1
|
Verma SK, Kumar S, Sheikh I, Malik S, Mathpal P, Chugh V, Kumar S, Prasad R, Dhaliwal HS. Transfer of useful variability of high grain iron and zinc from Aegilops kotschyi into wheat through seed irradiation approach. Int J Radiat Biol 2016; 92:132-9. [PMID: 26883304 DOI: 10.3109/09553002.2016.1135263] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To transfer the 2S chromosomal fragment(s) of Aegilops kotschyi (2S(k)) into the bread wheat genome which could lead to the biofortification of wheat with high grain iron and zinc content. MATERIALS AND METHODS Wheat-Ae. kotschyi 2A/2S(k) substitution lines with high grain iron and zinc content were used to transfer the gene/loci for high grain Fe and Zn content into wheat using seed irradiation approach. RESULTS Bread wheat plants derived from 40 krad-irradiated seeds showed the presence of univalents and multivalents during meiotic metaphase-I. Genomic in situ hybridization analysis of seed irradiation hybrid F2 seedlings showed several terminal and interstitial signals indicated the introgression of Ae. kotschyi chromosome segments. This proves the efficacy of seed radiation hybrid approach in gene transfer experiments. All the radiation-treated hybrid plants with high grain Fe and Zn content were analyzed with wheat group 2 chromosome-specific polymorphic simple sequence repeat markers to identify the introgression of small alien chromosome fragment(s). CONCLUSION Radiation-induced hybrids showed more than 65% increase in grain iron and 54% increase in Zn contents with better harvest index than the elite wheat cultivar WL711 indicating effective and compensating translocations of 2S(k) fragments into wheat genome.
Collapse
Affiliation(s)
- Shailender Kumar Verma
- a School of Life Sciences , Central University of Himachal Pradesh , Dharamshala, Kangra , Himachal Pradesh ;,b Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand
| | - Satish Kumar
- b Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand
| | - Imran Sheikh
- c Akal College of Agriculture , Eternal University , Baru-Sahib , Sirmour , Himachal Pradesh
| | - Sachin Malik
- d Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities , G. B. Pant University of Agriculture and Technology , Pantnagar , Uttarakhand , India
| | - Priyanka Mathpal
- d Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities , G. B. Pant University of Agriculture and Technology , Pantnagar , Uttarakhand , India
| | - Vishal Chugh
- c Akal College of Agriculture , Eternal University , Baru-Sahib , Sirmour , Himachal Pradesh
| | - Sundip Kumar
- d Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities , G. B. Pant University of Agriculture and Technology , Pantnagar , Uttarakhand , India
| | - Ramasare Prasad
- b Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand
| | | |
Collapse
|
2
|
Barabaschi D, Magni F, Volante A, Gadaleta A, Šimková H, Scalabrin S, Prazzoli ML, Bagnaresi P, Lacrima K, Michelotti V, Desiderio F, Orrù L, Mazzamurro V, Fricano A, Mastrangelo A, Tononi P, Vitulo N, Jurman I, Frenkel Z, Cattonaro F, Morgante M, Blanco A, Doležel J, Delledonne M, Stanca AM, Cattivelli L, Valè G. Physical Mapping of Bread Wheat Chromosome 5A: An Integrated Approach. THE PLANT GENOME 2015; 8:eplantgenome2015.03.0011. [PMID: 33228274 DOI: 10.3835/plantgenome2015.03.0011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/21/2015] [Indexed: 06/11/2023]
Abstract
The huge size, redundancy, and highly repetitive nature of the bread wheat [Triticum aestivum (L.)] genome, makes it among the most difficult species to be sequenced. To overcome these limitations, a strategy based on the separation of individual chromosomes or chromosome arms and the subsequent production of physical maps was established within the frame of the International Wheat Genome Sequence Consortium (IWGSC). A total of 95,812 bacterial artificial chromosome (BAC) clones of short-arm chromosome 5A (5AS) and long-arm chromosome 5A (5AL) arm-specific BAC libraries were fingerprinted and assembled into contigs by complementary analytical approaches based on the FingerPrinted Contig (FPC) and Linear Topological Contig (LTC) tools. Combined anchoring approaches based on polymerase chain reaction (PCR) marker screening, microarray, and sequence homology searches applied to several genomic tools (i.e., genetic maps, deletion bin map, neighbor maps, BAC end sequences (BESs), genome zipper, and chromosome survey sequences) allowed the development of a high-quality physical map with an anchored physical coverage of 75% for 5AS and 53% for 5AL with high portions (64 and 48%, respectively) of contigs ordered along the chromosome. In the genome of grasses, Brachypodium [Brachypodium distachyon (L.) Beauv.], rice (Oryza sativa L.), and sorghum [Sorghum bicolor (L.) Moench] homologs of genes on wheat chromosome 5A were separated into syntenic blocks on different chromosomes as a result of translocations and inversions during evolution. The physical map presented represents an essential resource for fine genetic mapping and map-based cloning of agronomically relevant traits and a reference for the 5A sequencing projects.
Collapse
Affiliation(s)
- Delfina Barabaschi
- Council for Agricultural Research and Economics (CREA)-Genomics Research Centre, Fiorenzuola d'Arda, Piacenza, I-29017
| | | | - Andrea Volante
- Council for Agricultural Research and Economics (CREA)-Genomics Research Centre, Fiorenzuola d'Arda, Piacenza, I-29017
| | - Agata Gadaleta
- Dep. of Soil, Plant and Food Sciences, Section of Genetic and Plant Breeding, Univ. of Bari, Bari, I-70126
| | - Hana Šimková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, CZ-77200
| | | | - Maria Lucia Prazzoli
- Council for Agricultural Research and Economics (CREA)-Genomics Research Centre, Fiorenzuola d'Arda, Piacenza, I-29017
| | - Paolo Bagnaresi
- Council for Agricultural Research and Economics (CREA)-Genomics Research Centre, Fiorenzuola d'Arda, Piacenza, I-29017
| | - Katia Lacrima
- Council for Agricultural Research and Economics (CREA)-Genomics Research Centre, Fiorenzuola d'Arda, Piacenza, I-29017
| | - Vania Michelotti
- Council for Agricultural Research and Economics (CREA)-Genomics Research Centre, Fiorenzuola d'Arda, Piacenza, I-29017
| | - Francesca Desiderio
- Council for Agricultural Research and Economics (CREA)-Genomics Research Centre, Fiorenzuola d'Arda, Piacenza, I-29017
| | - Luigi Orrù
- Council for Agricultural Research and Economics (CREA)-Genomics Research Centre, Fiorenzuola d'Arda, Piacenza, I-29017
| | - Valentina Mazzamurro
- Dep. of Life Sciences, Univ. of Modena and Reggio Emilia, Reggio Emilia, I-42100
| | | | - AnnaMaria Mastrangelo
- Council for Agricultural Research and Economics (CREA)-Cereal Research Centre, Foggia, I-71122
| | - Paola Tononi
- Dep. of Biotechnology, Univ. of Verona, Verona, I-37129
| | - Nicola Vitulo
- CRIBI Biotechnology Center, Univ. of Padova, Padova, I-35121
| | | | - Zeev Frenkel
- Institute of Evolution and Dep. of Evolutionary and Environmental Biology, Univ. of Haifa, Haifa, IL-3498838
| | | | | | - Antonio Blanco
- Dep. of Soil, Plant and Food Sciences, Section of Genetic and Plant Breeding, Univ. of Bari, Bari, I-70126
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, CZ-77200
| | | | - Antonio M Stanca
- Council for Agricultural Research and Economics (CREA)-Genomics Research Centre, Fiorenzuola d'Arda, Piacenza, I-29017
- Dep. of Life Sciences, Univ. of Modena and Reggio Emilia, Reggio Emilia, I-42100
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics (CREA)-Genomics Research Centre, Fiorenzuola d'Arda, Piacenza, I-29017
| | - Giampiero Valè
- Council for Agricultural Research and Economics (CREA)-Genomics Research Centre, Fiorenzuola d'Arda, Piacenza, I-29017
- Council for Agricultural Research and Economics (CREA)-Rice Research Unit, Vercelli, I-13100
| |
Collapse
|
3
|
Bassi FM, Kumar A, Zhang Q, Paux E, Huttner E, Kilian A, Dizon R, Feuillet C, Xu SS, Kianian SF. Radiation hybrid QTL mapping of Tdes2 involved in the first meiotic division of wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1977-1990. [PMID: 23715938 DOI: 10.1007/s00122-013-2111-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 04/20/2013] [Indexed: 06/02/2023]
Abstract
Since the dawn of wheat cytogenetics, chromosome 3B has been known to harbor a gene(s) that, when removed, causes chromosome desynapsis and gametic sterility. The lack of natural genetic diversity for this gene(s) has prevented any attempt to fine map and further characterize it. Here, gamma radiation treatment was used to create artificial diversity for this locus. A total of 696 radiation hybrid lines were genotyped with a custom mini array of 140 DArT markers, selected to evenly span the whole 3B chromosome. The resulting map spanned 2,852 centi Ray with a calculated resolution of 0.384 Mb. Phenotyping for the occurrence of meiotic desynapsis was conducted by measuring the level of gametic sterility as seeds produced per spikelet and pollen viability at booting. Composite interval mapping revealed a single QTL with LOD of 16.2 and r (2) of 25.6 % between markers wmc326 and wPt-8983 on the long arm of chromosome 3B. By independent analysis, the location of the QTL was confirmed to be within the deletion bin 3BL7-0.63-1.00 and to correspond to a single gene located ~1.4 Mb away from wPt-8983. The meiotic behavior of lines lacking this gene was characterized cytogenetically to reveal striking similarities with mutants for the dy locus, located on the syntenic chromosome 3 of maize. This represents the first example to date of employing radiation hybrids for QTL analysis. The success achieved by this approach provides an ideal starting point for the final cloning of this interesting gene involved in meiosis of cereals.
Collapse
Affiliation(s)
- F M Bassi
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|