1
|
Davidson B, Milosevic L, Kondrataviciute L, Kalia LV, Kalia SK. Neuroscience fundamentals relevant to neuromodulation: Neurobiology of deep brain stimulation in Parkinson's disease. Neurotherapeutics 2024; 21:e00348. [PMID: 38579455 PMCID: PMC11000190 DOI: 10.1016/j.neurot.2024.e00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024] Open
Abstract
Deep Brain Stimulation (DBS) has become a pivotal therapeutic approach for Parkinson's Disease (PD) and various neuropsychiatric conditions, impacting over 200,000 patients. Despite its widespread application, the intricate mechanisms behind DBS remain a subject of ongoing investigation. This article provides an overview of the current knowledge surrounding the local, circuit, and neurobiochemical effects of DBS, focusing on the subthalamic nucleus (STN) as a key target in PD management. The local effects of DBS, once thought to mimic a reversible lesion, now reveal a more nuanced interplay with myelinated axons, neurotransmitter release, and the surrounding microenvironment. Circuit effects illuminate the modulation of oscillatory activities within the basal ganglia and emphasize communication between the STN and the primary motor cortex. Neurobiochemical effects, encompassing changes in dopamine levels and epigenetic modifications, add further complexity to the DBS landscape. Finally, within the context of understanding the mechanisms of DBS in PD, the article highlights the controversial question of whether DBS exerts disease-modifying effects in PD. While preclinical evidence suggests neuroprotective potential, clinical trials such as EARLYSTIM face challenges in assessing long-term disease modification due to enrollment timing and methodology limitations. The discussion underscores the need for robust biomarkers and large-scale prospective trials to conclusively determine DBS's potential as a disease-modifying therapy in PD.
Collapse
Affiliation(s)
- Benjamin Davidson
- Division of Neurosurgery, Department of Surgery, University of Toronto, Canada.
| | - Luka Milosevic
- KITE, Toronto, Canada; CRANIA, Toronto, Canada; Krembil Research Institute, University Health Network Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - Laura Kondrataviciute
- CRANIA, Toronto, Canada; Krembil Research Institute, University Health Network Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - Lorraine V Kalia
- CRANIA, Toronto, Canada; Krembil Research Institute, University Health Network Toronto, Canada; Division of Neurology, Department of Medicine, University of Toronto, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, Department of Surgery, University of Toronto, Canada; KITE, Toronto, Canada; CRANIA, Toronto, Canada; Krembil Research Institute, University Health Network Toronto, Canada
| |
Collapse
|
2
|
Astrocytes in the Ventrolateral Preoptic Area Promote Sleep. J Neurosci 2020; 40:8994-9011. [PMID: 33067363 DOI: 10.1523/jneurosci.1486-20.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 11/21/2022] Open
Abstract
Although ventrolateral preoptic (VLPO) nucleus is regarded as a center for sleep promotion, the exact mechanisms underlying the sleep regulation are unknown. Here, we used optogenetic tools to identify the key roles of VLPO astrocytes in sleep promotion. Optogenetic stimulation of VLPO astrocytes increased sleep duration in the active phase in naturally sleep-waking adult male rats (n = 6); it also increased the extracellular ATP concentration (n = 3) and c-Fos expression (n = 3-4) in neurons within the VLPO. In vivo microdialysis analyses revealed an increase in the activity of VLPO astrocytes and ATP levels during sleep states (n = 4). Moreover, metabolic inhibition of VLPO astrocytes reduced ATP levels (n = 4) and diminished sleep duration (n = 4). We further show that tissue-nonspecific alkaline phosphatase (TNAP), an ATP-degrading enzyme, plays a key role in mediating the somnogenic effects of ATP released from astrocytes (n = 5). An appropriate sample size for all experiments was based on statistical power calculations. Our results, taken together, indicate that astrocyte-derived ATP may be hydrolyzed into adenosine by TNAP, which may in turn act on VLPO neurons to promote sleep.SIGNIFICANCE STATEMENT Glia have recently been at the forefront of neuroscience research. Emerging evidence illustrates that astrocytes, the most abundant glial cell type, are the functional determinants for fates of neurons and other glial cells in the central nervous system. In this study, we newly identified the pivotal role of hypothalamic ventrolateral preoptic (VLPO) astrocytes in the sleep regulation, and provide novel insights into the mechanisms underlying the astrocyte-mediated sleep regulation.
Collapse
|
3
|
Jakobs M, Fomenko A, Lozano AM, Kiening KL. Cellular, molecular, and clinical mechanisms of action of deep brain stimulation-a systematic review on established indications and outlook on future developments. EMBO Mol Med 2019; 11:e9575. [PMID: 30862663 PMCID: PMC6460356 DOI: 10.15252/emmm.201809575] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/23/2018] [Accepted: 02/20/2019] [Indexed: 12/31/2022] Open
Abstract
Deep brain stimulation (DBS) has been successfully used to treat movement disorders, such as Parkinson's disease, for more than 25 years and heralded the advent of electrical neuromodulation to treat diseases with dysregulated neuronal circuits. DBS is now superseding ablative techniques, such as stereotactic radiofrequency lesions. While serendipity has played a role in developing DBS as a therapy, research during the past two decades has shown that electrical neuromodulation is far more than a functional lesion that can be switched on and off. This understanding broadens the field to enable new types of stimulation, clinical indications, and research. This review highlights the complex effects of DBS from the single cell to the neuronal network. Specifically, we examine the electrical, cellular, molecular, and neurochemical mechanisms of DBS as applied to Parkinson's disease and other emerging applications.
Collapse
Affiliation(s)
- Martin Jakobs
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Anton Fomenko
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Karl L Kiening
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
4
|
Bosson A, Paumier A, Boisseau S, Jacquier-Sarlin M, Buisson A, Albrieux M. TRPA1 channels promote astrocytic Ca 2+ hyperactivity and synaptic dysfunction mediated by oligomeric forms of amyloid-β peptide. Mol Neurodegener 2017; 12:53. [PMID: 28683776 PMCID: PMC5501536 DOI: 10.1186/s13024-017-0194-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/29/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Excessive synaptic loss is thought to be one of the earliest events in Alzheimer's disease (AD). However, the key mechanisms that maintain plasticity of synapses during adulthood or initiate synapse dysfunction in AD remain unknown. Recent studies suggest that astrocytes contribute to functional changes observed during synaptic plasticity and play a major role in synaptic dysfunction but astrocytes behavior and involvement in early phases of AD remained largely undefined. METHODS We measure astrocytic calcium activity in mouse CA1 hippocampus stratum radiatum in both the global astrocytic population and at a single cell level, focusing in the highly compartmentalized astrocytic arbor. Concurrently, we measure excitatory post-synaptic currents in nearby pyramidal neurons. RESULTS We find that application of soluble Aβ oligomers (Aβo) induced fast and widespread calcium hyperactivity in the astrocytic population and in the microdomains of the astrocyte arbor. We show that astrocyte hyperactivity is independent of neuronal activity and is repaired by transient receptor potential A1 (TRPA1) channels blockade. In return, this TRPA1 channels-dependent hyperactivity influences neighboring CA1 neurons triggering an increase in glutamatergic spontaneous activity. Interestingly, in an AD mouse model (APP/PS1-21 mouse), astrocyte calcium hyperactivity equally takes place at the beginning of Aβ production, depends on TRPA1 channels and is linked to CA1 neurons hyperactivity. CONCLUSIONS Our experiments demonstrate that astrocytes contribute to early Aβo toxicity exhibiting a global and local Ca2+ hyperactivity that involves TRPA1 channels and is related to neuronal hyperactivity. Together, our data suggest that astrocyte is a frontline target of Aβo and highlight a novel mechanism for the understanding of early synaptic dysregulation induced by soluble Aβo species.
Collapse
Affiliation(s)
- Anthony Bosson
- University Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Chemin Fortuné Ferrini, BP170, F-38000 Grenoble, France
- Inserm, U1216, F-38000 Grenoble, France
| | - Adrien Paumier
- University Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Chemin Fortuné Ferrini, BP170, F-38000 Grenoble, France
- Inserm, U1216, F-38000 Grenoble, France
| | - Sylvie Boisseau
- University Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Chemin Fortuné Ferrini, BP170, F-38000 Grenoble, France
- Inserm, U1216, F-38000 Grenoble, France
| | - Muriel Jacquier-Sarlin
- University Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Chemin Fortuné Ferrini, BP170, F-38000 Grenoble, France
- Inserm, U1216, F-38000 Grenoble, France
| | - Alain Buisson
- University Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Chemin Fortuné Ferrini, BP170, F-38000 Grenoble, France
- Inserm, U1216, F-38000 Grenoble, France
| | - Mireille Albrieux
- University Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Chemin Fortuné Ferrini, BP170, F-38000 Grenoble, France
- Inserm, U1216, F-38000 Grenoble, France
| |
Collapse
|
5
|
Bindocci E, Savtchouk I, Liaudet N, Becker D, Carriero G, Volterra A. Three-dimensional Ca2+imaging advances understanding of astrocyte biology. Science 2017; 356:356/6339/eaai8185. [DOI: 10.1126/science.aai8185] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 04/12/2017] [Indexed: 11/02/2022]
|
6
|
Yan X, Liu J, Ye Z, Huang J, He F, Xiao W, Hu X, Luo Z. CaMKII-Mediated CREB Phosphorylation Is Involved in Ca2+-Induced BDNF mRNA Transcription and Neurite Outgrowth Promoted by Electrical Stimulation. PLoS One 2016; 11:e0162784. [PMID: 27611779 PMCID: PMC5017744 DOI: 10.1371/journal.pone.0162784] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 08/29/2016] [Indexed: 11/19/2022] Open
Abstract
Electrical stimulation (ES)-triggered up-regulation of brain-derived neurotrophic factor (BDNF) and neurite outgrowth in cultured rat postnatal dorsal root ganglion neurons (DRGNs) is calcium (Ca2+)-dependent. The effects of increased Ca2+ on BDNF up-regulation and neurite outgrowth remain unclear. We showed here that ES increased phosphorylation of the cAMP-response element binding protein (CREB). Blockade of Ca2+ suppressed CREB phosphorylation and neurite outgrowth. Down-regulation of phosphorylated (p)-CREB reduced BDNF transcription and neurite outgrowth triggered by ES. Furthermore, blockade of calmodulin-dependent protein kinase II (CaMKII) using the inhibitors KN93 or KN62 reduced p-CREB, and specific knockdown of the CaMKIIα or CaMKIIβ subunit was sufficient to suppress p-CREB. Recombinant BDNF or hyperforin reversed the effects of Ca2+ blockade and CaMKII knockdown. Taken together, these data establish a potential signaling pathway of Ca2+-CaMKII-CREB in neuronal activation. To our knowledge, this is the first report of the mechanisms of Ca2+-dependent BDNF transcription and neurite outgrowth triggered by ES. These findings might help further investigation of complex molecular signaling networks in ES-triggered nerve regeneration in vivo.
Collapse
Affiliation(s)
- Xiaodong Yan
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China
| | - Juanfang Liu
- Department of Clinical Aerospace Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Zhengxu Ye
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Jinghui Huang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Fei He
- Department of Hereditary and Development, Basic Unit, Fourth Military Medical University, Xi’an 710032, China
| | - Wei Xiao
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Xueyu Hu
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
- * E-mail: (ZL); (XH)
| | - Zhuojing Luo
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
- * E-mail: (ZL); (XH)
| |
Collapse
|
7
|
Abstract
High-frequency deep brain stimulation (DBS) is an effective treatment for some movement disorders. Though mechanisms underlying DBS are still unclear, commonly accepted theories include a “functional inhibition” of neuronal cell bodies and the excitation of axonal projections near the electrodes. It is becoming clear, however, that the paradoxical dissociation “local inhibition” and “distant excitation” is far more complex than initially thought. Despite an initial increase in neuronal activity following stimulation, cells are often unable to maintain normal ionic concentrations, particularly those of sodium and potassium. Based on currently available evidence, we proposed an alternative hypothesis. Increased extracellular concentrations of potassium during DBS may change the dynamics of both cells and axons, contributing not only to the intermittent excitation and inhibition of these elements but also to interrupt abnormal pathological activity. In this article, we review mechanisms through which high extracellular potassium may mediate some of the effects of DBS.
Collapse
Affiliation(s)
- Gerson Florence
- Division of Functional Neurosurgery, Department of Neurology, Hospital das Clínicas, School of Medicine of the University of São Paulo, São Paulo, SP, Brazil
- Department of Radiology and Oncology, School of Medicine of the University of São Paulo, São Paulo, SP, Brazil
| | - Koichi Sameshima
- Department of Radiology and Oncology, School of Medicine of the University of São Paulo, São Paulo, SP, Brazil
| | - Erich T. Fonoff
- Division of Functional Neurosurgery, Department of Neurology, Hospital das Clínicas, School of Medicine of the University of São Paulo, São Paulo, SP, Brazil
| | - Clement Hamani
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
- Behavioural Neurobiology Laboratory and the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Wang Y, Rouabhia M, Lavertu D, Zhang Z. Pulsed electrical stimulation modulates fibroblasts' behaviour through the Smad signalling pathway. J Tissue Eng Regen Med 2015; 11:1110-1121. [PMID: 25712595 DOI: 10.1002/term.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/11/2014] [Accepted: 01/15/2015] [Indexed: 01/14/2023]
Abstract
The aim of this study was to investigate the healing characteristics and the underlying signalling pathway of human dermal fibroblasts under the influence of pulsed electrical stimulation (PES). Primary human dermal fibroblasts were seeded on polypyrrole-coated polyester fabrics and subjected to four different PES protocols. The parameters of the rectangular pulse included potential intensity (50 and 100 mV/mm) and stimulation time (pulse width 300 s within a period of 600 s, and pulse width 10 s within a period of 1200 s). Our study revealed that PES moderately improved the ability of the cells to migrate in association with a statistically significant (p < 0.05) increase of FGF2 secretion by the PES-exposed fibroblasts. These exposed fibroblasts were able to contract collagen gel matrix up to 48 h and this collagen gel contraction paralleled an increase in α-SMA mRNA expression and protein production from the PES-exposed fibroblasts. Interestingly, the effect of PES on the human fibroblasts involved the Smad signalling pathway, as we observed higher levels of phosphorylated Smad2 and Smad3 in the stimulated groups compared to the control groups. Overall, this study demonstrated that PES modulates fibroblast activities through the Smad signalling pathway, thus providing new mechanistic insights related to the use of PES to promote wound healing in humans. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yongliang Wang
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC, Canada.,Axe Médecine régénératrice, Centre de Recherche du CHU de Québec, Département de Chirurgie, Faculté de Médecine, Université Laval, QC, Canada
| | - Mahmoud Rouabhia
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC, Canada
| | - Denis Lavertu
- Département de Chirurgie Plastique, Hôpital Saint-François d'Assise, Québec, Canada
| | - Ze Zhang
- Axe Médecine régénératrice, Centre de Recherche du CHU de Québec, Département de Chirurgie, Faculté de Médecine, Université Laval, QC, Canada
| |
Collapse
|
9
|
Bosson A, Boisseau S, Buisson A, Savasta M, Albrieux M. Disruption of dopaminergic transmission remodels tripartite synapse morphology and astrocytic calcium activity within substantia nigra pars reticulata. Glia 2014; 63:673-83. [PMID: 25511180 DOI: 10.1002/glia.22777] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 12/01/2014] [Indexed: 11/09/2022]
Abstract
The substantia nigra pars reticulata (SNr) is a major output nucleus of the basal ganglia circuitry particularly sensitive to pathological dopamine depletion. Indeed, hyperactivity of SNr neurons is known to be responsible for some motor disorders characteristic of Parkinson's disease. The neuronal processing of basal ganglia dysfunction is well understood but, paradoxically, the role of astrocytes in the regulation of SNr activity has rarely been considered. We thus investigated the influence of the disruption of dopaminergic transmission on plastic changes at tripartite glutamatergic synapses in the rat SNr and on astrocyte calcium activity. In 6-hydroxydopamine-lesioned rats, we observed structural plastic changes of tripartite glutamatergic synapses and perisynaptic astrocytic processes. These findings suggest that subthalamonigral synapses undergo morphological changes that accompany the pathophysiological processes of Parkinson's disease. The pharmacological blockade of dopaminergic transmission (with sulpiride and SCH-23390) increased astrocyte calcium excitability, synchrony and gap junction coupling within the SNr, suggesting a functional adaptation of astrocytes to dopamine transmission disruption in this output nucleus. This hyperactivity is partly reversed by subthalamic nucleus high-frequency stimulation which has emerged as an efficient symptomatic treatment for Parkinson's disease. Therefore, our results demonstrate structural and functional reshaping of neuronal and glial elements highlighting a functional plasticity of neuroglial interactions when dopamine transmission is disrupted.
Collapse
Affiliation(s)
- Anthony Bosson
- Inserm, U836, 38000, Grenoble, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, 38000, Grenoble, France
| | | | | | | | | |
Collapse
|
10
|
Dorsal subthalamic nucleus electrical stimulation for drug/treatment-refractory epilepsy may modulate melanocortinergic signaling in astrocytes. Epilepsy Behav 2014; 36:6-8. [PMID: 24835897 DOI: 10.1016/j.yebeh.2014.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 04/17/2014] [Indexed: 12/17/2022]
|
11
|
Electrical Stimulation Induces Calcium-Dependent Neurite Outgrowth and Immediate Early Genes Expressions of Dorsal Root Ganglion Neurons. Neurochem Res 2013; 39:129-41. [DOI: 10.1007/s11064-013-1197-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 11/03/2013] [Accepted: 11/07/2013] [Indexed: 10/26/2022]
|
12
|
Abstract
Astrocytes are the predominant glial cell type in the CNS. Although astrocytes are electrically nonexcitable, their excitability is manifested by their Ca2+ signaling, which serves as a mediator of neuron-glia bidirectional interactions via tripartite synapses. Studies from in vivo two-photon imaging indicate that in healthy animals, the properties of spontaneous astrocytic Ca2+ signaling are affected by animal species, age, wakefulness and the location of astrocytes in the brain. Intercellular Ca2+ waves in astrocytes can be evoked by a variety of stimulations. In animal models of some brain disorders, astrocytes can exhibit enhanced Ca2+ excitability featured as regenerative intercellular Ca2+ waves. This review first briefly summarizes the astrocytic Ca2+ signaling pathway and the procedure of in vivo two-photon Ca2+ imaging of astrocytes. It subsequently summarizes in vivo astrocytic Ca2+ signaling in health and brain disorders from experimental studies of animal models, and discusses the possible mechanisms and therapeutic implications underlying the enhanced Ca2+ excitability in astrocytes in brain disorders. Finally, this review summarizes molecular genetic approaches used to selectively manipulate astrocyte function in vivo and their applications to study the role of astrocytes in synaptic plasticity and brain disorders.
Collapse
Affiliation(s)
- Shinghua Ding
- Dalton Cardiovascular Research Center, Department of Biological Engineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|