1
|
Li Q, Pan Z, Zhang Z, Tang H, Cai J, Zeng X, Li Z. β-Glucan content increase in Waxy-mutated barley is closely associated with positive stress responses and is regulated by ASR1. Carbohydr Polym 2025; 347:122536. [PMID: 39486912 DOI: 10.1016/j.carbpol.2024.122536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/30/2024] [Accepted: 07/22/2024] [Indexed: 11/04/2024]
Abstract
Mixed-linkage (1,3; 1,4)-β-D-glucan (MLG) impacts the food and industrial end-uses of barley, but the molecular mechanism of variations in MLG content remains unclear. MLG content usually increases in Waxy-mutated barley. This study applied transcriptomic, proteomic, and metabolomic analyses to Waxy-mutated recombinant inbred lines with higher MLG content and wild-type lines with lower MLG content, and identified candidate genes and pathways regulating MLG content through combining preliminary gene function analysis. MLG biosynthesis differed significantly during late grain development in the Waxy-mutated and wild-type barley lines. The MLG increase was closely associated with strongly active sugar and starch metabolism and stress-responsive plant hormones, particularly abscisic acid (ABA) signaling process. Stress-responsive transcript factors ILR3, BTF3, RGGA, and PR13 protein bind to CslF6, which is critical for barley MLG biosynthesis, and the stress-responsive gene ASR1 also had a positive effect on MLG increase. Waxy mutation enhances barley stress responses by activating ABA- or other stress-responsive plant hormones signaling processes, which facilitates MLG biosynthesis. This study provides a new approach for elucidating the variations in MLG content of barley grains.
Collapse
Affiliation(s)
- Qiao Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China
| | - Zhifen Pan
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China.
| | - Zhihui Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, People's Republic of China
| | - Hongmei Tang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China
| | - Jingchi Cai
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China; University of the Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100039, People's Republic of China
| | - Xingquan Zeng
- Tibet Academy of Agriculture and Animal Sciences, No. 130 Jinzhu West Road, Lhasa 850032, People's Republic of China
| | - Zhongyi Li
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601, Australia
| |
Collapse
|
2
|
Romero‐Pérez PS, Martínez‐Castro LV, Linares A, Arroyo‐Mosso I, Sánchez‐Puig N, Cuevas‐Velazquez CL, Sukenik S, Guerrero A, Covarrubias AA. Self-association and multimer formation in AtLEA4-5, a desiccation-induced intrinsically disordered protein from plants. Protein Sci 2024; 33:e5192. [PMID: 39467203 PMCID: PMC11516066 DOI: 10.1002/pro.5192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/18/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024]
Abstract
During seed maturation, plants may experience severe desiccation, leading to the accumulation of late embryogenesis abundant (LEA) proteins. These intrinsically disordered proteins also accumulate in plant tissues under water deficit. Functional roles of LEA proteins have been proposed based on in vitro studies, where monomers are considered as the functional units. However, the potential formation of homo-oligomers has been little explored. In this work, we investigated the potential self-association of Arabidopsis thaliana group 4 LEA proteins (AtLEA4) using in vitro and in vivo approaches. LEA4 proteins represent a compelling case of study due to their high conservation throughout the plant kingdom. This protein family is characterized by a conserved N-terminal region, with a high alpha-helix propensity and invitro protective activity, as compared to the highly disordered and low-conserved C-terminal region. Our findings revealed that full-length AtLEA4 proteins oligomerize and that both terminal regions are sufficient for self-association in vitro. However, the ability of both amino and carboxy regions of AtLEA4-5 to self-associate invivo is significantly lower than that of the entire protein. Using high-resolution and quantitative fluorescence microscopy, we were able to disclose the unreported ability of LEA proteins to form high-order oligomers in planta. Additionally, we found that high-order complexes require the simultaneous engagement of both terminal regions, indicating that the entire protein is needed to attain such structural organization. This research provides valuable insights into the self-association of LEA proteins in plants and emphasizes the role of protein oligomer formation.
Collapse
Affiliation(s)
- Paulette Sofía Romero‐Pérez
- Departamento de Biología Molecular de Plantas, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
| | - Laura V. Martínez‐Castro
- Departamento de Biología Molecular de Plantas, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
| | - Alejandro Linares
- Laboratorio Nacional de Microscopía AvanzadaInstituto de Biotecnología, Universidad Nacional Autónoma de MéxicoCuernavacaMexico
| | - Inti Arroyo‐Mosso
- Departamento de Biología Molecular de Plantas, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
| | - Nuria Sánchez‐Puig
- Departamento de Química de BiomacromoléculasInstituto de Química, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Cesar L. Cuevas‐Velazquez
- Departamento de Bioquímica, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Shahar Sukenik
- Department of Chemistry and BiochemistryUniversity of California at MercedMercedCaliforniaUSA
| | - Adán Guerrero
- Laboratorio Nacional de Microscopía AvanzadaInstituto de Biotecnología, Universidad Nacional Autónoma de MéxicoCuernavacaMexico
| | - Alejandra A. Covarrubias
- Departamento de Biología Molecular de Plantas, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
| |
Collapse
|
3
|
Wang Q, Tang Y, Li Y, Ren J, Zuo H, Cheng P, Li Q, Wang B. Abscisic acid-, stress-, ripening-induced 2 like protein, TaASR2L, promotes wheat resistance to stripe rust. MOLECULAR PLANT PATHOLOGY 2024; 25:e70028. [PMID: 39523576 PMCID: PMC11551255 DOI: 10.1111/mpp.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive wheat diseases. The plant hormone abscisic acid (ABA) plays a key regulatory role in plant response to stress. ABA-, stress-, ripening-induced proteins (ASR) have been shown to be abundantly induced in response to biotic and abiotic stresses to protect plants from damage. However, the function of wheat ASR2-like protein (TaASR2L) in plants under biotic stress remains unclear. In this study, transient silencing of TaASR2L using a virus-induced gene silencing system substantially reduced wheat resistance to Pst. TaASR2L interaction with serine/arginine-rich splicing factor SR30-like (TaSR30) was validated mainly in the nucleus. Knockdown of TaSR30 expression substantially reduced wheat resistance to Pst. Overexpression of TaASR2L and TaSR30 demonstrated that they can promote the expression of ABA- and resistance-related genes to enhance wheat resistance to Pst. In addition, the expression levels of TaSR30 and TaASR2L were substantially increased by exogenous ABA, and the resistance of wheat to Pst was increased, and the expression of PR genes was induced. Therefore, these results suggest that TaASR2L interacts with TaSR30 by promoting PR genes expression and enhancing wheat resistance to Pst.
Collapse
Affiliation(s)
- Qiao Wang
- Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Yaqi Tang
- Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Ying Li
- Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Jun Ren
- Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Hongxu Zuo
- Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Peng Cheng
- Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Qiang Li
- Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Baotong Wang
- Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
4
|
Zheng P, Liu M, Pang L, Sun R, Yao M, Wang X, Kang Z, Liu J. Stripe rust effector Pst21674 compromises wheat resistance by targeting transcription factor TaASR3. PLANT PHYSIOLOGY 2023; 193:2806-2824. [PMID: 37706535 DOI: 10.1093/plphys/kiad497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023]
Abstract
Pathogens compromise host defense responses by strategically secreting effector proteins. However, the molecular mechanisms by which effectors manipulate disease-resistance factors to evade host surveillance remain poorly understood. In this study, we characterized a Puccinia striiformis f. sp. tritici (Pst) effector Pst21674 with a signal peptide. Pst21674 was significantly upregulated during Pst infections in wheat (Triticum aestivum L.) and knocking down Pst21674 by host-induced gene silencing led to reduced Pst pathogenicity and restricted hyphal spread in wheat. Pst21674 interaction with the abscisic acid-, stress-, and ripening-induced protein TaASR3 was validated mainly in the nucleus. Size exclusion chromatography, bimolecular fluorescence complementation, and luciferase complementation imaging assays confirmed that TaASR3 could form a functional tetramer. Virus-induced gene silencing and overexpression demonstrated that TaASR3 contributes to wheat resistance to stripe rust by promoting accumulation of reactive oxygen species and cell death. Additionally, transcriptome analysis revealed that the expression of defense-related genes was regulated in transgenic wheat plants overexpressing TaASR3. Interaction between Pst21674 and TaASR3 interfered with the polymerization of TaASR3 and suppressed TaASR3-mediated transcriptional activation of defense-related genes. These results indicate that Pst21674 serves as an important virulence factor secreted into the host nucleus to impede wheat resistance to Pst, possibly by targeting and preventing polymerization of TaASR3.
Collapse
Affiliation(s)
- Peijing Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mengxue Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lijing Pang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ruyi Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mohan Yao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
5
|
Hernández-Sánchez IE, Maruri-López I, Martinez-Martinez C, Janis B, Jiménez-Bremont JF, Covarrubias AA, Menze MA, Graether SP, Thalhammer A. LEAfing through literature: late embryogenesis abundant proteins coming of age-achievements and perspectives. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6525-6546. [PMID: 35793147 DOI: 10.1093/jxb/erac293] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
To deal with increasingly severe periods of dehydration related to global climate change, it becomes increasingly important to understand the complex strategies many organisms have developed to cope with dehydration and desiccation. While it is undisputed that late embryogenesis abundant (LEA) proteins play a key role in the tolerance of plants and many anhydrobiotic organisms to water limitation, the molecular mechanisms are not well understood. In this review, we summarize current knowledge of the physiological roles of LEA proteins and discuss their potential molecular functions. As these are ultimately linked to conformational changes in the presence of binding partners, post-translational modifications, or water deprivation, we provide a detailed summary of current knowledge on the structure-function relationship of LEA proteins, including their disordered state in solution, coil to helix transitions, self-assembly, and their recently discovered ability to undergo liquid-liquid phase separation. We point out the promising potential of LEA proteins in biotechnological and agronomic applications, and summarize recent advances. We identify the most relevant open questions and discuss major challenges in establishing a solid understanding of how these intriguing molecules accomplish their tasks as cellular sentinels at the limits of surviving water scarcity.
Collapse
Affiliation(s)
- Itzell E Hernández-Sánchez
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Israel Maruri-López
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Coral Martinez-Martinez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Brett Janis
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Juan Francisco Jiménez-Bremont
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, 78216, San Luis Potosí, Mexico
| | - Alejandra A Covarrubias
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Michael A Menze
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Steffen P Graether
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Anja Thalhammer
- Department of Physical Biochemistry, University of Potsdam, D-14476 Potsdam, Germany
| |
Collapse
|
6
|
Lecoy J, Sachin Ranade S, Rosario García-Gil M. Analysis of the ASR and LP3 homologous gene families reveal positive selection acting on LP3-3 gene. Gene 2022; 850:146935. [DOI: 10.1016/j.gene.2022.146935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022]
|
7
|
Parrilla J, Medici A, Gaillard C, Verbeke J, Gibon Y, Rolin D, Laloi M, Finkelstein RR, Atanassova R. Grape ASR Regulates Glucose Transport, Metabolism and Signaling. Int J Mol Sci 2022; 23:ijms23116194. [PMID: 35682874 PMCID: PMC9181829 DOI: 10.3390/ijms23116194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
To decipher the mediator role of the grape Abscisic acid, Stress, Ripening (ASR) protein, VvMSA, in the pathways of glucose signaling through the regulation of its target, the promoter of hexose transporter VvHT1, we overexpressed and repressed VvMSA in embryogenic and non-embryogenic grapevine cells. The embryogenic cells with organized cell proliferation were chosen as an appropriate model for high sensitivity to the glucose signal, due to their very low intracellular glucose content and low glycolysis flux. In contrast, the non-embryogenic cells displaying anarchic cell proliferation, supported by high glycolysis flux and a partial switch to fermentation, appeared particularly sensitive to inhibitors of glucose metabolism. By using different glucose analogs to discriminate between distinct pathways of glucose signal transduction, we revealed VvMSA positioning as a transcriptional regulator of the glucose transporter gene VvHT1 in glycolysis-dependent glucose signaling. The effects of both the overexpression and repression of VvMSA on glucose transport and metabolism via glycolysis were analyzed, and the results demonstrated its role as a mediator in the interplay of glucose metabolism, transport and signaling. The overexpression of VvMSA in the Arabidopsis mutant abi8 provided evidence for its partial functional complementation by improving glucose absorption activity.
Collapse
Affiliation(s)
- Jonathan Parrilla
- UMR CNRS 7267 Écologie et Biologie des Interactions, Équipe Sucres & Echanges Végétaux Environnement, Université de Poitiers, 3 Rue Jacques Fort, 86073 Poitiers, France; (J.P.); (A.M.); (C.G.); (J.V.); (M.L.)
| | - Anna Medici
- UMR CNRS 7267 Écologie et Biologie des Interactions, Équipe Sucres & Echanges Végétaux Environnement, Université de Poitiers, 3 Rue Jacques Fort, 86073 Poitiers, France; (J.P.); (A.M.); (C.G.); (J.V.); (M.L.)
- Institut des Sciences des Plantes de Montpellier (IPSiM), UMR CNRS/INRAE/Institut Agro/Université de Montpellier, 2 Place Pierre Viala, 34000 Montpellier, France
| | - Cécile Gaillard
- UMR CNRS 7267 Écologie et Biologie des Interactions, Équipe Sucres & Echanges Végétaux Environnement, Université de Poitiers, 3 Rue Jacques Fort, 86073 Poitiers, France; (J.P.); (A.M.); (C.G.); (J.V.); (M.L.)
| | - Jérémy Verbeke
- UMR CNRS 7267 Écologie et Biologie des Interactions, Équipe Sucres & Echanges Végétaux Environnement, Université de Poitiers, 3 Rue Jacques Fort, 86073 Poitiers, France; (J.P.); (A.M.); (C.G.); (J.V.); (M.L.)
- GReD-UMR CNRS 6293/INSERM U1103, CRBC, Faculté de Médecine, Université Clermont-Auvergne, 28 Place Henri Dunant, 63001 Clermont-Ferrand, France
| | - Yves Gibon
- UMR 1332 Biologie du Fruit et Pathologie (BFP), INRA, Université de Bordeaux, 33882 Bordeaux, France; (Y.G.); (D.R.)
| | - Dominique Rolin
- UMR 1332 Biologie du Fruit et Pathologie (BFP), INRA, Université de Bordeaux, 33882 Bordeaux, France; (Y.G.); (D.R.)
| | - Maryse Laloi
- UMR CNRS 7267 Écologie et Biologie des Interactions, Équipe Sucres & Echanges Végétaux Environnement, Université de Poitiers, 3 Rue Jacques Fort, 86073 Poitiers, France; (J.P.); (A.M.); (C.G.); (J.V.); (M.L.)
| | - Ruth R. Finkelstein
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA;
| | - Rossitza Atanassova
- UMR CNRS 7267 Écologie et Biologie des Interactions, Équipe Sucres & Echanges Végétaux Environnement, Université de Poitiers, 3 Rue Jacques Fort, 86073 Poitiers, France; (J.P.); (A.M.); (C.G.); (J.V.); (M.L.)
- Correspondence:
| |
Collapse
|
8
|
Proteomic Studies of Roots in Hypoxia-Sensitive and -Tolerant Tomato Accessions Reveal Candidate Proteins Associated with Stress Priming. Cells 2022; 11:cells11030500. [PMID: 35159309 PMCID: PMC8834170 DOI: 10.3390/cells11030500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 01/08/2023] Open
Abstract
Tomato (Solanum lycopersicum L.) is a vegetable frequently exposed to hypoxia stress induced either by being submerged, flooded or provided with limited oxygen in hydroponic cultivation systems. The purpose of the study was to establish the metabolic mechanisms responsible for overcoming hypoxia in two tomato accessions with different tolerance to this stress, selected based on morphological and physiological parameters. For this purpose, 3-week-old plants (plants at the juvenile stage) of waterlogging-tolerant (WL-T), i.e., POL 7/15, and waterlogging-sensitive (WL-S), i.e., PZ 215, accessions were exposed to hypoxia stress (waterlogging) for 7 days, then the plants were allowed to recover for 14 days, after which another 7 days of hypoxia treatment was applied. Root samples were collected at the end of each time-point and 2D-DIGE with MALDI TOF/TOF, and expression analyses of gene and protein-encoded alcohol dehydrogenase (ADH2) and immunolabelling of ADH were conducted. After collating the obtained results, the different responses to hypoxia stress in the selected tomato accessions were observed. Both the WL-S and WL-T tomato accessions revealed a high amount of ADH2, which indicates an intensive alcohol fermentation pathway during the first exposure to hypoxia. In comparison to the tolerant one, the expression of the adh2 gene was about two times higher for the sensitive tomato. Immunohistochemical analysis confirmed the presence of ADH in the parenchyma cells of the cortex and vascular tissue. During the second hypoxia stress, the sensitive accession showed a decreased accumulation of ADH protein and similar expression of the adh2 gene in comparison to the tolerant accession. Additionally, the proteome showed a greater protein abundance of glyceraldehyde-3-phosphate dehydrogenase in primed WL-S tomato. This could suggest that the sensitive tomato overcomes the oxygen limitation and adapts by reducing alcohol fermentation, which is toxic to plants because of the production of ethanol, and by enhancing glycolysis. Proteins detected in abundance in the sensitive accession are proposed as crucial factors for hypoxia stress priming and their function in hypoxia tolerance is discussed.
Collapse
|
9
|
Grape ASR-Silencing Sways Nuclear Proteome, Histone Marks and Interplay of Intrinsically Disordered Proteins. Int J Mol Sci 2022; 23:ijms23031537. [PMID: 35163458 PMCID: PMC8835812 DOI: 10.3390/ijms23031537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023] Open
Abstract
In order to unravel the functions of ASR (Abscisic acid, Stress, Ripening-induced) proteins in the nucleus, we created a new model of genetically transformed grape embryogenic cells by RNAi-knockdown of grape ASR (VvMSA). Nuclear proteomes of wild-type and VvMSA-RNAi grape cell lines were analyzed by quantitative isobaric tagging (iTRAQ 8-plex). The most significantly up- or down-regulated nuclear proteins were involved in epigenetic regulation, DNA replication/repair, transcription, mRNA splicing/stability/editing, rRNA processing/biogenesis, metabolism, cell division/differentiation and stress responses. The spectacular up-regulation in VvMSA-silenced cells was that of the stress response protein VvLEA D-29 (Late Embryogenesis Abundant). Both VvMSA and VvLEA D-29 genes displayed strong and contrasted responsiveness to auxin depletion, repression of VvMSA and induction of VvLEA D-29. In silico analysis of VvMSA and VvLEA D-29 proteins highlighted their intrinsically disordered nature and possible compensatory relationship. Semi-quantitative evaluation by medium-throughput immunoblotting of eighteen post-translational modifications of histones H3 and H4 in VvMSA-knockdown cells showed significant enrichment/depletion of the histone marks H3K4me1, H3K4me3, H3K9me1, H3K9me2, H3K36me2, H3K36me3 and H4K16ac. We demonstrate that grape ASR repression differentially affects members of complex nucleoprotein structures and may not only act as molecular chaperone/transcription factor, but also participates in plant responses to developmental and environmental cues through epigenetic mechanisms.
Collapse
|
10
|
Dominguez PG, Conti G, Duffy T, Insani M, Alseekh S, Asurmendi S, Fernie AR, Carrari F. Multiomics analyses reveal the roles of the ASR1 transcription factor in tomato fruits. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6490-6509. [PMID: 34100923 DOI: 10.1093/jxb/erab269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
The transcription factor ASR1 (ABA, STRESS, RIPENING 1) plays multiple roles in plant responses to abiotic stresses as well as being involved in the regulation of central metabolism in several plant species. However, despite the high expression of ASR1 in tomato fruits, large scale analyses to uncover its function in fruits are still lacking. In order to study its function in the context of fruit ripening, we performed a multiomics analysis of ASR1-antisense transgenic tomato fruits at the transcriptome and metabolome levels. Our results indicate that ASR1 is involved in several pathways implicated in the fruit ripening process, including cell wall, amino acid, and carotenoid metabolism, as well as abiotic stress pathways. Moreover, we found that ASR1-antisense fruits are more susceptible to the infection by the necrotrophic fungus Botrytis cinerea. Given that ASR1 could be regulated by fruit ripening regulators such as FRUITFULL1/FRUITFULL2 (FUL1/FUL2), NON-RIPENING (NOR), and COLORLESS NON-RIPENING (CNR), we positioned it in the regulatory cascade of red ripe tomato fruits. These data extend the known range of functions of ASR1 as an important auxiliary regulator of tomato fruit ripening.
Collapse
Affiliation(s)
- Pia Guadalupe Dominguez
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Gabriela Conti
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
- Facultad de Agronomía. Cátedra de Genética. Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Tomás Duffy
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Marina Insani
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Sebastián Asurmendi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Fernando Carrari
- Facultad de Agronomía. Cátedra de Genética. Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| |
Collapse
|
11
|
Shou K, Bremer A, Rindfleisch T, Knox-Brown P, Hirai M, Rekas A, Garvey CJ, Hincha DK, Stadler AM, Thalhammer A. Conformational selection of the intrinsically disordered plant stress protein COR15A in response to solution osmolarity - an X-ray and light scattering study. Phys Chem Chem Phys 2019; 21:18727-18740. [PMID: 31424463 DOI: 10.1039/c9cp01768b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The plant stress protein COR15A stabilizes chloroplast membranes during freezing. COR15A is an intrinsically disordered protein (IDP) in aqueous solution, but acquires an α-helical structure during dehydration or the increase of solution osmolarity. We have used small- and wide-angle X-ray scattering (SAXS/WAXS) combined with static and dynamic light scattering (SLS/DLS) to investigate the structural and hydrodynamic properties of COR15A in response to increasing solution osmolarity. Coarse-grained ensemble modelling allowed a structure-based interpretation of the SAXS data. Our results demonstrate that COR15A behaves as a biomacromolecule with polymer-like properties which strongly depend on solution osmolarity. Biomacromolecular self-assembly occurring at high solvent osmolarity is initiated by the occurrence of two specific structural subpopulations of the COR15A monomer. The osmolarity dependent structural selection mechanism is an elegant way for conformational regulation and assembly of COR15A. It highlights the importance of the polymer-like properties of IDPs for their associated biological function.
Collapse
Affiliation(s)
- Keyun Shou
- Jülich Centre for Neutron Science (JCNS-1) and Institute for Complex Systems (ICS-1), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Nahirñak V, Rivarola M, Almasia NI, Barrios Barón MP, Hopp HE, Vile D, Paniego N, Vazquez Rovere C. Snakin-1 affects reactive oxygen species and ascorbic acid levels and hormone balance in potato. PLoS One 2019; 14:e0214165. [PMID: 30909287 PMCID: PMC6433472 DOI: 10.1371/journal.pone.0214165] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/08/2019] [Indexed: 12/19/2022] Open
Abstract
Snakin-1 is a member of the Solanum tuberosum Snakin/GASA family. We previously demonstrated that Snakin-1 is involved in plant defense to pathogens as well as in plant growth and development, but its mechanism of action has not been completely elucidated yet. Here, we showed that leaves of Snakin-1 silenced potato transgenic plants exhibited increased levels of reactive oxygen species and significantly reduced content of ascorbic acid. Furthermore, Snakin-1 silencing enhanced salicylic acid content in accordance with an increased expression of SA-inducible PRs genes. Interestingly, gibberellic acid levels were also enhanced and transcriptome analysis revealed that a large number of genes related to sterol biosynthesis were downregulated in these silenced lines. Moreover, we demonstrated that Snakin-1 directly interacts with StDIM/DWF1, an enzyme involved in plant sterols biosynthesis. Additionally, the analysis of the expression pattern of PStSN1::GUS in potato showed that Snakin-1 is present mainly in young tissues associated with active growth and cell division zones. Our comprehensive analysis of Snakin-1 silenced lines demonstrated for the first time in potato that Snakin-1 plays a role in redox balance and participates in a complex crosstalk among different hormones.
Collapse
Affiliation(s)
- Vanesa Nahirñak
- Instituto de Biotecnología, CICVyA, CNIA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
| | - Máximo Rivarola
- Instituto de Biotecnología, CICVyA, CNIA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Natalia Inés Almasia
- Instituto de Biotecnología, CICVyA, CNIA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
| | | | - Horacio Esteban Hopp
- Instituto de Biotecnología, CICVyA, CNIA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
| | - Denis Vile
- LEPSE, Univ Montpellier, INRA, SupAgro, Montpellier, France
| | - Norma Paniego
- Instituto de Biotecnología, CICVyA, CNIA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cecilia Vazquez Rovere
- Instituto de Biotecnología, CICVyA, CNIA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- INTA LABINTEX Agropolis International, Montpellier, France
- * E-mail:
| |
Collapse
|
13
|
Wetzler DE, Fuchs Wightman F, Bucci HA, Rinaldi J, Caramelo JJ, Iusem ND, Ricardi MM. Conformational plasticity of the intrinsically disordered protein ASR1 modulates its function as a drought stress-responsive gene. PLoS One 2018; 13:e0202808. [PMID: 30138481 PMCID: PMC6107238 DOI: 10.1371/journal.pone.0202808] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 08/09/2018] [Indexed: 11/18/2022] Open
Abstract
Plants in arid zones are constantly exposed to drought stress. The ASR protein family (Abscisic, Stress, Ripening) -a subgroup of the late embryogenesis abundant superfamily- is involved in the water stress response and adaptation to dry environments. Tomato ASR1, as well as other members of this family, is an intrinsically disordered protein (IDP) that functions as a transcription factor and a chaperone. Here we employed different biophysical techniques to perform a deep in vitro characterization of ASR1 as an IDP and showed how both environmental factors and in vivo targets modulate its folding. We report that ASR1 adopts different conformations such as α-helix or polyproline type II in response to environmental changes. Low temperatures and low pH promote the polyproline type II conformation (PII). While NaCl increases PII content and slightly destabilizes α-helix conformation, PEG and glycerol have an important stabilizing effect of α-helix conformation. The binding of Zn2+in the low micromolar range promotes α-helix folding, while extra Zn2+ results in homo-dimerization. The ASR1-DNA binding is sequence specific and dependent on Zn2+. ASR1 chaperone activity does not change upon the structure induction triggered by the addition of Zn2+. Furthermore, trehalose, which has no effect on the ASR1 structure by itself, showed a synergistic effect on the ASR1-driven heat shock protection towards the reporter enzyme citrate synthase (CS). These observations prompted the development of a FRET reporter to sense ASR1 folding in vivo. Its performance was confirmed in Escherichia coli under saline and osmotic stress conditions, representing a promising probe to be used in plant cells. Overall, this work supports the notion that ASR1 plasticity is a key feature that facilitates its response to drought stress and its interaction with specific targets.
Collapse
Affiliation(s)
- Diana E. Wetzler
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail: (DW); (MR)
| | - Federico Fuchs Wightman
- Departamento de Fisiología y Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Hernan A. Bucci
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jimena Rinaldi
- Fundación Instituto Leloir, Buenos Aires, Argentina e Instituto de investigaciones Bioquímicas de Buenos Aires (IIBBA- CONICET), Buenos Aires, Argentina
| | - Julio J. Caramelo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Fundación Instituto Leloir, Buenos Aires, Argentina e Instituto de investigaciones Bioquímicas de Buenos Aires (IIBBA- CONICET), Buenos Aires, Argentina
| | - Norberto D. Iusem
- Departamento de Fisiología y Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martiniano M. Ricardi
- Departamento de Fisiología y Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail: (DW); (MR)
| |
Collapse
|
14
|
Li J, Li Y, Yin Z, Jiang J, Zhang M, Guo X, Ye Z, Zhao Y, Xiong H, Zhang Z, Shao Y, Jiang C, Zhang H, An G, Paek N, Ali J, Li Z. OsASR5 enhances drought tolerance through a stomatal closure pathway associated with ABA and H 2 O 2 signalling in rice. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:183-196. [PMID: 27420922 PMCID: PMC5258865 DOI: 10.1111/pbi.12601] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/28/2016] [Accepted: 07/06/2016] [Indexed: 05/18/2023]
Abstract
Drought is one of the major abiotic stresses that directly implicate plant growth and crop productivity. Although many genes in response to drought stress have been identified, genetic improvement to drought resistance especially in food crops is showing relatively slow progress worldwide. Here, we reported the isolation of abscisic acid, stress and ripening (ASR) genes from upland rice variety, IRAT109 (Oryza sativa L. ssp. japonica), and demonstrated that overexpression of OsASR5 enhanced osmotic tolerance in Escherichia coli and drought tolerance in Arabidopsis and rice by regulating leaf water status under drought stress conditions. Moreover, overexpression of OsASR5 in rice increased endogenous ABA level and showed hypersensitive to exogenous ABA treatment at both germination and postgermination stages. The production of H2 O2 , a second messenger for the induction of stomatal closure in response to ABA, was activated in overexpression plants under drought stress conditions, consequently, increased stomatal closure and decreased stomatal conductance. In contrast, the loss-of-function mutant, osasr5, showed sensitivity to drought stress with lower relative water content under drought stress conditions. Further studies demonstrated that OsASR5 functioned as chaperone-like protein and interacted with stress-related HSP40 and 2OG-Fe (II) oxygenase domain containing proteins in yeast and plants. Taken together, we suggest that OsASR5 plays multiple roles in response to drought stress by regulating ABA biosynthesis, promoting stomatal closure, as well as acting as chaperone-like protein that possibly prevents drought stress-related proteins from inactivation.
Collapse
Affiliation(s)
- Jinjie Li
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic ImprovementChina Agricultural UniversityBeijingPeople's Republic of China
| | - Yang Li
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic ImprovementChina Agricultural UniversityBeijingPeople's Republic of China
| | - Zhigang Yin
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic ImprovementChina Agricultural UniversityBeijingPeople's Republic of China
| | - Jihong Jiang
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic ImprovementChina Agricultural UniversityBeijingPeople's Republic of China
| | - Minghui Zhang
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic ImprovementChina Agricultural UniversityBeijingPeople's Republic of China
| | - Xiao Guo
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic ImprovementChina Agricultural UniversityBeijingPeople's Republic of China
| | - Zhujia Ye
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic ImprovementChina Agricultural UniversityBeijingPeople's Republic of China
| | - Yan Zhao
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic ImprovementChina Agricultural UniversityBeijingPeople's Republic of China
| | - Haiyan Xiong
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic ImprovementChina Agricultural UniversityBeijingPeople's Republic of China
| | - Zhanying Zhang
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic ImprovementChina Agricultural UniversityBeijingPeople's Republic of China
| | - Yujie Shao
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic ImprovementChina Agricultural UniversityBeijingPeople's Republic of China
| | - Conghui Jiang
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic ImprovementChina Agricultural UniversityBeijingPeople's Republic of China
| | - Hongliang Zhang
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic ImprovementChina Agricultural UniversityBeijingPeople's Republic of China
| | - Gynheung An
- Department of Plant Systems Biotech and Crop Biotech InstituteKyung Hee UniversityYonginKorea
| | - Nam‐Chon Paek
- Department of Plant Science, Plant Genomics and Breeding InstituteResearch Institute for Agriculture and Life SciencesSeoul National UniversitySeoulKorea
| | - Jauhar Ali
- International Rice Research InstituteMetro ManilaPhilippines
| | - Zichao Li
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic ImprovementChina Agricultural UniversityBeijingPeople's Republic of China
| |
Collapse
|
15
|
Padaria JC, Yadav R, Tarafdar A, Lone SA, Kumar K, Sivalingam PN. Molecular cloning and characterization of drought stress responsive abscisic acid-stress-ripening (Asr 1) gene from wild jujube, Ziziphus nummularia (Burm.f.) Wight & Arn. Mol Biol Rep 2016; 43:849-59. [PMID: 27209581 DOI: 10.1007/s11033-016-4013-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 05/12/2016] [Indexed: 11/25/2022]
Abstract
Drought is a calamitous abiotic stress hampering agricultural productivity all over the world and its severity is likely to increase further. Abscisic acid-stress-ripening proteins (ASR), are a group of small hydrophilic proteins which are induced by abscisic acid, stress and ripening in many plants. In the present study, ZnAsr 1 gene was fully characterized for the first time from Ziziphus nummularia, which is one of the most low water forbearing plant. Full length ZnAsr 1 gene was characterised and in silico analysis of ZnASR1 protein was done for predicting its phylogeny and physiochemical properties. To validate transcriptional pattern of ZnAsr 1 in response to drought stress, expression profiling in polyethylene glycol (PEG) induced Z. nummularia seedlings was studied by RT-qPCR analysis and heterologous expression of the recombinant ZnAsr1 in Escherichia coli. The nucleotide sequence analysis revealed that the complete open reading frame of ZnAsr 1 is 819 bp long encoding a protein of 273 amino acid residues, consisting of a histidine rich N terminus with an abscisic acid/water deficit stress domain and a nuclear targeting signal at the C terminus. In expression studies, ZnAsr 1 gene was found to be highly upregulated under drought stress and recombinant clones of E. coli cells expressing ZnASR1 protein showed better survival in PEG containing media. ZnAsr1 was proven to enhance drought stress tolerance in the recombinant E.coli cells expressing ZnASR1. The cloned ZnAsr1 after proper validation in a plant system, can be used to develop drought tolerant transgenic crops.
Collapse
Affiliation(s)
| | - Radha Yadav
- National Research Centre on Plant Biotechnology, PUSA Campus, New Delhi, India
| | - Avijit Tarafdar
- National Research Centre on Plant Biotechnology, PUSA Campus, New Delhi, India.,International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | - Showkat Ahmad Lone
- National Research Centre on Plant Biotechnology, PUSA Campus, New Delhi, India
| | - Kanika Kumar
- National Research Centre on Plant Biotechnology, PUSA Campus, New Delhi, India
| | | |
Collapse
|
16
|
AUXIN RESPONSE FACTOR 2 Intersects Hormonal Signals in the Regulation of Tomato Fruit Ripening. PLoS Genet 2016; 12:e1005903. [PMID: 26959229 PMCID: PMC4784954 DOI: 10.1371/journal.pgen.1005903] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 02/05/2016] [Indexed: 11/25/2022] Open
Abstract
The involvement of ethylene in fruit ripening is well documented, though knowledge regarding the crosstalk between ethylene and other hormones in ripening is lacking. We discovered that AUXIN RESPONSE FACTOR 2A (ARF2A), a recognized auxin signaling component, functions in the control of ripening. ARF2A expression is ripening regulated and reduced in the rin, nor and nr ripening mutants. It is also responsive to exogenous application of ethylene, auxin and abscisic acid (ABA). Over-expressing ARF2A in tomato resulted in blotchy ripening in which certain fruit regions turn red and possess accelerated ripening. ARF2A over-expressing fruit displayed early ethylene emission and ethylene signaling inhibition delayed their ripening phenotype, suggesting ethylene dependency. Both green and red fruit regions showed the induction of ethylene signaling components and master regulators of ripening. Comprehensive hormone profiling revealed that altered ARF2A expression in fruit significantly modified abscisates, cytokinins and salicylic acid while gibberellic acid and auxin metabolites were unaffected. Silencing of ARF2A further validated these observations as reducing ARF2A expression let to retarded fruit ripening, parthenocarpy and a disturbed hormonal profile. Finally, we show that ARF2A both homodimerizes and interacts with the ABA STRESS RIPENING (ASR1) protein, suggesting that ASR1 might be linking ABA and ethylene-dependent ripening. These results revealed that ARF2A interconnects signals of ethylene and additional hormones to co-ordinate the capacity of fruit tissue to initiate the complex ripening process. The hormone ethylene is known to be involved in fleshy fruit ripening, although the role of other hormones is less well studied. Here we investigated the role of AUXIN RESPONSE FACTOR 2A (ARF2A) in tomato fruit ripening and suggest that it may be involved in the crosstalk between ethylene and other hormones. We show that over-expression of ARF2A (ARF2-OX) causes the fruit to ripen in an uneven, blotchy manner. The timing of ripening in ARF2-OX fruit is affected by applying exogenous ethylene, but the variegated appearance of ripening regions is independent of ethylene. In agreement with findings in ARF2-OX fruit, silencing of both ARF2 paralogs, ARF2A and ARF2B (ARF2as), delayed the ripening process. Comprehensive hormone profiling revealed that altered ARF2 expression in fruit significantly impacted abscisates, cytokinins and salicylic acid while gibberellic acid and auxin metabolites were unaffected. Transcriptome analysis of ARF2-OX fruit patches revealed that normal ripening does occur, however, the timing and co-ordination is affected. These observations were reinforced in ARF2as fruit that displayed the opposite gene expression and metabolic phenotypes. Finally, we show that ARF2A homodimerizes as well as interacts with the known ABA STRESS RIPENING (ASR1) protein, suggesting that ASR1 might be linking ABA and ethylene-dependent ripening. Our results reveal that ARF2A may interconnect signals of ethylene and additional hormones to co-ordinate the capacity of fruit tissue to initiate the complex ripening process.
Collapse
|
17
|
|
18
|
Hernández-Sánchez IE, Maruri-López I, Ferrando A, Carbonell J, Graether SP, Jiménez-Bremont JF. Nuclear localization of the dehydrin OpsDHN1 is determined by histidine-rich motif. FRONTIERS IN PLANT SCIENCE 2015; 6:702. [PMID: 26442018 PMCID: PMC4561349 DOI: 10.3389/fpls.2015.00702] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/23/2015] [Indexed: 05/18/2023]
Abstract
The cactus OpsDHN1 dehydrin belongs to a large family of disordered and highly hydrophilic proteins known as Late Embryogenesis Abundant (LEA) proteins, which accumulate during the late stages of embryogenesis and in response to abiotic stresses. Herein, we present the in vivo OpsDHN1 subcellular localization by N-terminal GFP translational fusion; our results revealed a cytoplasmic and nuclear localization of the GFP::OpsDHN1 protein in Nicotiana benthamiana epidermal cells. In addition, dimer assembly of OpsDHN1 in planta using a Bimolecular Fluorescence Complementation (BiFC) approach was demonstrated. In order to understand the in vivo role of the histidine-rich motif, the OpsDHN1-ΔHis version was produced and assayed for its subcellular localization and dimer capability by GFP fusion and BiFC assays, respectively. We found that deletion of the OpsDHN1 histidine-rich motif restricted its localization to cytoplasm, but did not affect dimer formation. In addition, the deletion of the S-segment in the OpsDHN1 protein affected its nuclear localization. Our data suggest that the deletion of histidine-rich motif and S-segment show similar effects, preventing OpsDHN1 from getting into the nucleus. Based on these results, the histidine-rich motif is proposed as a targeting element for OpsDHN1 nuclear localization.
Collapse
Affiliation(s)
- Itzell E. Hernández-Sánchez
- Laboratorio de Biología Molecular de Hongos y Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica ACSan Luis Potosí, México
| | - Israel Maruri-López
- Laboratorio de Biología Molecular de Hongos y Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica ACSan Luis Potosí, México
| | - Alejandro Ferrando
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones CientíficasValencia, Spain
| | - Juan Carbonell
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones CientíficasValencia, Spain
| | - Steffen P. Graether
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| | - Juan F. Jiménez-Bremont
- Laboratorio de Biología Molecular de Hongos y Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica ACSan Luis Potosí, México
- *Correspondence: Juan F. Jiménez-Bremont, Laboratorio de Biología Molecular de Hongos y Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica AC, Camino a la Presa de San Jose No. 2055 Lomas 4a Seccion Cp 78216, AP 3-74 Tangamanga, San Luis Potosi, Mexico
| |
Collapse
|
19
|
Zhang L, Hu W, Wang Y, Feng R, Zhang Y, Liu J, Jia C, Miao H, Zhang J, Xu B, Jin Z. The MaASR gene as a crucial component in multiple drought stress response pathways in Arabidopsis. Funct Integr Genomics 2014; 15:247-60. [DOI: 10.1007/s10142-014-0415-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/06/2014] [Accepted: 11/07/2014] [Indexed: 10/24/2022]
|
20
|
Irfan M, Ghosh S, Kumar V, Chakraborty N, Chakraborty S, Datta A. Insights into transcriptional regulation of β-D-N-acetylhexosaminidase, an N-glycan-processing enzyme involved in ripening-associated fruit softening. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5835-48. [PMID: 25129131 PMCID: PMC4203122 DOI: 10.1093/jxb/eru324] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Tomato (Solanum lycopersicum) fruit ripening-specific N-glycan processing enzyme, β-D-N-acetylhexosaminidase (β-Hex), plays an important role in the ripening-associated fruit-softening process. However, the regulation of fruit ripening-specific expression of β-Hex is not well understood. We have identified and functionally characterized the fruit ripening-specific promoter of β-Hex and provided insights into its transcriptional regulation during fruit ripening. Our results demonstrate that RIPENING INHIBITOR (RIN), a global fruit ripening regulator, and ABSCISIC ACID STRESS RIPENING 1 (SlASR1), a poorly characterized ripening-related protein, are the transcriptional regulators of β-Hex. Both RIN and SlASR1 directly bound to the β-Hex promoter fragments containing CArG and C₂₋₃(C/G)A cis-acting elements, the binding sites for RIN and SlASR1, respectively. Moreover, β-Hex expression/promoter activity in tomato fruits was downregulated once expression of either RIN or SlASR1 was suppressed; indicating that RIN and SlASR1 positively regulate the transcription of β-Hex during fruit ripening. Interestingly, RIN could also bind to the SlASR1 promoter, which contains several CArG cis-acting elements, and SlASR1 expression was suppressed in rin mutant fruits, indicating that RIN also acts as a positive regulator of SlASR1 expression during fruit ripening. Taken together, these results suggest that RIN, both directly and indirectly, through SlASR1, regulates the transcription of β-Hex during fruit ripening. The fruit ripening-specific promoter of β-Hex could be a useful tool in regulating gene expression during fruit ripening.
Collapse
Affiliation(s)
- Mohammad Irfan
- National Institute of Plant Genome Research, New Delhi 110067, India
| | - Sumit Ghosh
- National Institute of Plant Genome Research, New Delhi 110067, India
| | - Vinay Kumar
- National Institute of Plant Genome Research, New Delhi 110067, India
| | | | | | - Asis Datta
- National Institute of Plant Genome Research, New Delhi 110067, India
| |
Collapse
|
21
|
Golan I, Dominguez PG, Konrad Z, Shkolnik-Inbar D, Carrari F, Bar-Zvi D. Tomato ABSCISIC ACID STRESS RIPENING (ASR) gene family revisited. PLoS One 2014; 9:e107117. [PMID: 25310287 PMCID: PMC4195575 DOI: 10.1371/journal.pone.0107117] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 08/12/2014] [Indexed: 01/10/2023] Open
Abstract
Tomato ABSCISIC ACID RIPENING 1 (ASR1) was the first cloned plant ASR gene. ASR orthologs were then cloned from a large number of monocot, dicot and gymnosperm plants, where they are mostly involved in response to abiotic (drought and salinity) stress and fruit ripening. The tomato genome encodes five ASR genes: ASR1, 2, 3 and 5 encode low-molecular-weight proteins (ca. 110 amino acid residues each), whereas ASR4 encodes a 297-residue polypeptide. Information on the expression of the tomato ASR gene family is scarce. We used quantitative RT-PCR to assay the expression of this gene family in plant development and in response to salt and osmotic stresses. ASR1 and ASR4 were the main expressed genes in all tested organs and conditions, whereas ASR2 and ASR3/5 expression was two to three orders of magnitude lower (with the exception of cotyledons). ASR1 is expressed in all plant tissues tested whereas ASR4 expression is limited to photosynthetic organs and stamens. Essentially, ASR1 accounted for most of ASR gene expression in roots, stems and fruits at all developmental stages, whereas ASR4 was the major gene expressed in cotyledons and young and fully developed leaves. Both ASR1 and ASR4 were expressed in flower organs, with ASR1 expression dominating in stamens and pistils, ASR4 in sepals and petals. Steady-state levels of ASR1 and ASR4 were upregulated in plant vegetative organs following exposure to salt stress, osmotic stress or the plant abiotic stress hormone abscisic acid (ABA). Tomato plants overexpressing ASR1 displayed enhanced survival rates under conditions of water stress, whereas ASR1-antisense plants displayed marginal hypersensitivity to water withholding.
Collapse
Affiliation(s)
- Ido Golan
- Department of Life Sciences and Doris and Bertie Black Center for Bioenergetics in Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Pia Guadalupe Dominguez
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
| | - Zvia Konrad
- Department of Life Sciences and Doris and Bertie Black Center for Bioenergetics in Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Doron Shkolnik-Inbar
- Department of Life Sciences and Doris and Bertie Black Center for Bioenergetics in Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Fernando Carrari
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
| | - Dudy Bar-Zvi
- Department of Life Sciences and Doris and Bertie Black Center for Bioenergetics in Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail:
| |
Collapse
|
22
|
Golan I, Dominguez PG, Konrad Z, Shkolnik-Inbar D, Carrari F, Bar-Zvi D. Tomato ABSCISIC ACID STRESS RIPENING (ASR) gene family revisited. PLoS One 2014; 9:e107117. [PMID: 25310287 DOI: 10.1071/pp00134] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 08/12/2014] [Indexed: 05/26/2023] Open
Abstract
Tomato ABSCISIC ACID RIPENING 1 (ASR1) was the first cloned plant ASR gene. ASR orthologs were then cloned from a large number of monocot, dicot and gymnosperm plants, where they are mostly involved in response to abiotic (drought and salinity) stress and fruit ripening. The tomato genome encodes five ASR genes: ASR1, 2, 3 and 5 encode low-molecular-weight proteins (ca. 110 amino acid residues each), whereas ASR4 encodes a 297-residue polypeptide. Information on the expression of the tomato ASR gene family is scarce. We used quantitative RT-PCR to assay the expression of this gene family in plant development and in response to salt and osmotic stresses. ASR1 and ASR4 were the main expressed genes in all tested organs and conditions, whereas ASR2 and ASR3/5 expression was two to three orders of magnitude lower (with the exception of cotyledons). ASR1 is expressed in all plant tissues tested whereas ASR4 expression is limited to photosynthetic organs and stamens. Essentially, ASR1 accounted for most of ASR gene expression in roots, stems and fruits at all developmental stages, whereas ASR4 was the major gene expressed in cotyledons and young and fully developed leaves. Both ASR1 and ASR4 were expressed in flower organs, with ASR1 expression dominating in stamens and pistils, ASR4 in sepals and petals. Steady-state levels of ASR1 and ASR4 were upregulated in plant vegetative organs following exposure to salt stress, osmotic stress or the plant abiotic stress hormone abscisic acid (ABA). Tomato plants overexpressing ASR1 displayed enhanced survival rates under conditions of water stress, whereas ASR1-antisense plants displayed marginal hypersensitivity to water withholding.
Collapse
Affiliation(s)
- Ido Golan
- Department of Life Sciences and Doris and Bertie Black Center for Bioenergetics in Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Pia Guadalupe Dominguez
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
| | - Zvia Konrad
- Department of Life Sciences and Doris and Bertie Black Center for Bioenergetics in Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Doron Shkolnik-Inbar
- Department of Life Sciences and Doris and Bertie Black Center for Bioenergetics in Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Fernando Carrari
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
| | - Dudy Bar-Zvi
- Department of Life Sciences and Doris and Bertie Black Center for Bioenergetics in Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
23
|
González RM, Iusem ND. Twenty years of research on Asr (ABA-stress-ripening) genes and proteins. PLANTA 2014; 239:941-949. [PMID: 24531839 DOI: 10.1007/s00425-014-2039-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 01/29/2014] [Indexed: 05/29/2023]
Abstract
Investigating how plants cope with different abiotic stresses-mainly drought and extreme temperatures-is pivotal for both understanding the underlying signaling pathways and improving genetically engineered crops. Plant cells are known to react defensively to mild and severe dehydration by initiating several signal transduction pathways that result in the accumulation of different proteins, sugar molecules and lipophilic anti-oxidants. Among the proteins that build up under these adverse conditions are members of the ancestral ASR (ABA-stress-ripening) family, which is conserved in the plant kingdom but lacks orthologs in Arabidopsis. This review provides a comprehensive summary of the state of the art regarding ASRs, going back to the original description and cloning of the tomato ASR cDNA. That seminal discovery sparked worldwide interest amongst research groups spanning multiple fields: biochemistry, cell biology, evolution, physiology and epigenetics. As these proteins function as both chaperones and transcription factors; this review also covers the progress made on relevant molecular features that account for these dual roles-including the recent identification of their target genes-which may inspire future basic research. In addition, we address reports of drought-tolerant ASR-transgenic plants of different species, highlighting the influential work of authors taking more biotechnological approaches.
Collapse
Affiliation(s)
- Rodrigo M González
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE)-CONICET, Buenos Aires, Argentina
| | | |
Collapse
|
24
|
Arenhart RA, Bai Y, Valter de Oliveira LF, Bucker Neto L, Schunemann M, Maraschin FDS, Mariath J, Silverio A, Sachetto-Martins G, Margis R, Wang ZY, Margis-Pinheiro M. New insights into aluminum tolerance in rice: the ASR5 protein binds the STAR1 promoter and other aluminum-responsive genes. MOLECULAR PLANT 2014; 7:709-21. [PMID: 24253199 PMCID: PMC3973494 DOI: 10.1093/mp/sst160] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/05/2013] [Indexed: 05/18/2023]
Abstract
Aluminum (Al) toxicity in plants is one of the primary constraints in crop production. Al³⁺, the most toxic form of Al, is released into soil under acidic conditions and causes extensive damage to plants, especially in the roots. In rice, Al tolerance requires the ASR5 gene, but the molecular function of ASR5 has remained unknown. Here, we perform genome-wide analyses to identify ASR5-dependent Al-responsive genes in rice. Based on ASR5_RNAi silencing in plants, a global transcriptome analysis identified a total of 961 genes that were responsive to Al treatment in wild-type rice roots. Of these genes, 909 did not respond to Al in the ASR5_RNAi plants, indicating a central role for ASR5 in Al-responsive gene expression. Under normal conditions, without Al treatment, the ASR5_RNAi plants expressed 1.756 genes differentially compared to the wild-type plants, and 446 of these genes responded to Al treatment in the wild-type plants. Chromatin immunoprecipitation followed by deep sequencing identified 104 putative target genes that were directly regulated by ASR5 binding to their promoters, including the STAR1 gene, which encodes an ABC transporter required for Al tolerance. Motif analysis of the binding peak sequences revealed the binding motif for ASR5, which was confirmed via in vitro DNA-binding assays using the STAR1 promoter. These results demonstrate that ASR5 acts as a key transcription factor that is essential for Al-responsive gene expression and Al tolerance in rice.
Collapse
Affiliation(s)
- Rafael Augusto Arenhart
- Programa de Pós-Graduação em Genética e Biologia Molecular Avenida Bento Gonçalves 9500, Departamento de Genética, sala 207, prédio 43312, Universidade Federal do Rio Grande do Sul, 91501–970, Porto Alegre, Brasil
| | - Yang Bai
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Luiz Felipe Valter de Oliveira
- Programa de Pós-Graduação em Genética e Biologia Molecular Avenida Bento Gonçalves 9500, Departamento de Genética, sala 207, prédio 43312, Universidade Federal do Rio Grande do Sul, 91501–970, Porto Alegre, Brasil
| | - Lauro Bucker Neto
- Programa de Pós-Graduação em Genética e Biologia Molecular Avenida Bento Gonçalves 9500, Departamento de Genética, sala 207, prédio 43312, Universidade Federal do Rio Grande do Sul, 91501–970, Porto Alegre, Brasil
| | - Mariana Schunemann
- Programa de Pós-Graduação em Genética e Biologia Molecular Avenida Bento Gonçalves 9500, Departamento de Genética, sala 207, prédio 43312, Universidade Federal do Rio Grande do Sul, 91501–970, Porto Alegre, Brasil
| | | | - Jorge Mariath
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Adriano Silverio
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | | | - Rogerio Margis
- Programa de Pós-Graduação em Genética e Biologia Molecular Avenida Bento Gonçalves 9500, Departamento de Genética, sala 207, prédio 43312, Universidade Federal do Rio Grande do Sul, 91501–970, Porto Alegre, Brasil
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Marcia Margis-Pinheiro
- Programa de Pós-Graduação em Genética e Biologia Molecular Avenida Bento Gonçalves 9500, Departamento de Genética, sala 207, prédio 43312, Universidade Federal do Rio Grande do Sul, 91501–970, Porto Alegre, Brasil
- To whom correspondence should be addressed. E-mail , fax 55-51-3308-7311, tel. 55 (51) 3308–9814
| |
Collapse
|
25
|
González RM, Ricardi MM, Iusem ND. Epigenetic marks in an adaptive water stress-responsive gene in tomato roots under normal and drought conditions. Epigenetics 2013; 8:864-72. [PMID: 23807313 PMCID: PMC3883789 DOI: 10.4161/epi.25524] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tolerance to water deficits was evolutionarily relevant to the conquest of land by primitive plants. In this context, epigenetic events may have played important roles in the establishment of drought stress responses. We decided to inspect epigenetic marks in the plant organ that is crucial in the sensing of drought stress: the root. Using tomato as a crop model plant, we detected the methylated epialleles of Asr2, a protein-coding gene widespread in the plant kingdom and thought to alleviate restricted water availability. We found 3 contexts (CG, CNG, and CNN) of methylated cytosines in the regulatory region of Solanum lycopersicum Asr2 but only one context (CG) in the gene body. To test the hypothesis of a link between epigenetics marks and the adaptation of plants to drought, we explored the cytosine methylation status of Asr2 in the root resulting from water-deficit stress conditions. We found that a brief exposure to simulated drought conditions caused the removal of methyl marks in the regulatory region at 77 of the 142 CNN sites. In addition, the study of histone modifications around this model gene in the roots revealed that the distal regulatory region was rich in H3K27me3 but that its abundance did not change as a consequence of stress. Additionally, under normal conditions, both the regulatory and coding regions contained the typically repressive H3K9me2 mark, which was lost after 30 min of water deprivation. As analogously conjectured for the paralogous gene Asr1, rapidly acquired new Asr2 epialleles in somatic cells due to desiccation might be stable enough and heritable through the germ line across generations, thereby efficiently contributing to constitutive, adaptive gene expression during the evolution of desiccation-tolerant populations or species.
Collapse
Affiliation(s)
- Rodrigo M González
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE); CONICET; Buenos Aires, Argentina
| | | | | |
Collapse
|
26
|
Joo J, Lee YH, Kim YK, Nahm BH, Song SI. Abiotic stress responsive rice ASR1 and ASR3 exhibit different tissue-dependent sugar and hormone-sensitivities. Mol Cells 2013; 35:421-35. [PMID: 23620302 PMCID: PMC3887869 DOI: 10.1007/s10059-013-0036-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/06/2013] [Accepted: 03/07/2013] [Indexed: 10/26/2022] Open
Abstract
The expression of the six rice ASR genes is differentially regulated in a tissue-dependent manner according to environmental conditions and reproductive stages. OsASR1 and OsASR3 are the most abundant and are found in most tissues; they are enriched in the leaves and roots, respectively. Coexpression analysis of OsASR1 and OsASR3 and a comparison of the cis-acting elements upstream of OsASR1 and OsASR3 suggested that their expression is regulated in common by abiotic stresses but differently regulated by hormone and sugar signals. The results of quantitative real-time PCR analyses of OsASR1 and OsASR3 expression under various conditions further support this model. The expression of both OsASR1 and OsASR3 was induced by drought stress, which is a major regulator of the expression of all ASR genes in rice. In contrast, ABA is not a common regulator of the expression of these genes. OsASR1 transcription was highly induced by ABA, whereas OsASR3 transcription was strongly induced by GA. In addition, OsASR1 and OsASR3 expression was significantly induced by sucrose and sucrose/glucose treatments, respectively. The induction of gene expression in response to these specific hormone and sugar signals was primarily observed in the major target tissues of these genes (i.e., OsASR1 in leaves and OsASR3 in roots). Our data also showed that the overexpression of either OsASR1 or OsASR3 in transgenic rice plants increased their tolerance to drought and cold stress. Taken together, our results revealed that the transcriptional control of different rice ASR genes exhibit different tissue-dependent sugar and hormone-sensitivities.
Collapse
Affiliation(s)
- Joungsu Joo
- Division of Bioscience and Bioinformatics, Myongji University, Yongin 449–728,
Korea
| | - Youn Hab Lee
- Division of Bioscience and Bioinformatics, Myongji University, Yongin 449–728,
Korea
| | - Yeon-Ki Kim
- Genomics Genetics Institute, GreenGene BioTech, Inc., Yongin 449–728,
Korea
| | - Baek Hie Nahm
- Division of Bioscience and Bioinformatics, Myongji University, Yongin 449–728,
Korea
- Genomics Genetics Institute, GreenGene BioTech, Inc., Yongin 449–728,
Korea
| | - Sang Ik Song
- Division of Bioscience and Bioinformatics, Myongji University, Yongin 449–728,
Korea
| |
Collapse
|
27
|
Dominguez PG, Frankel N, Mazuch J, Balbo I, Iusem N, Fernie AR, Carrari F. ASR1 mediates glucose-hormone cross talk by affecting sugar trafficking in tobacco plants. PLANT PHYSIOLOGY 2013; 161:1486-500. [PMID: 23302128 PMCID: PMC3585611 DOI: 10.1104/pp.112.208199] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 12/21/2013] [Indexed: 05/02/2023]
Abstract
Asr (for ABA, stress, ripening) genes are exclusively found in the genomes of higher plants, and the encoded proteins have been found localized both to the nucleus and cytoplasm. However, before the mechanisms underlying the activity of ASR proteins can be determined, the role of these proteins in planta should be deciphered. Results from this study suggest that ASR is positioned within the signaling cascade of interactions among glucose, abscisic acid, and gibberellins. Tobacco (Nicotiana tabacum) transgenic lines with reduced levels of ASR protein showed impaired glucose metabolism and altered abscisic acid and gibberellin levels. These changes were associated with dwarfism, reduced carbon dioxide assimilation, and accelerated leaf senescence as a consequence of a fine regulation exerted by ASR to the glucose metabolism. This regulation resulted in an impact on glucose signaling mediated by Hexokinase1 and Snf1-related kinase, which would subsequently have been responsible for photosynthesis, leaf senescence, and hormone level alterations. It thus can be postulated that ASR is not only involved in the control of hexose uptake in heterotrophic organs, as we have previously reported, but also in the control of carbon fixation by the leaves mediated by a similar mechanism.
Collapse
Affiliation(s)
- Pia Guadalupe Dominguez
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, Argentina (P.G.D., F.C.); Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina (N.F.); Max Planck Institute for Molecular Plant Physiology, 14416 Golm, Germany (J.M., I.B., A.R.F.); and Departamento de Fisiología, Biología Molecular y Celular, Instituto de Fisiología, Biología Molecular y Neurociencias-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina (N.I.)
| | - Nicolas Frankel
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, Argentina (P.G.D., F.C.); Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina (N.F.); Max Planck Institute for Molecular Plant Physiology, 14416 Golm, Germany (J.M., I.B., A.R.F.); and Departamento de Fisiología, Biología Molecular y Celular, Instituto de Fisiología, Biología Molecular y Neurociencias-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina (N.I.)
| | - Jeannine Mazuch
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, Argentina (P.G.D., F.C.); Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina (N.F.); Max Planck Institute for Molecular Plant Physiology, 14416 Golm, Germany (J.M., I.B., A.R.F.); and Departamento de Fisiología, Biología Molecular y Celular, Instituto de Fisiología, Biología Molecular y Neurociencias-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina (N.I.)
| | - Ilse Balbo
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, Argentina (P.G.D., F.C.); Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina (N.F.); Max Planck Institute for Molecular Plant Physiology, 14416 Golm, Germany (J.M., I.B., A.R.F.); and Departamento de Fisiología, Biología Molecular y Celular, Instituto de Fisiología, Biología Molecular y Neurociencias-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina (N.I.)
| | - Norberto Iusem
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, Argentina (P.G.D., F.C.); Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina (N.F.); Max Planck Institute for Molecular Plant Physiology, 14416 Golm, Germany (J.M., I.B., A.R.F.); and Departamento de Fisiología, Biología Molecular y Celular, Instituto de Fisiología, Biología Molecular y Neurociencias-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina (N.I.)
| | - Alisdair R. Fernie
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, Argentina (P.G.D., F.C.); Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina (N.F.); Max Planck Institute for Molecular Plant Physiology, 14416 Golm, Germany (J.M., I.B., A.R.F.); and Departamento de Fisiología, Biología Molecular y Celular, Instituto de Fisiología, Biología Molecular y Neurociencias-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina (N.I.)
| | - Fernando Carrari
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, Argentina (P.G.D., F.C.); Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina (N.F.); Max Planck Institute for Molecular Plant Physiology, 14416 Golm, Germany (J.M., I.B., A.R.F.); and Departamento de Fisiología, Biología Molecular y Celular, Instituto de Fisiología, Biología Molecular y Neurociencias-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina (N.I.)
| |
Collapse
|