1
|
Leddy O, Yuki Y, Carrington M, Bryson BD, White FM. PathMHC: a workflow to selectively target pathogen-derived MHC peptides in discovery immunopeptidomics experiments for vaccine target identification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612454. [PMID: 39314426 PMCID: PMC11419027 DOI: 10.1101/2024.09.11.612454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Vaccine-elicited T cell responses can contribute to immune protection against emerging infectious disease risks such as antimicrobials-resistant (AMR) microbial pathogens and viruses with pandemic potential, but rapidly identifying appropriate targets for T cell priming vaccines remains challenging. Mass spectrometry (MS) analysis of peptides presented on major histocompatibility complexes (MHCs) can identify potential targets for protective T cell responses in a proteome-wide manner. However, pathogen-derived peptides are outnumbered by self peptides in the MHC repertoire and may be missed in untargeted MS analyses. Here we present a novel approach, termed PathMHC, that uses computational analysis of untargeted MS data followed by targeted MS to discover novel pathogen-derived MHC peptides more efficiently than untargeted methods alone. We applied this workflow to identify MHC peptides derived from multiple microbes, including potential vaccine targets presented on MHC-I by human dendritic cells infected with Mycobacterium tuberculosis . PathMHC will facilitate antigen discovery campaigns for vaccine development.
Collapse
|
2
|
Xu JC, Wu K, Ma RQ, Li JH, Tao J, Hu Z, Fan XY. Establishment of an in vitro model of monocyte-like THP-1 cells for trained immunity induced by bacillus Calmette-Guérin. BMC Microbiol 2024; 24:130. [PMID: 38643095 PMCID: PMC11031977 DOI: 10.1186/s12866-024-03191-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/10/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Mycobacteria bloodstream infections are common in immunocompromised people and usually have disastrous consequences. As the primary phagocytes in the bloodstream, monocytes and neutrophils play critical roles in the fight against bloodstream mycobacteria infections. In contrast to macrophages, the responses of monocytes infected with the mycobacteria have been less investigated. RESULTS In this study, we first established a protocol for infection of non-adherent monocyte-like THP-1 cells (i.e. without the differentiation induced by phorbol 12-myristate 13-acetate (PMA) by bacillus Calmette-Guérin (BCG). Via the protocol, we were then capable of exploring the global transcriptomic profiles of non-adherent THP-1 cells infected with BCG, and found that NF-κB, MAPK and PI3K-Akt signaling pathways were enhanced, as well as some inflammatory chemokine/cytokine genes (e.g. CCL4, CXCL10, TNF and IL-1β) were up-regulated. Surprisingly, the Akt-HIF-mTOR signaling pathway was also activated, which induces trained immunity. In this in vitro infection model, increased cytokine responses to lipopolysaccharides (LPS) restimulation, higher cell viability, and decreased Candida albicans loads were observed. CONCLUSIONS We have first characterized the transcriptomic profiles of BCG-infected non-adherent THP-1 cells, and first developed a trained immunity in vitro model of the cells.
Collapse
Affiliation(s)
- Jin-Chuan Xu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
| | - Kang Wu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
- Shanghai R & S Biotech. Co., Ltd, Shanghai, China
- Zhejiang Free Trade Area R & S Biomedical Technology Co., Ltd, Zhoushan, Zhejiang, China
| | - Rui-Qing Ma
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
| | - Jian-Hui Li
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
| | - Jie Tao
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
| | - Zhidong Hu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Hikichi H, Seto S, Wakabayashi K, Hijikata M, Keicho N. Transcription factor MAFB controls type I and II interferon response-mediated host immunity in Mycobacterium tuberculosis-infected macrophages. Front Microbiol 2022; 13:962306. [DOI: 10.3389/fmicb.2022.962306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
MAFB, v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog B, has been identified as a candidate gene for early tuberculosis (TB) onset in Thai and Japanese populations. Here, we investigated the genome-wide transcriptional profiles of MAFB-knockdown (KD) macrophages infected with Mycobacterium tuberculosis (Mtb) to highlight the potential role of MAFB in host immunity against TB. Gene expression analysis revealed impaired type I and type II interferon (IFN) responses and enhanced oxidative phosphorylation in MAFB-KD macrophages infected with Mtb. The expression of inflammatory chemokines, including IFN-γ-inducible genes, was confirmed to be significantly reduced by knockdown of MAFB during Mtb infection. A similar effect of MAFB knockdown on type I and type II IFN responses and oxidative phosphorylation was also observed when Mtb-infected macrophages were activated by IFN-γ. Taken together, our results demonstrate that MAFB is involved in the immune response and metabolism in Mtb-infected macrophages, providing new insight into MAFB as a candidate gene to guide further study to control TB.
Collapse
|
4
|
Zhang X, Kim K, Ye Z, Wu J, Qiao F, Zou Q. Clustering of genes from microarray data using hierarchical projective adaptive resonance theory: a case study of tuberculosis. Brief Funct Genomics 2021; 21:113-127. [PMID: 34369558 DOI: 10.1093/bfgp/elab034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 11/12/2022] Open
Abstract
We propose the hierarchical Projective Adaptive Resonance Theory (PART) algorithm for classification of gene expression data. This algorithm is realized by combing transposed quasi-supervised PART and unsupervised PART. We develop the corresponding validation statistics for each process and compare it with other clustering algorithms in a case study of tuberculosis (TB). First, we use sample-based transposed quasi-supervised PART to obtain optimal clustering results of samples distinguished by time post-infection and the representative genes for each cluster including up-regulated, down-regulated and stable genes. The up- and down-regulated genes show more than 90% similarity to the result derived from Linear Models for Microarray Data and are verified by weighted k-nearest neighbor model on TB projection. Second, we use gene-based unsupervised PART algorithm to cluster these representative genes where functional enrichment analysis is conducted in each cluster. We further confirm the main immune response of human macrophage-like THP-1 cells against TB within 2 days is type I interferon-mediated innate immunity. This study demonstrates how hierarchical PART algorithm analyzes microarray data. The sample-based quasi-supervised PART extracts representative genes and narrows down the shortlist of disease-relevant genes and gene-based unsupervised PART classifies representative genes that help to interpret immune response against TB.
Collapse
Affiliation(s)
- Xu Zhang
- School of Mathematics and Statistics, Southwest University, Chongqing, China
| | - Kiyeon Kim
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Zhiqiang Ye
- School of Elementary Education, Chongqing Normal University, Chongqing, China
| | - Jianhong Wu
- Laboratory for Industrial and Applied Mathematics, York University Toronto, Ontario, Canada
| | - Feng Qiao
- School of Mathematics and Statistics, Southwest University, Chongqing, China
| | - Quan Zou
- School of Mathematics and Statistics, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Bade P, Simonetti F, Sans S, Laboudie P, Kissane K, Chappat N, Lagrange S, Apparailly F, Roubert C, Duroux-Richard I. Integrative Analysis of Human Macrophage Inflammatory Response Related to Mycobacterium tuberculosis Virulence. Front Immunol 2021; 12:668060. [PMID: 34276658 PMCID: PMC8284339 DOI: 10.3389/fimmu.2021.668060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/07/2021] [Indexed: 01/08/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis, kills 1.5 to 1.7 million people every year. Macrophages are Mtb's main host cells and their inflammatory response is an essential component of the host defense against Mtb. However, Mtb is able to circumvent the macrophages' defenses by triggering an inappropriate inflammatory response. The ability of Mtb to hinder phagolysosome maturation and acidification, and to escape the phagosome into the cytosol, is closely linked to its virulence. The modulation of the host inflammatory response relies on Mtb virulence factors, but remains poorly studied. Understanding macrophage interactions with Mtb is crucial to develop strategies to control tuberculosis. The present study aims to determine the inflammatory response transcriptome and miRNome of human macrophages infected with the virulent H37Rv Mtb strain, to identify macrophage genetic networks specifically modulated by Mtb virulence. Using human macrophages infected with two different live strains of mycobacteria (live or heat-inactivated Mtb H37Rv and M. marinum), we quantified and analyzed 184 inflammatory mRNAs and 765 micro(mi)RNAs. Transcripts and miRNAs differently modulated by H37Rv in comparison with the two other conditions were analyzed using in silico approaches. We identified 30 host inflammatory response genes and 37 miRNAs specific for H37Rv virulence, and highlight evidence suggesting that Mtb intracellular-linked virulence depends on the inhibition of IL-1β-dependent pro-inflammatory response, the repression of apoptosis and the delay of the recruitment and activation of adaptive immune cells. Our findings provide new potential targets for the development of macrophage-based therapeutic strategies against TB.
Collapse
Affiliation(s)
- Pauline Bade
- Institute for Regenerative Medicine & Biotherapy (IRMB), INSERM, Univ Montpellier, CHU Montpellier, Montpellier, France
- Evotec ID (Lyon), Lyon, France
| | | | | | | | | | | | | | - Florence Apparailly
- Institute for Regenerative Medicine & Biotherapy (IRMB), INSERM, Univ Montpellier, CHU Montpellier, Montpellier, France
| | | | - Isabelle Duroux-Richard
- Institute for Regenerative Medicine & Biotherapy (IRMB), INSERM, Univ Montpellier, CHU Montpellier, Montpellier, France
| |
Collapse
|
6
|
Weighted Gene Co-Expression Network Analysis Identifies Key Modules and Hub Genes Associated with Mycobacterial Infection of Human Macrophages. Antibiotics (Basel) 2021; 10:antibiotics10020097. [PMID: 33498280 PMCID: PMC7909288 DOI: 10.3390/antibiotics10020097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/28/2020] [Accepted: 01/14/2021] [Indexed: 02/04/2023] Open
Abstract
Tuberculosis (TB) is still a leading cause of death worldwide. Treatments remain unsatisfactory due to an incomplete understanding of the underlying host–pathogen interactions during infection. In the present study, weighted gene co-expression network analysis (WGCNA) was conducted to identify key macrophage modules and hub genes associated with mycobacterial infection. WGCNA was performed combining our own transcriptomic results using Mycobacterium aurum-infected human monocytic macrophages (THP1) with publicly accessible datasets obtained from three types of macrophages infected with seven different mycobacterial strains in various one-to-one combinations. A hierarchical clustering tree of 11,533 genes was built from 198 samples, and 47 distinct modules were revealed. We identified a module, consisting of 226 genes, which represented the common response of host macrophages to different mycobacterial infections that showed significant enrichment in innate immune stimulation, bacterial pattern recognition, and leukocyte chemotaxis. Moreover, by network analysis applied to the 74 genes with the best correlation with mycobacteria infection, we identified the top 10 hub-connecting genes: NAMPT, IRAK2, SOCS3, PTGS2, CCL20, IL1B, ZC3H12A, ABTB2, GFPT2, and ELOVL7. Interestingly, apart from the well-known Toll-like receptor and inflammation-associated genes, other genes may serve as novel TB diagnosis markers and potential therapeutic targets.
Collapse
|
7
|
Robinson EK, Covarrubias S, Carpenter S. The how and why of lncRNA function: An innate immune perspective. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2020; 1863:194419. [PMID: 31487549 PMCID: PMC7185634 DOI: 10.1016/j.bbagrm.2019.194419] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023]
Abstract
Next-generation sequencing has provided a more complete picture of the composition of the human transcriptome indicating that much of the "blueprint" is a vastness of poorly understood non-protein-coding transcripts. This includes a newly identified class of genes called long noncoding RNAs (lncRNAs). The lack of sequence conservation for lncRNAs across species meant that their biological importance was initially met with some skepticism. LncRNAs mediate their functions through interactions with proteins, RNA, DNA, or a combination of these. Their functions can often be dictated by their localization, sequence, and/or secondary structure. Here we provide a review of the approaches typically adopted to study the complexity of these genes with an emphasis on recent discoveries within the innate immune field. Finally, we discuss the challenges, as well as the emergence of new technologies that will continue to move this field forward and provide greater insight into the biological importance of this class of genes. This article is part of a Special Issue entitled: ncRNA in control of gene expression edited by Kotb Abdelmohsen.
Collapse
Affiliation(s)
- Elektra K Robinson
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States of America
| | - Sergio Covarrubias
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States of America
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States of America.
| |
Collapse
|
8
|
Wu K, Li M, Chen ZY, Lowrie DB, Fan XY. Probe Signal Values in mRNA Arrays Imply an Excessive Involvement of Neutrophil FCGR1 in Tuberculosis. Front Med (Lausanne) 2020; 7:19. [PMID: 32118006 PMCID: PMC7033432 DOI: 10.3389/fmed.2020.00019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/13/2020] [Indexed: 01/21/2023] Open
Abstract
The perturbed genes from transcriptomes are often presented in terms of relative expressions against control samples. However, the probe signal values (PSVs) of genes, implying protein abundances, are often ignored. Here, we explored the PSVs in tuberculosis (TB)-relevant signature genes. The signatures from Mycobacterium tuberculosis-infected THP-1 cells were defined as induced (TMtb-i, with a derived TMtb-iNet) and repressed (TMtb-r). The signature from human blood was defined as a pulmonary TB (PTB)-specific signature (PTBsig). The analysis showed that before infection, TMtb-i and TMtb-iNet had lower PSVs and TMtb-r genes had average PSVs. In the blood of healthy donors, PTBsig (divided into up-regulated PTBsigUp and down-regulated PTBsigDn) displayed average PSVs. This was partly due to masking by the cellular heterogeneity of blood; diverse PSVs were seen in constituent cell populations (CD4/8+ T, monocytes and neutrophils). Specifically, the PSVs of PTBsigUp in the neutrophils of healthy donors were higher (implying higher protein abundances), and much higher in the neutrophils of PTB (implying excessive protein abundances). Based on the PSV patterns of PTBsigUp in four cell populations, we identified three representative highly homologous genes (FCGR1A, FCGR1B, and the pseudogene FCGR1CP, which were often poorly distinguished), of which the summed PSVs were the highest in the neutrophils of PTB patients and healthy donors. The three genes were all up-regulated and responsive to chemotherapy in the blood of PTB, as validated in an RNA-seq-based analysis. This PSV-based study confirms the excessive involvement of neutrophil FCGR1 in PTB.
Collapse
Affiliation(s)
- Kang Wu
- Key Laboratory of Medical Molecular Virology of MOE/MOH, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,TB Center, Shanghai Emerging and Re-emerging Institute, Shanghai, China
| | - Meng Li
- Department of Life Science, Bengbu Medical College, Bengbu, China
| | - Zhen-Yan Chen
- Key Laboratory of Medical Molecular Virology of MOE/MOH, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Douglas B Lowrie
- Key Laboratory of Medical Molecular Virology of MOE/MOH, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,TB Center, Shanghai Emerging and Re-emerging Institute, Shanghai, China
| | - Xiao-Yong Fan
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,TB Center, Shanghai Emerging and Re-emerging Institute, Shanghai, China
| |
Collapse
|
9
|
Wang J, Hussain T, Zhang K, Liao Y, Yao J, Song Y, Sabir N, Cheng G, Dong H, Li M, Ni J, Mangi MH, Zhao D, Zhou X. Inhibition of type I interferon signaling abrogates early Mycobacterium bovis infection. BMC Infect Dis 2019; 19:1031. [PMID: 31801478 PMCID: PMC6894119 DOI: 10.1186/s12879-019-4654-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022] Open
Abstract
Background Mycobacterium bovis (M. bovis) is the principal causative agent of bovine tuberculosis; however, it may also cause serious infection in human being. Type I IFN is a key factor in reducing viral multiplication and modulating host immune response against viral infection. However, the regulatory pathways of Type I IFN signaling during M. bovis infection are not yet fully explored. Here, we investigate the role of Type I IFN signaling in the pathogenesis of M. bovis infection in mice. Methods C57BL/6 mice were treated with IFNAR1-blocking antibody or Isotype control 24 h before M. bovis infection. After 21 and 84 days of infection, mice were sacrificed and the role of Type I IFN signaling in the pathogenesis of M. bovis was investigated. ELISA and qRT-PCR were performed to detect the expression of Type I IFNs and related genes. Lung lesions induced by M. bovis were assessed by histopathological examination. Viable bacterial count was determined by CFU assay. Results We observed an abundant expression of Type I IFNs in the serum and lung tissues of M. bovis infected mice. In vivo blockade of Type I IFN signaling reduced the recruitment of neutrophils to the lung tissue, mediated the activation of macrophages leading to an increased pro-inflammatory profile and regulated the inflammatory cytokine production. However, no impact was observed on T cell activation and recruitment in the early acute phase of infection. Additionally, blocking of type I IFN signaling reduced bacterial burden in the infected mice as compared to untreated infected mice. Conclusions Altogether, our results reveal that Type I IFN mediates a balance between M. bovis-mediated inflammatory reaction and host defense mechanism. Thus, modulating Type I IFN signaling could be exploited as a therapeutic strategy against a large repertoire of inflammatory disorders including tuberculosis.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China
| | - Tariq Hussain
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Kai Zhang
- School of Agriculture, Ningxia University, Ningxia, China
| | - Yi Liao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiao Yao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yinjuan Song
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Naveed Sabir
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guangyu Cheng
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Haodi Dong
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Miaoxuan Li
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiamin Ni
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Mazhar Hussain Mangi
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Deming Zhao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiangmei Zhou
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
10
|
Fleischer LM, Somaiya RD, Miller GM. Review and Meta-Analyses of TAAR1 Expression in the Immune System and Cancers. Front Pharmacol 2018; 9:683. [PMID: 29997511 PMCID: PMC6029583 DOI: 10.3389/fphar.2018.00683] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 06/06/2018] [Indexed: 12/29/2022] Open
Abstract
Since its discovery in 2001, the major focus of TAAR1 research has been on its role in monoaminergic regulation, drug-induced reward and psychiatric conditions. More recently, TAAR1 expression and functionality in immune system regulation and immune cell activation has become a topic of emerging interest. Here, we review the immunologically-relevant TAAR1 literature and incorporate open-source expression and cancer survival data meta-analyses. We provide strong evidence for TAAR1 expression in the immune system and cancers revealed through NCBI GEO datamining and discuss its regulation in a spectrum of immune cell types as well as in numerous cancers. We discuss connections and logical directions for further study of TAAR1 in immunological function, and its potential role as a mediator or modulator of immune dysregulation, immunological effects of psychostimulant drugs of abuse, and cancer progression.
Collapse
Affiliation(s)
- Lisa M Fleischer
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Rachana D Somaiya
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Gregory M Miller
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States.,Department of Chemical Engineering, Northeastern University, Boston, MA, United States.,Center for Drug Discovery, Northeastern University, Boston, MA, United States
| |
Collapse
|
11
|
Transcriptional landscape of Mycobacterium tuberculosis infection in macrophages. Sci Rep 2018; 8:6758. [PMID: 29712924 PMCID: PMC5928056 DOI: 10.1038/s41598-018-24509-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 04/05/2018] [Indexed: 12/13/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) infection reveals complex and dynamic host-pathogen interactions, leading to host protection or pathogenesis. Using a unique transcriptome technology (CAGE), we investigated the promoter-based transcriptional landscape of IFNγ (M1) or IL-4/IL-13 (M2) stimulated macrophages during Mtb infection in a time-kinetic manner. Mtb infection widely and drastically altered macrophage-specific gene expression, which is far larger than that of M1 or M2 activations. Gene Ontology enrichment analysis for Mtb-induced differentially expressed genes revealed various terms, related to host-protection and inflammation, enriched in up-regulated genes. On the other hand, terms related to dis-regulation of cellular functions were enriched in down-regulated genes. Differential expression analysis revealed known as well as novel transcription factor genes in Mtb infection, many of them significantly down-regulated. IFNγ or IL-4/IL-13 pre-stimulation induce additional differentially expressed genes in Mtb-infected macrophages. Cluster analysis uncovered significant numbers, prolonging their expressional changes. Furthermore, Mtb infection augmented cytokine-mediated M1 and M2 pre-activations. In addition, we identified unique transcriptional features of Mtb-mediated differentially expressed lncRNAs. In summary we provide a comprehensive in depth gene expression/regulation profile in Mtb-infected macrophages, an important step forward for a better understanding of host-pathogen interaction dynamics in Mtb infection.
Collapse
|
12
|
Leisching G, Pietersen RD, van Heerden C, van Helden P, Wiid I, Baker B. RNAseq reveals hypervirulence-specific host responses to M. tuberculosis infection. Virulence 2017; 8:848-858. [PMID: 27763806 PMCID: PMC5626229 DOI: 10.1080/21505594.2016.1250994] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 10/04/2016] [Accepted: 10/16/2016] [Indexed: 12/23/2022] Open
Abstract
The distinguishing factors that characterize the host response to infection with virulent Mycobacterium tuberculosis (M.tb) are largely confounding. We present an infection study with 2 genetically closely related M.tb strains that have vastly different pathogenic characteristics. The early host response to infection with these detergent-free cultured strains was analyzed through RNAseq in an attempt to provide information on the subtleties which may ultimately contribute to the virulent phenotype. Murine bone marrow derived macrophages (BMDMs) were infected with either a hyper- (R5527) or hypovirulent (R1507) Beijing M. tuberculosis clinical isolate. RNAseq revealed 69 differentially expressed host genes in BMDMs during comparison of these 2 transcriptomes. Pathway analysis revealed activation of the stress-induced and growth inhibitory Gadd45 signaling pathway in hypervirulent infected BMDMs. Upstream regulators of interferon activation such as and IRF3 and IRF7 were predicted to be upregulated in hypovirulent-infected BMDMs. Additional analysis of the host immune response through ELISA and qPCR included the use of human THP-1 macrophages where a robust proinflammatory response was observed after infection with the hypervirulent strain. RNAseq revealed 2 early-response genes (ier3 and saa3) and 2 host-defense genes (oasl1 and slpi) that were significantly upregulated by the hypervirulent strain. The role of these genes under M.tb infection conditions are largely unknown but here we provide validation of their presence with use of qPCR and Western blot. Further analysis into their biological role during infection with virulent M.tb is required.
Collapse
Affiliation(s)
- Gina Leisching
- SA MRC Center for TB Research, DST/NRF Center of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Ray-Dean Pietersen
- SA MRC Center for TB Research, DST/NRF Center of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Carel van Heerden
- Central Analytical Facility (CAF), DNA Sequencing Unit, Stellenbosch University, Stellenbosch, South Africa
| | - Paul van Helden
- SA MRC Center for TB Research, DST/NRF Center of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Ian Wiid
- SA MRC Center for TB Research, DST/NRF Center of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Bienyameen Baker
- SA MRC Center for TB Research, DST/NRF Center of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
13
|
Aulicino A, Dinan AM, Miranda-CasoLuengo AA, Browne JA, Rue-Albrecht K, MacHugh DE, Loftus BJ. High-throughput transcriptomics reveals common and strain-specific responses of human macrophages to infection with Mycobacterium abscessus Smooth and Rough variants. BMC Genomics 2015; 16:1046. [PMID: 26654095 PMCID: PMC4674915 DOI: 10.1186/s12864-015-2246-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 11/25/2015] [Indexed: 12/28/2022] Open
Abstract
Background Mycobacterium abscessus (MAB) is an emerging pathogen causing pulmonary infections in those with inflammatory lung disorders, such as Cystic Fibrosis (CF), and is associated with the highest fatality rate among rapidly growing mycobacteria (RGM). Phenotypically, MAB manifests as either a Smooth (MAB-S) or a Rough (MAB-R) morphotype, which differ in their levels of cell wall glycopeptidolipids (GPLs) and in their pathogenicity in vivo. As one of the primary immune cells encountered by MAB, we sought to examine the early transcriptional events within macrophages, following infection with both MAB-S or MAB-R. Results We sampled the transcriptomes (mRNA and miRNA) of THP-1-derived macrophages infected with both MAB-R and MAB-S at 1, 4 and 24 h post-infection (hpi) using RNA-seq. A core set of 606 genes showed consistent expression profiles in response to both morphotypes, corresponding to the early transcriptional response to MAB. The core response is type I Interferon (IFN)-driven, involving the NF-κB and MAPK signaling pathways with concomitant pro-inflammatory cytokine production, and network analysis identified STAT1, EGR1, and SRC as key hub and bottleneck genes. MAB-S elicited a more robust transcriptional response at both the mRNA and miRNA levels, which was reflected in higher cytokine levels in culture supernatants. The transcriptional profiles of macrophages infected with both morphotypes were highly correlated, however, and a direct comparison identified few genes to distinguish them. Most of the induced miRNAs have previously been associated with mycobacterial infection and overall miRNA expression patterns were similarly highly correlated between the morphotypes. Conclusions The report here details the first whole transcriptome analysis of the early macrophage response to MAB infection. The overall picture at the early stages of macrophage infection is similar to that of other mycobacteria, reflected in a core type I IFN and pro-inflammatory cytokine response. Large-scale transcriptional differences in the host response to the different MAB morphotypes are not evident in the early stages of infection, however the subset of genes with distinct expression profiles suggest potentially interesting differences in internal trafficking of MAB within macrophages. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2246-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Aulicino
- School of Medicine & Medical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Adam M Dinan
- School of Medicine & Medical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Aleksandra A Miranda-CasoLuengo
- School of Medicine & Medical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| | - John A Browne
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, College of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Kévin Rue-Albrecht
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, College of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, College of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland. .,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Dublin, Ireland.
| | - Brendan J Loftus
- School of Medicine & Medical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland. .,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Dublin, Ireland.
| |
Collapse
|
14
|
Blischak JD, Tailleux L, Mitrano A, Barreiro LB, Gilad Y. Mycobacterial infection induces a specific human innate immune response. Sci Rep 2015; 5:16882. [PMID: 26586179 PMCID: PMC4653619 DOI: 10.1038/srep16882] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/21/2015] [Indexed: 12/30/2022] Open
Abstract
The innate immune system provides the first response to infection and is now recognized to be partially pathogen-specific. Mycobacterium tuberculosis (MTB) is able to subvert the innate immune response and survive inside macrophages. Curiously, only 5-10% of otherwise healthy individuals infected with MTB develop active tuberculosis (TB). We do not yet understand the genetic basis underlying this individual-specific susceptibility. Moreover, we still do not know which properties of the innate immune response are specific to MTB infection. To identify immune responses that are specific to MTB, we infected macrophages with eight different bacteria, including different MTB strains and related mycobacteria, and studied their transcriptional response. We identified a novel subset of genes whose regulation was affected specifically by infection with mycobacteria. This subset includes genes involved in phagosome maturation, superoxide production, response to vitamin D, macrophage chemotaxis, and sialic acid synthesis. We suggest that genetic variants that affect the function or regulation of these genes should be considered candidate loci for explaining TB susceptibility.
Collapse
Affiliation(s)
- John D Blischak
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA.,Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, Illinois, USA
| | | | - Amy Mitrano
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
| | - Luis B Barreiro
- Department of Genetics, CHU Sainte-Justine Research Center, Montreal, Québec, Canada.,Department of Pediatrics, University of Montreal, Montreal, Québec, Canada
| | - Yoav Gilad
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
15
|
Keap1 regulates inflammatory signaling in Mycobacterium avium-infected human macrophages. Proc Natl Acad Sci U S A 2015. [PMID: 26195781 DOI: 10.1073/pnas.1423449112] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Several mechanisms are involved in controlling intracellular survival of pathogenic mycobacteria in host macrophages, but how these mechanisms are regulated remains poorly understood. We report a role for Kelch-like ECH-associated protein 1 (Keap1), an oxidative stress sensor, in regulating inflammation induced by infection with Mycobacterium avium in human primary macrophages. By using confocal microscopy, we found that Keap1 associated with mycobacterial phagosomes in a time-dependent manner, whereas siRNA-mediated knockdown of Keap1 increased M. avium-induced expression of inflammatory cytokines and type I interferons (IFNs). We show evidence of a mechanism whereby Keap1, as part of an E3 ubiquitin ligase complex with Cul3 and Rbx1, facilitates ubiquitination and degradation of IκB kinase (IKK)-β thus terminating IKK activity. Keap1 knockdown led to increased nuclear translocation of transcription factors NF-κB, IFN regulatory factor (IRF) 1, and IRF5 driving the expression of inflammatory cytokines and IFN-β. Furthermore, knockdown of other members of the Cul3 ubiquitin ligase complex also led to increased cytokine expression, further implicating this ligase complex in the regulation of the IKK family. Finally, increased inflammatory responses in Keap1-silenced cells contributed to decreased intracellular growth of M. avium in primary human macrophages that was reconstituted with inhibitors of IKKβ or TANK-binding kinase 1 (TBK1). Taken together, we propose that Keap1 acts as a negative regulator for the control of inflammatory signaling in M. avium-infected human primary macrophages. Although this might be important to avoid sustained or overwhelming inflammation, our data suggest that a negative consequence could be facilitated growth of pathogens like M. avium inside macrophages.
Collapse
|
16
|
Stifter SA, Feng CG. Interfering with immunity: detrimental role of type I IFNs during infection. THE JOURNAL OF IMMUNOLOGY 2015; 194:2455-65. [PMID: 25747907 DOI: 10.4049/jimmunol.1402794] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Type I IFNs are known to inhibit viral replication and mediate protection against viral infection. However, recent studies revealed that these cytokines play a broader and more fundamental role in host responses to infections beyond their well-established antiviral function. Type I IFN induction, often associated with microbial evasion mechanisms unique to virulent microorganisms, is now shown to increase host susceptibility to a diverse range of pathogens, including some viruses. This article presents an overview of the role of type I IFNs in infections with bacterial, fungal, parasitic, and viral pathogens and discusses the key mechanisms mediating the regulatory function of type I IFNs in pathogen clearance and tissue inflammation.
Collapse
Affiliation(s)
- Sebastian A Stifter
- Immunology and Host Defense Group, Department of Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Sydney 2006, New South Wales, Australia; and Mycobacterial Research Program, Centenary Institute, Sydney 2050, New South Wales, Australia
| | - Carl G Feng
- Immunology and Host Defense Group, Department of Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Sydney 2006, New South Wales, Australia; and Mycobacterial Research Program, Centenary Institute, Sydney 2050, New South Wales, Australia
| |
Collapse
|
17
|
Zheng L, Leung E, Lee N, Lui G, To KF, Chan RCY, Ip M. Differential MicroRNA Expression in Human Macrophages with Mycobacterium tuberculosis Infection of Beijing/W and Non-Beijing/W Strain Types. PLoS One 2015; 10:e0126018. [PMID: 26053546 PMCID: PMC4460131 DOI: 10.1371/journal.pone.0126018] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/27/2015] [Indexed: 12/12/2022] Open
Abstract
Objectives The role of microRNAs in association with Mycobacterium tuberculosis (MTB) infection and the immunology regulated by microRNAs upon MTB infection have not been fully unravelled. We examined the microRNA profiles of THP-1 macrophages upon the MTB infection of Beijing/W and non-Beijing/W clinical strains. We also studied the microRNA profiles of the host macrophages by microarray in a small cohort with active MTB disease, latent infection (LTBI), and from healthy controls. Results The results revealed that 14 microRNAs differentiated infections of Beijing/W from non-Beijing/W strains (P<0.05). A unique signature of 11 microRNAs in human macrophages was identified to differentiate active MTB disease from LTBI and healthy controls. Pathway analyses of these differentially expressed miRNAs suggest that the immune-regulatory interactions involving TGF-β signalling pathway take part in the dysregulation of critical TB processes in the macrophages, resulting in active expression of both cell communication and signalling transduction systems. Conclusion We showed for the first time that the Beijing/W TB strains repressed a number of miRNAs expressions which may reflect their virulence characteristics in altering the host response. The unique signatures of 11 microRNAs may deserve further evaluation as candidates for biomarkers in the diagnosis of MTB and Beijing/W infections.
Collapse
Affiliation(s)
- Lin Zheng
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Eric Leung
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Nelson Lee
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Grace Lui
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ka-Fai To
- Department of Anatomical & Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Raphael C. Y. Chan
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Margaret Ip
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, China
- * E-mail:
| |
Collapse
|
18
|
von Both U, Kaforou M, Levin M, Newton SM. Understanding immune protection against tuberculosis using RNA expression profiling. Vaccine 2015; 33:5289-93. [PMID: 26006085 PMCID: PMC4582769 DOI: 10.1016/j.vaccine.2015.05.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/24/2015] [Accepted: 05/08/2015] [Indexed: 11/30/2022]
Abstract
A major limitation in the development and testing of new tuberculosis (TB) vaccines is the current inadequate understanding of the nature of the immune response required for protection against either infection with Mycobacterium tuberculosis (MTB) or progression to disease. Genome wide RNA expression analysis has provided a new tool with which to study the inflammatory and immunological response to mycobacteria. To explore how currently available transcriptomic data might be used to understand the basis of protective immunity to MTB, we analysed and reviewed published RNA expression studies to (1) identify a “susceptible” immune response in patients with acquired defects in the interferon gamma pathway; (2) identify the “failing” transcriptomic response in patients with TB as compared with latent TB infection (LTBI); and (3) identify elements of the “protective” response in healthy latently infected and healthy uninfected individuals.
Collapse
Affiliation(s)
- Ulrich von Both
- Section of Paediatrics and Wellcome Trust Centre for Clinical Tropical Medicine, Division of Infectious Diseases, Department of Medicine, Imperial College London, United Kingdom
| | - Myrsini Kaforou
- Section of Paediatrics and Wellcome Trust Centre for Clinical Tropical Medicine, Division of Infectious Diseases, Department of Medicine, Imperial College London, United Kingdom; Department of Genomics of Common Disease, School of Public Health, Imperial College London, London, United Kingdom
| | - Michael Levin
- Section of Paediatrics and Wellcome Trust Centre for Clinical Tropical Medicine, Division of Infectious Diseases, Department of Medicine, Imperial College London, United Kingdom.
| | - Sandra M Newton
- Section of Paediatrics and Wellcome Trust Centre for Clinical Tropical Medicine, Division of Infectious Diseases, Department of Medicine, Imperial College London, United Kingdom
| |
Collapse
|
19
|
A derived network-based interferon-related signature of human macrophages responding to Mycobacterium tuberculosis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:713071. [PMID: 25371902 PMCID: PMC4209755 DOI: 10.1155/2014/713071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 07/09/2014] [Accepted: 07/11/2014] [Indexed: 12/11/2022]
Abstract
Network analysis of transcriptional signature typically relies on direct interaction between two highly expressed genes. However, this approach misses indirect and biological relevant interactions through a third factor (hub). Here we determine whether a hub-based network analysis can select an improved signature subset that correlates with a biological change in a stronger manner than the original signature. We have previously reported an interferon-related transcriptional signature (THP1r2Mtb-induced) from Mycobacterium tuberculosis (M. tb)-infected THP-1 human macrophage. We selected hub-connected THP1r2Mtb-induced genes into the refined network signature TMtb-iNet and grouped the excluded genes into the excluded signature TMtb-iEx. TMtb-iNet retained the enrichment of binding sites of interferon-related transcription factors and contained relatively more interferon-related interacting genes when compared to THP1r2Mtb-induced signature. TMtb-iNet correlated as strongly as THP1r2Mtb-induced signature on a public transcriptional dataset of patients with pulmonary tuberculosis (PTB). TMtb-iNet correlated more strongly in CD4(+) and CD8(+) T cells from PTB patients than THP1r2Mtb-induced signature and TMtb-iEx. When TMtb-iNet was applied to data during clinical therapy of tuberculosis, it resulted in the most pronounced response and the weakest correlation. Correlation on dataset from patients with AIDS or malaria was stronger for TMtb-iNet, indicating an involvement of TMtb-iNet in these chronic human infections. Collectively, the significance of this work is twofold: (1) we disseminate a hub-based approach in generating a biologically meaningful and clinically useful signature; (2) using this approach we introduce a new network-based signature and demonstrate its promising applications in understanding host responses to infections.
Collapse
|
20
|
McNab FW, Ewbank J, Howes A, Moreira-Teixeira L, Martirosyan A, Ghilardi N, Saraiva M, O'Garra A. Type I IFN induces IL-10 production in an IL-27-independent manner and blocks responsiveness to IFN-γ for production of IL-12 and bacterial killing in Mycobacterium tuberculosis-infected macrophages. THE JOURNAL OF IMMUNOLOGY 2014; 193:3600-12. [PMID: 25187652 PMCID: PMC4170673 DOI: 10.4049/jimmunol.1401088] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tuberculosis, caused by the intracellular bacterium Mycobacterium tuberculosis, currently causes ∼1.4 million deaths per year, and it therefore remains a leading global health problem. The immune response during tuberculosis remains incompletely understood, particularly regarding immune factors that are harmful rather than protective to the host. Overproduction of the type I IFN family of cytokines is associated with exacerbated tuberculosis in both mouse models and in humans, although the mechanisms by which type I IFN promotes disease are not well understood. We have investigated the effect of type I IFN on M. tuberculosis–infected macrophages and found that production of host-protective cytokines such as TNF-α, IL-12, and IL-1β is inhibited by exogenous type I IFN, whereas production of immunosuppressive IL-10 is promoted in an IL-27–independent manner. Furthermore, much of the ability of type I IFN to inhibit cytokine production was mediated by IL-10. Additionally, type I IFN compromised macrophage activation by the lymphoid immune response through severely disrupting responsiveness to IFN-γ, including M. tuberculosis killing. These findings describe important mechanisms by which type I IFN inhibits the immune response during tuberculosis.
Collapse
Affiliation(s)
- Finlay W McNab
- Division of Immunoregulation, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom;
| | - John Ewbank
- Division of Immunoregulation, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Ashleigh Howes
- Division of Immunoregulation, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Lucia Moreira-Teixeira
- Division of Immunoregulation, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom; Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, 4710-057 Braga, Portugal; Life and Health Sciences Research Institute and Biomaterials, Biodegradables and Biomimetics Research Group, Portugal Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal; and
| | - Anna Martirosyan
- Division of Immunoregulation, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Nico Ghilardi
- Department of Immunology, Genentech, Inc., South San Francisco, CA 94080
| | - Margarida Saraiva
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, 4710-057 Braga, Portugal; Life and Health Sciences Research Institute and Biomaterials, Biodegradables and Biomimetics Research Group, Portugal Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal; and
| | - Anne O'Garra
- Division of Immunoregulation, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom
| |
Collapse
|
21
|
Malireddi RKS, Kanneganti TD. Role of type I interferons in inflammasome activation, cell death, and disease during microbial infection. Front Cell Infect Microbiol 2013; 3:77. [PMID: 24273750 PMCID: PMC3824101 DOI: 10.3389/fcimb.2013.00077] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 10/24/2013] [Indexed: 12/17/2022] Open
Abstract
Interferons (IFNs) were discovered over a half-century ago as antiviral factors. The role of type I IFNs has been studied in the pathogenesis of both acute and chronic microbial infections. Deregulated type I IFN production results in a damaging cascade of cell death, inflammation, and immunological host responses that can lead to tissue injury and disease progression. Here, we summarize the role of type I IFNs in the regulation of cell death and disease during different microbial infections, ranging from viruses and bacteria to fungal pathogens. Understanding the specific mechanisms driving type I IFN-mediated cell death and disease could aid in the development of targeted therapies.
Collapse
|
22
|
Systems approaches to studying the immune response in tuberculosis. Curr Opin Immunol 2013; 25:579-87. [DOI: 10.1016/j.coi.2013.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/22/2013] [Indexed: 01/24/2023]
|
23
|
Guerreiro LTA, Robottom-Ferreira AB, Ribeiro-Alves M, Toledo-Pinto TG, Rosa Brito T, Rosa PS, Sandoval FG, Jardim MR, Antunes SG, Shannon EJ, Sarno EN, Pessolani MCV, Williams DL, Moraes MO. Gene expression profiling specifies chemokine, mitochondrial and lipid metabolism signatures in leprosy. PLoS One 2013; 8:e64748. [PMID: 23798993 PMCID: PMC3683049 DOI: 10.1371/journal.pone.0064748] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/16/2013] [Indexed: 11/18/2022] Open
Abstract
Herein, we performed microarray experiments in Schwann cells infected with live M. leprae and identified novel differentially expressed genes (DEG) in M. leprae infected cells. Also, we selected candidate genes associated or implicated with leprosy in genetic studies and biological experiments. Forty-seven genes were selected for validation in two independent types of samples by multiplex qPCR. First, an in vitro model using THP-1 cells was infected with live Mycobacterium leprae and M. bovis bacillus Calmette-Guérin (BCG). In a second situation, mRNA obtained from nerve biopsies from patients with leprosy or other peripheral neuropathies was tested. We detected DEGs that discriminate M. bovis BCG from M. leprae infection. Specific signatures of susceptible responses after M. leprae infection when compared to BCG lead to repression of genes, including CCL2, CCL3, IL8 and SOD2. The same 47-gene set was screened in nerve biopsies, which corroborated the down-regulation of CCL2 and CCL3 in leprosy, but also evidenced the down-regulation of genes involved in mitochondrial metabolism, and the up-regulation of genes involved in lipid metabolism and ubiquitination. Finally, a gene expression signature from DEG was identified in patients confirmed of having leprosy. A classification tree was able to ascertain 80% of the cases as leprosy or non-leprous peripheral neuropathy based on the expression of only LDLR and CCL4. A general immune and mitochondrial hypo-responsive state occurs in response to M. leprae infection. Also, the most important genes and pathways have been highlighted providing new tools for early diagnosis and treatment of leprosy.
Collapse
Affiliation(s)
| | | | - Marcelo Ribeiro-Alves
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ-RJ, Rio de Janeiro, Brazil
- Laboratório de Pesquisa em Farmacogenética, Instituto de Pesquisa Clínica Evandro Chagas (IPEC), FIOCRUZ-RJ, Rio de Janeiro, Brazil
| | - Thiago Gomes Toledo-Pinto
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ-RJ, Rio de Janeiro, Brazil
| | - Tiana Rosa Brito
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ-RJ, Rio de Janeiro, Brazil
| | | | - Felipe Galvan Sandoval
- Health Resources and Services Administration (HRSA), Bureau of Primary Health Care (BPHC), Division of National Hansen's Disease Programs, Laboratory Research Branch at the School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Márcia Rodrigues Jardim
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ-RJ, Rio de Janeiro, Brazil
| | - Sérgio Gomes Antunes
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ-RJ, Rio de Janeiro, Brazil
| | - Edward J. Shannon
- Health Resources and Services Administration (HRSA), Bureau of Primary Health Care (BPHC), Division of National Hansen's Disease Programs, Laboratory Research Branch at the School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Euzenir Nunes Sarno
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ-RJ, Rio de Janeiro, Brazil
| | | | - Diana Lynn Williams
- Health Resources and Services Administration (HRSA), Bureau of Primary Health Care (BPHC), Division of National Hansen's Disease Programs, Laboratory Research Branch at the School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Milton Ozório Moraes
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ-RJ, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|