 86.21% sensitivity (SEN), 81.21% specificity (SPE), and the area under receiver operating characteristic curve (AUC) of 0.905. The present results suggest that the method we proposed could effectively help diagnose MCI disease in clinic and predict its conversion to Alzheimer's disease at an early stage.
Collapse
Affiliation(s)
| | | | | | | | | | - Ling Li
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
36
|
Wang J, Wang Q, Zhang H, Chen J, Wang S, Shen D. Sparse Multiview Task-Centralized Ensemble Learning for ASD Diagnosis Based on Age- and Sex-Related Functional Connectivity Patterns. IEEE TRANSACTIONS ON CYBERNETICS 2019; 49:3141-3154. [PMID: 29994137 PMCID: PMC6411442 DOI: 10.1109/tcyb.2018.2839693] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Autism spectrum disorder (ASD) is an age- and sex-related neurodevelopmental disorder that alters the brain's functional connectivity (FC). The changes caused by ASD are associated with different age- and sex-related patterns in neuroimaging data. However, most contemporary computer-assisted ASD diagnosis methods ignore the aforementioned age-/sex-related patterns. In this paper, we propose a novel sparse multiview task-centralized (Sparse-MVTC) ensemble classification method for image-based ASD diagnosis. Specifically, with the age and sex information of each subject, we formulate the classification as a multitask learning problem, where each task corresponds to learning upon a specific age/sex group. We also extract multiview features per subject to better reveal the FC changes. Then, in Sparse-MVTC learning, we select a certain central task and treat the rest as auxiliary tasks. By considering both task-task and view-view relationships between the central task and each auxiliary task, we can learn better upon the entire dataset. Finally, by selecting the central task, in turn, we are able to derive multiple classifiers for each task/group. An ensemble strategy is further adopted, such that the final diagnosis can be integrated for each subject. Our comprehensive experiments on the ABIDE database demonstrate that our proposed Sparse-MVTC ensemble learning can significantly outperform the state-of-the-art classification methods for ASD diagnosis.
Collapse
Affiliation(s)
- Jun Wang
- Department of Radiology and BRIC, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA, also with the School of Digital Media, Jiangnan University, Wuxi 214122, China, and also with the Jiangsu Key Laboratory of Media Design and Software Technology, Jiangnan University, Wuxi 214122, China ()
| | - Qian Wang
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China ()
| | - Han Zhang
- Department of Radiology and BRIC, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ()
| | - Jiawei Chen
- Department of Radiology and BRIC, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ()
| | - Shitong Wang
- School of Digital Media, Jiangnan University, Wuxi 214122, China, and also with the Jiangsu Key Laboratory of Media Design and Software Technology, Jiangnan University, Wuxi 214122, China ()
| | - Dinggang Shen
- Department of Radiology and BRIC, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA, and also with the Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, South Korea ()
| |
Collapse
|
37
|
Yu R, Qiao L, Chen M, Lee SW, Fei X, Shen D. Weighted Graph Regularized Sparse Brain Network Construction for MCI Identification. PATTERN RECOGNITION 2019; 90:220-231. [PMID: 31579345 PMCID: PMC6774646 DOI: 10.1016/j.patcog.2019.01.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Brain functional networks (BFNs) constructed from resting-state functional magnetic resonance imaging (rs-fMRI) have been widely applied to the analysis and diagnosis of brain diseases, such as Alzheimer's disease and its prodrome, namely mild cognitive impairment (MCI). Constructing a meaningful brain network based on, for example, sparse representation (SR) is the most essential step prior to the subsequent analysis or disease identification. However, the independent coding process of SR fails to capture the intrinsic locality and similarity characteristics in the data. To address this problem, we propose a novel weighted graph (Laplacian) regularized SR framework, based on which BFN can be optimized by considering both intrinsic correlation similarity and local manifold structure in the data, as well as sparsity prior of the brain connectivity. Additionally, the non-convergence of the graph Laplacian in the self-representation model has been solved properly. Combined with a pipeline of sparse feature selection and classification, the effectiveness of our proposed method is demonstrated by identifying MCI based on the constructed BFNs.
Collapse
Affiliation(s)
- Renping Yu
- Henan Key Laboratory of Brain Science and Brain-Computer interface Technology, Department of Biomedical Engineering, School of Electric Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Lishan Qiao
- School of Mathematics Science, Liaocheng University, Liaocheng 252000, China
| | - Mingming Chen
- Henan Key Laboratory of Brain Science and Brain-Computer interface Technology, Department of Biomedical Engineering, School of Electric Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Seong-Whan Lee
- Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Xuan Fei
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Dinggang Shen
- Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
- IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA
| |
Collapse
|
38
|
Forouzannezhad P, Abbaspour A, Fang C, Cabrerizo M, Loewenstein D, Duara R, Adjouadi M. A survey on applications and analysis methods of functional magnetic resonance imaging for Alzheimer’s disease. J Neurosci Methods 2019; 317:121-140. [DOI: 10.1016/j.jneumeth.2018.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/04/2018] [Accepted: 12/17/2018] [Indexed: 12/23/2022]
|
39
|
Mohanty R, Nair VA, Tellapragada N, Williams LM, Kang TJ, Prabhakaran V. Identification of Subclinical Language Deficit Using Machine Learning Classification Based on Poststroke Functional Connectivity Derived from Low Frequency Oscillations. Brain Connect 2019; 9:194-208. [PMID: 30398379 DOI: 10.1089/brain.2018.0597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Post-stroke neuropsychological evaluation is time-intensive in assessing impairments in subjects without overt clinical deficits. We utilized functional connectivity (FC) from ten-minute non-invasive resting-state functional MRI (rs-fMRI) to identify stroke subjects at risk for subclinical language deficit (SLD) using machine learning. Discriminative ability of FC derived from slow-5 (0.01-0.027 Hz), slow-4 (0.027-0.073 Hz) and low frequency oscillations (LFO; 0.01-0.1 Hz) was compared. Sixty clinically non-aphasic right-handed subjects were categorized into three subgroups based on stroke status and normalized verbal fluency (NVF) score: 20 ischemic early-stage stroke subjects at higher risk for SLD (LD+; mean VFS=-1.77), 20 ischemic early-stage stroke subjects with at risk for SLD (LD-; mean VFS=-0.05), 20 healthy controls (HC; mean VFS=0.29). T1-weighted and rs-fMRI were acquired within 30 days of stroke onset. Blood-oxygen-level-dependent signal was extracted within the language network. FC was evaluated and used by a multiclass support vector machine to classify test subject into a subgroup which was assessed by nested leave-one-out cross-validation. FC derived from slow-4 (70%) provided the best accuracy relative to LFO (65%) and slow-5 (50%), reasonably higher than random chance (33.33%). Using subgroup-specific accuracy, classification was best realized within slow-4 for LD+ (81.6%) and LD- (78.3%) and slow-4/LFO for HC (80%), i.e., early-stage stroke subjects showed a slow-4 FC dominance whereas HC also indicated the normalized involvement within LFO. While frontal FC differentiated stroke from healthy, occipital FC differentiated between the two stroke subgroups. Thus, stroke subjects at risk for SLD can be identified using rs-fMRI reasonably in an expedited manner.
Collapse
Affiliation(s)
- Rosaleena Mohanty
- 1 Department of Radiology, Wisconsin Institute of Medical Research (WIMR), University of Wisconsin-Madison, Madison, Wisconsin.,2 Department of Electrical Engineering, Wisconsin Institute of Medical Research (WIMR), University of Wisconsin-Madison, Madison, Wisconsin
| | - Veena A Nair
- 1 Department of Radiology, Wisconsin Institute of Medical Research (WIMR), University of Wisconsin-Madison, Madison, Wisconsin
| | - Neelima Tellapragada
- 1 Department of Radiology, Wisconsin Institute of Medical Research (WIMR), University of Wisconsin-Madison, Madison, Wisconsin
| | - Leroy M Williams
- 1 Department of Radiology, Wisconsin Institute of Medical Research (WIMR), University of Wisconsin-Madison, Madison, Wisconsin
| | - Theresa J Kang
- 1 Department of Radiology, Wisconsin Institute of Medical Research (WIMR), University of Wisconsin-Madison, Madison, Wisconsin
| | - Vivek Prabhakaran
- 1 Department of Radiology, Wisconsin Institute of Medical Research (WIMR), University of Wisconsin-Madison, Madison, Wisconsin.,3 Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin.,4 Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
40
|
Zhou T, Thung KH, Liu M, Shen D. Brain-Wide Genome-Wide Association Study for Alzheimer's Disease via Joint Projection Learning and Sparse Regression Model. IEEE Trans Biomed Eng 2019; 66:165-175. [PMID: 29993426 PMCID: PMC6342004 DOI: 10.1109/tbme.2018.2824725] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Brain-wide and genome-wide association (BW-GWA) study is presented in this paper to identify the associations between the brain imaging phenotypes (i.e., regional volumetric measures) and the genetic variants [i.e., single nucleotide polymorphism (SNP)] in Alzheimer's disease (AD). The main challenges of this study include the data heterogeneity, complex phenotype-genotype associations, high-dimensional data (e.g., thousands of SNPs), and the existence of phenotype outliers. Previous BW-GWA studies, while addressing some of these challenges, did not consider the diagnostic label information in their formulations, thus limiting their clinical applicability. To address these issues, we present a novel joint projection and sparse regression model to discover the associations between the phenotypes and genotypes. Specifically, to alleviate the negative influence of data heterogeneity, we first map the genotypes into an intermediate imaging-phenotype-like space. Then, to better reveal the complex phenotype-genotype associations, we project both the mapped genotypes and the original imaging phenotypes into a diagnostic-label-guided joint feature space, where the intraclass projected points are constrained to be close to each other. In addition, we use l2,1-norm minimization on both the regression loss function and the transformation coefficient matrices, to reduce the effect of phenotype outliers and also to encourage sparse feature selections of both the genotypes and phenotypes. We evaluate our method using AD neuroimaging initiative dataset, and the results show that our proposed method outperforms several state-of-the-art methods in term of the average root-mean-square error of genome-to-phenotype predictions. Besides, the associated SNPs and brain regions identified in this study have also been shown in the previous AD-related studies, thus verifying the effectiveness and potential of our proposed method in AD pathogenesis study.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ()
| | - Kim-Han Thung
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ()
| | - Mingxia Liu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ()
| | - Dinggang Shen
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC 27599 USA, and also with the Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea ()
| |
Collapse
|
41
|
Ju R, Hu C, Zhou P, Li Q. Early Diagnosis of Alzheimer's Disease Based on Resting-State Brain Networks and Deep Learning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:244-257. [PMID: 29989989 DOI: 10.1109/tcbb.2017.2776910] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Computerized healthcare has undergone rapid development thanks to the advances in medical imaging and machine learning technologies. Especially, recent progress on deep learning opens a new era for multimedia based clinical decision support. In this paper, we use deep learning with brain network and clinical relevant text information to make early diagnosis of Alzheimer's Disease (AD). The clinical relevant text information includes age, gender, and ApoE gene of the subject. The brain network is constructed by computing the functional connectivity of brain regions using resting-state functional magnetic resonance imaging (R-fMRI) data. A targeted autoencoder network is built to distinguish normal aging from mild cognitive impairment, an early stage of AD. The proposed method reveals discriminative brain network features effectively and provides a reliable classifier for AD detection. Compared to traditional classifiers based on R-fMRI time series data, about 31.21 percent improvement of the prediction accuracy is achieved by the proposed deep learning method, and the standard deviation reduces by 51.23 percent in the best case that means our prediction model is more stable and reliable compared to the traditional methods. Our work excavates deep learning's advantages of classifying high-dimensional multimedia data in medical services, and could help predict and prevent AD at an early stage.
Collapse
|
42
|
Multimodal hyper-connectivity of functional networks using functionally-weighted LASSO for MCI classification. Med Image Anal 2018; 52:80-96. [PMID: 30472348 DOI: 10.1016/j.media.2018.11.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/30/2018] [Accepted: 11/12/2018] [Indexed: 01/05/2023]
Abstract
Recent works have shown that hyper-networks derived from blood-oxygen-level-dependent (BOLD) fMRI, where an edge (called hyper-edge) can be connected to more than two nodes, are effective biomarkers for MCI classification. Although BOLD fMRI is a high temporal resolution fMRI approach to assess alterations in brain networks, it cannot pinpoint to a single correlation of neuronal activity since BOLD signals are composite. In contrast, arterial spin labeling (ASL) is a lower temporal resolution fMRI technique for measuring cerebral blood flow (CBF) that can provide quantitative, direct brain network physiology measurements. This paper proposes a novel sparse regression algorithm for inference of the integrated hyper-connectivity networks from BOLD fMRI and ASL fMRI. Specifically, a least absolution shrinkage and selection operator (LASSO) algorithm, which is constrained by the functional connectivity derived from ASL fMRI, is employed to estimate hyper-connectivity for characterizing BOLD-fMRI-based functional interaction among multiple regions. An ASL-derived functional connectivity is constructed by using an Ultra-GroupLASSO-UOLS algorithm, where the combination of ultra-least squares (ULS) criterion with a group LASSO (GroupLASSO) algorithm is applied to detect the topology of ASL-based functional connectivity networks, and then an ultra-orthogonal least squares (UOLS) algorithm is used to estimate the connectivity strength. By combining the complementary characterization conveyed by rs-fMRI and ASL fMRI, our multimodal hyper-networks demonstrated much better discriminative characteristics than either the conventional pairwise connectivity networks or the unimodal hyper-connectivity networks. Experimental results on publicly available ADNI dataset demonstrate that the proposed method outperforms the existing single modality based sparse functional connectivity inference methods.
Collapse
|
43
|
Zhou T, Thung KH, Zhu X, Shen D. Effective feature learning and fusion of multimodality data using stage-wise deep neural network for dementia diagnosis. Hum Brain Mapp 2018; 40:1001-1016. [PMID: 30381863 DOI: 10.1002/hbm.24428] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 09/04/2018] [Accepted: 10/03/2018] [Indexed: 12/13/2022] Open
Abstract
In this article, the authors aim to maximally utilize multimodality neuroimaging and genetic data for identifying Alzheimer's disease (AD) and its prodromal status, Mild Cognitive Impairment (MCI), from normal aging subjects. Multimodality neuroimaging data such as MRI and PET provide valuable insights into brain abnormalities, while genetic data such as single nucleotide polymorphism (SNP) provide information about a patient's AD risk factors. When these data are used together, the accuracy of AD diagnosis may be improved. However, these data are heterogeneous (e.g., with different data distributions), and have different number of samples (e.g., with far less number of PET samples than the number of MRI or SNPs). Thus, learning an effective model using these data is challenging. To this end, we present a novel three-stage deep feature learning and fusion framework, where deep neural network is trained stage-wise. Each stage of the network learns feature representations for different combinations of modalities, via effective training using the maximum number of available samples. Specifically, in the first stage, we learn latent representations (i.e., high-level features) for each modality independently, so that the heterogeneity among modalities can be partially addressed, and high-level features from different modalities can be combined in the next stage. In the second stage, we learn joint latent features for each pair of modality combination by using the high-level features learned from the first stage. In the third stage, we learn the diagnostic labels by fusing the learned joint latent features from the second stage. To further increase the number of samples during training, we also use data at multiple scanning time points for each training subject in the dataset. We evaluate the proposed framework using Alzheimer's disease neuroimaging initiative (ADNI) dataset for AD diagnosis, and the experimental results show that the proposed framework outperforms other state-of-the-art methods.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Radiology and the Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina
| | - Kim-Han Thung
- Department of Radiology and the Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina
| | - Xiaofeng Zhu
- Department of Radiology and the Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina
| | - Dinggang Shen
- Department of Radiology and the Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
44
|
Huang H, Liu X, Jin Y, Lee SW, Wee CY, Shen D. Enhancing the representation of functional connectivity networks by fusing multi-view information for autism spectrum disorder diagnosis. Hum Brain Mapp 2018; 40:833-854. [PMID: 30357998 DOI: 10.1002/hbm.24415] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/17/2018] [Accepted: 09/26/2018] [Indexed: 01/10/2023] Open
Abstract
Functional connectivity network provides novel insights on how distributed brain regions are functionally integrated, and its deviations from healthy brain have recently been employed to identify biomarkers for neuropsychiatric disorders. However, most of brain network analysis methods utilized features extracted only from one functional connectivity network for brain disease detection and cannot provide a comprehensive representation on the subtle disruptions of brain functional organization induced by neuropsychiatric disorders. Inspired by the principles of multi-view learning which utilizes information from multiple views to enhance object representation, we propose a novel multiple network based framework to enhance the representation of functional connectivity networks by fusing the common and complementary information conveyed in multiple networks. Specifically, four functional connectivity networks corresponding to the four adjacent values of regularization parameter are generated via a sparse regression model with group constraint ( l2,1 -norm), to enhance the common intrinsic topological structure and limit the error rate caused by different views. To obtain a set of more meaningful and discriminative features, we propose using a modified version of weighted clustering coefficients to quantify the subtle differences of each group-sparse network at local level. We then linearly fuse the selected features from each individual network via a multi-kernel support vector machine for autism spectrum disorder (ASD) diagnosis. The proposed framework achieves an accuracy of 79.35%, outperforming all the compared single network methods for at least 7% improvement. Moreover, compared with other multiple network methods, our method also achieves the best performance, that is, with at least 11% improvement in accuracy.
Collapse
Affiliation(s)
- Huifang Huang
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China.,Biomedical Research Imaging Center (BRIC) and Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Xingdan Liu
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
| | - Yan Jin
- Biomedical Research Imaging Center (BRIC) and Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Seong-Whan Lee
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - Chong-Yaw Wee
- Biomedical Research Imaging Center (BRIC) and Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Dinggang Shen
- Biomedical Research Imaging Center (BRIC) and Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
45
|
Li Y, Liu J, Huang J, Li Z, Liang P. Learning Brain Connectivity Sub-networks by Group- Constrained Sparse Inverse Covariance Estimation for Alzheimer's Disease Classification. Front Neuroinform 2018; 12:58. [PMID: 30258358 PMCID: PMC6143825 DOI: 10.3389/fninf.2018.00058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/17/2018] [Indexed: 11/15/2022] Open
Abstract
Background/Aims: Brain functional connectivity networks constructed from resting-state functional magnetic resonance imaging (rs-fMRI) have been widely used for classifying Alzheimer's disease (AD) from normal controls (NC). However, conventional correlation analysis methods only capture the pairwise information, which may not be capable of revealing an adequate and accurate functional connectivity relationship among brain regions in the whole brain. Additionally, the non-sparse connectivity networks commonly contain a large number of spurious or insignificant connections, which are inconsistent with the sparse connectivity of actual brain networks in nature and may deteriorate the classification performance of Alzheimer's disease. Methods: To address these problems, in this paper, a new classification framework is proposed by combining the Group-constrained topology structure detection with sparse inverse covariance estimation (SICE) method to build the functional brain sub-network for each brain region. Particularly, to tune the sensitive analysis of the regularized parameters in the SICE method, a nested leave-one-out cross-validation (LOOCV) method is adopted. Sparse functional connectivity networks are thus effectively constructed by using the optimal regularized parameters. Finally, a decision classification tree (DCT) classifier is trained for classifying AD from NC based on these optimal functional brain sub-networks. The convergence performance of our proposed method is furthermore evaluated by the trend of coefficient variation. Results: Experiment results indicate that a LOOCV classification accuracy of 81.82% with a sensitivity of 80.00%, and a specificity of 83.33% can be obtained by using the proposed method for the classification AD from NC, and outperforms the most state-of-the-art methods in terms of the classification accuracy. Additionally, the experiment results of the convergence performance further suggest that our proposed scheme has a high rate of convergence. Particularly, the abnormal brain regions and functional connections identified by our proposed framework are highly associated with the underpinning pathological mechanism of the AD, which are consistent with previous studies. Conclusion: These results have demonstrated the effectiveness of the proposed Group- constrained SICE method, and are capable of clinical value to the diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Yang Li
- School of Automation Sciences and Electrical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Big Date-Based Precision Medicine, Beihang University, Beijing, China.,Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, Minjiang University, Fujian, China
| | - Jingyu Liu
- School of Automation Sciences and Electrical Engineering, Beihang University, Beijing, China
| | - Jie Huang
- School of Automation Sciences and Electrical Engineering, Beihang University, Beijing, China
| | - Zuoyong Li
- Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, Minjiang University, Fujian, China
| | - Peipeng Liang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,School of Psychology, Capital Normal University, Beijing, China
| |
Collapse
|
46
|
Kottaram A, Johnston L, Ganella E, Pantelis C, Kotagiri R, Zalesky A. Spatio-temporal dynamics of resting-state brain networks improve single-subject prediction of schizophrenia diagnosis. Hum Brain Mapp 2018; 39:3663-3681. [PMID: 29749660 PMCID: PMC6866493 DOI: 10.1002/hbm.24202] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 02/01/2023] Open
Abstract
Correlation in functional MRI activity between spatially separated brain regions can fluctuate dynamically when an individual is at rest. These dynamics are typically characterized temporally by measuring fluctuations in functional connectivity between brain regions that remain fixed in space over time. Here, dynamics in functional connectivity were characterized in both time and space. Temporal dynamics were mapped with sliding-window correlation, while spatial dynamics were characterized by enabling network regions to vary in size (shrink/grow) over time according to the functional connectivity profile of their constituent voxels. These temporal and spatial dynamics were evaluated as biomarkers to distinguish schizophrenia patients from controls, and compared to current biomarkers based on static measures of resting-state functional connectivity. Support vector machine classifiers were trained using: (a) static, (b) dynamic in time, (c) dynamic in space, and (d) dynamic in time and space characterizations of functional connectivity within canonical resting-state brain networks. Classifiers trained on functional connectivity dynamics mapped over both space and time predicted diagnostic status with accuracy exceeding 91%, whereas utilizing only spatial or temporal dynamics alone yielded lower classification accuracies. Static measures of functional connectivity yielded the lowest accuracy (79.5%). Compared to healthy comparison individuals, schizophrenia patients generally exhibited functional connectivity that was reduced in strength and more variable. Robustness was established with replication in an independent dataset. The utility of biomarkers based on temporal and spatial functional connectivity dynamics suggests that resting-state dynamics are not trivially attributable to sampling variability and head motion.
Collapse
Affiliation(s)
- Akhil Kottaram
- Department of Biomedical Engineering, The University of Melbourne, Victoria, 3010, Australia
| | - Leigh Johnston
- Department of Biomedical Engineering, The University of Melbourne, Victoria, 3010, Australia
- Department of Electrical and Electronic Engineering, The University of Melbourne, Victoria, 3010, Australia
- Florey Institute for Neurosciences and Mental health, Parkville, Victoria, 3052, Australia
| | - Eleni Ganella
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Victoria, 3010, Australia
- Cooperative Research Centre for Mental Health, Carlton, Victoria, 3053, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Victoria, 3010, Australia
- Department of Psychiatry, The University of Melbourne, Victoria, 3010, Australia
- Florey Institute for Neurosciences and Mental health, Parkville, Victoria, 3052, Australia
- North Western Mental Health, Melbourne Health, Parkville, Victoria, Australia
- Centre for Neural Engineering, Department of Electrical and Electronic Engineering, The University of Melbourne, Victoria, 3053, Australia
- Cooperative Research Centre for Mental Health, Carlton, Victoria, 3053, Australia
| | - Ramamohanarao Kotagiri
- Department of Computing and Information Systems, The University of Melbourne, Victoria, 3010, Australia
| | - Andrew Zalesky
- Department of Biomedical Engineering, The University of Melbourne, Victoria, 3010, Australia
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
47
|
Du Y, Fu Z, Calhoun VD. Classification and Prediction of Brain Disorders Using Functional Connectivity: Promising but Challenging. Front Neurosci 2018; 12:525. [PMID: 30127711 PMCID: PMC6088208 DOI: 10.3389/fnins.2018.00525] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022] Open
Abstract
Brain functional imaging data, especially functional magnetic resonance imaging (fMRI) data, have been employed to reflect functional integration of the brain. Alteration in brain functional connectivity (FC) is expected to provide potential biomarkers for classifying or predicting brain disorders. In this paper, we present a comprehensive review in order to provide guidance about the available brain FC measures and typical classification strategies. We survey the state-of-the-art FC analysis methods including widely used static functional connectivity (SFC) and more recently proposed dynamic functional connectivity (DFC). Temporal correlations among regions of interest (ROIs), data-driven spatial network and functional network connectivity (FNC) are often computed to reflect SFC from different angles. SFC can be extended to DFC using a sliding-window framework, and intrinsic connectivity states along the time-varying connectivity patterns are typically extracted using clustering or decomposition approaches. We also briefly summarize window-less DFC approaches. Subsequently, we highlight various strategies for feature selection including the filter, wrapper and embedded methods. In terms of model building, we include traditional classifiers as well as more recently applied deep learning methods. Moreover, we review representative applications with remarkable classification accuracy for psychosis and mood disorders, neurodevelopmental disorder, and neurological disorders using fMRI data. Schizophrenia, bipolar disorder, autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), Alzheimer's disease and mild cognitive impairment (MCI) are discussed. Finally, challenges in the field are pointed out with respect to the inaccurate diagnosis labeling, the abundant number of possible features and the difficulty in validation. Some suggestions for future work are also provided.
Collapse
Affiliation(s)
- Yuhui Du
- The Mind Research Network, Albuquerque, NM, United States
- School of Computer & Information Technology, Shanxi University, Taiyuan, China
| | - Zening Fu
- The Mind Research Network, Albuquerque, NM, United States
| | - Vince D. Calhoun
- The Mind Research Network, Albuquerque, NM, United States
- Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
48
|
Guo H, Yan P, Cheng C, Li Y, Chen J, Xu Y, Xiang J. fMRI classification method with multiple feature fusion based on minimum spanning tree analysis. Psychiatry Res Neuroimaging 2018; 277:14-27. [PMID: 29793077 DOI: 10.1016/j.pscychresns.2018.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 01/07/2023]
Abstract
Resting state functional brain networks have been widely studied in brain disease research. Conventional network analysis methods are hampered by differences in network size, density and normalization. Minimum spanning tree (MST) analysis has been recently suggested to ameliorate these limitations. Moreover, common MST analysis methods involve calculating quantifiable attributes and selecting these attributes as features in the classification. However, a disadvantage of these methods is that information about the topology of the network is not fully considered, limiting further improvement of classification performance. To address this issue, we propose a novel method combining brain region and subgraph features for classification, utilizing two feature types to quantify two properties of the network. We experimentally validated our proposed method using a major depressive disorder (MDD) patient dataset. The results indicated that MSTs of MDD patients were more similar to random networks and exhibited significant differences in certain regions involved in the limbic-cortical-striatal-pallidal-thalamic (LCSPT) circuit, which is considered to be a major pathological circuit of depression. Moreover, we demonstrated that this novel classification method could effectively improve classification accuracy and provide better interpretability. Overall, the current study demonstrated that different forms of feature representation provide complementary information.
Collapse
Affiliation(s)
- Hao Guo
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, PR China; National Laboratory of Pattern Recognition, Institute of Automation, The Chinese Academy of Sciences, Beijing, PR China.
| | - Pengpeng Yan
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, PR China
| | - Chen Cheng
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, PR China; National Laboratory of Pattern Recognition, Institute of Automation, The Chinese Academy of Sciences, Beijing, PR China
| | - Yao Li
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, PR China
| | - Junjie Chen
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, PR China
| | - Yong Xu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Jie Xiang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, PR China
| |
Collapse
|
49
|
Bi XA, Sun Q, Zhao J, Xu Q, Wang L. Non-linear ICA Analysis of Resting-State fMRI in Mild Cognitive Impairment. Front Neurosci 2018; 12:413. [PMID: 29970984 PMCID: PMC6018085 DOI: 10.3389/fnins.2018.00413] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 05/30/2018] [Indexed: 01/02/2023] Open
Abstract
Compared to linear independent component analysis (ICA), non-linear ICA is more suitable for the decomposition of mixed components. Existing studies of functional magnetic resonance imaging (fMRI) data by using linear ICA assume that the brain's mixed signals, which are caused by the activity of brain, are formed through the linear combination of source signals. But the application of the non-linear combination of source signals is more suitable for the mixed signals of brain. For this reason, we investigated statistical differences in resting state networks (RSNs) on 32 healthy controls (HC) and 38 mild cognitive impairment (MCI) patients using post-nonlinear ICA. Post-nonlinear ICA is one of the non-linear ICA methods. Firstly, the fMRI data of all subjects was preprocessed. The second step was to extract independent components (ICs) of fMRI data of all subjects. In the third step, we calculated the correlation coefficient between ICs and RSN templates, and selected ICs of the largest spatial correlation coefficient. The ICs represent the corresponding RSNs. After finding out the eight RSNs of MCI group and HC group, one sample t-tests were performed. Finally, in order to compare the differences of RSNs between MCI and HC groups, the two-sample t-tests were carried out. We found that the functional connectivity (FC) of RSNs in MCI patients was abnormal. Compared with HC, MCI patients showed the increased and decreased FC in default mode network (DMN), central executive network (CEN), dorsal attention network (DAN), somato-motor network (SMN), visual network(VN), MCI patients displayed the specifically decreased FC in auditory network (AN), self-referential network (SRN). The FC of core network (CN) did not reveal significant group difference. The results indicate that the abnormal FC in RSNs is selective in MCI patients.
Collapse
Affiliation(s)
- Xia-An Bi
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Qi Sun
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Junxia Zhao
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Qian Xu
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Liqin Wang
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| |
Collapse
|
50
|
Guo H, Li Y, Xu Y, Jin Y, Xiang J, Chen J. Resting-State Brain Functional Hyper-Network Construction Based on Elastic Net and Group Lasso Methods. Front Neuroinform 2018; 12:25. [PMID: 29867426 PMCID: PMC5962886 DOI: 10.3389/fninf.2018.00025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 04/25/2018] [Indexed: 12/16/2022] Open
Abstract
Brain network analysis has been widely applied in neuroimaging studies. A hyper-network construction method was previously proposed to characterize the high-order relationships among multiple brain regions, where every edge is connected to more than two brain regions and can be represented by a hyper-graph. A brain functional hyper-network is constructed by a sparse linear regression model using resting-state functional magnetic resonance imaging (fMRI) time series, which in previous studies has been solved by the lasso method. Despite its successful application in many studies, the lasso method has some limitations, including an inability to explain the grouping effect. That is, using the lasso method may cause relevant brain regions be missed in selecting related regions. Ideally, a hyper-edge construction method should be able to select interacting brain regions as accurately as possible. To solve this problem, we took into account the grouping effect among brain regions and proposed two methods to improve the construction of the hyper-network: the elastic net and the group lasso. The three methods were applied to the construction of functional hyper-networks in depressed patients and normal controls. The results showed structural differences among the hyper-networks constructed by the three methods. The hyper-network structure obtained by the lasso was similar to that obtained by the elastic net method but very different from that obtained by the group lasso. The classification results indicated that the elastic net method achieved better classification results than the lasso method with the two proposed methods of hyper-network construction. The elastic net method can effectively solve the grouping effect and achieve better classification performance.
Collapse
Affiliation(s)
- Hao Guo
- Department of Software Engineering, College of Information and Computer, Taiyuan University of Technology, Taiyuan, China.,National Laboratory of Pattern Recognition, Institute of Automation, The Chinese Academy of Sciences, Beijing, China
| | - Yao Li
- Department of Software Engineering, College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Yong Xu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanyi Jin
- Department of Software Engineering, College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Jie Xiang
- Department of Software Engineering, College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Junjie Chen
- Department of Software Engineering, College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|