1
|
Zhang X, Zheng P, Wen X, Bei Z. Comprehensive Analysis of β-1,3-Glucanase Genes in Wolfberry and Their Implications in Pollen Development. PLANTS (BASEL, SWITZERLAND) 2024; 14:52. [PMID: 39795312 PMCID: PMC11722940 DOI: 10.3390/plants14010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025]
Abstract
β-1,3-Glucanases (Glu) are key enzymes involved in plant defense and physiological processes through the hydrolysis of β-1,3-glucans. This study provides a comprehensive analysis of the β-1,3-glucanase gene family in wolfberry (Lycium barbarum), including their chromosomal distribution, evolutionary relationships, and expression profiles. A total of 58 Glu genes were identified, distributed across all 12 chromosomes. Evolutionary analysis revealed six distinct branches within wolfberry and nine distinct branches when compared with Arabidopsis thaliana. Expression analysis showed that 45 Glu genes were expressed in berries, with specific genes also being expressed in flowers and leaves. Notably, LbaGlu28 exhibited significant expression during the tetrad stage of pollen development and was localized in the cell wall. These findings provide valuable insights into the functional significance of Glu genes in wolfberry, highlighting their roles in development and their potential involvement in reproductive processes, particularly in pollen development.
Collapse
Affiliation(s)
- Xin Zhang
- College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (X.Z.); (P.Z.); (X.W.)
- Key Laboratory of Biodiversity and Ecological Engineering, Ministry of Education, Fudan University, Shanghai 200437, China
| | - Pinjie Zheng
- College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (X.Z.); (P.Z.); (X.W.)
| | - Xurui Wen
- College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (X.Z.); (P.Z.); (X.W.)
| | - Zhanlin Bei
- College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (X.Z.); (P.Z.); (X.W.)
| |
Collapse
|
2
|
Zhao J, Zhang C, Li S, Yuan M, Mu W, Yang J, Ma Y, Guan C, Ma C. Changes in m 6A RNA methylation are associated with male sterility in wolfberry. BMC PLANT BIOLOGY 2023; 23:456. [PMID: 37770861 PMCID: PMC10540408 DOI: 10.1186/s12870-023-04458-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND N6-methyladenosine (m6A) modification is the most abundant type of RNA modification in eukaryotic cells, playing pivotal roles in multiple plant growth and development processes. Yet the potential role of m6A in conferring the trait of male sterility in plants remains unknown. RESULTS In this study, we performed RNA-sequencing (RNA-Seq) and m6A-sequencing (m6A-Seq) of RNAs obtained from the anther tissue of two wolfberry lines: 'Ningqi No.1' (LB1) and its natural male sterile mutant 'Ningqi No.5' (LB5). Based on the newly assembled transcriptome, we established transcriptome-wide m6A maps for LB1 and LB5 at the single nucleus pollen stage. We found that the gene XLOC_021201, a homolog of m6A eraser-related gene ALKBH10 in Arabidopsis thaliana, was significantly differentially expressed between LB1 and LB5. We also identified 1642 and 563 m6A-modified genes with hypermethylated and hypomethylated patterns, respectively, in LB1 compared with LB5. We found the hypermethylated genes significantly enriched in biological processes related to energy metabolism and lipid metabolism, while hypomethylation genes were mainly linked to cell cycle process, gametophyte development, and reproductive process. Among these 2205 differentially m6A methylated genes, 13.74% (303 of 2205) were differentially expressed in LB1 vis-à-vis LB5. CONCLUSIONS This study constructs the first m6A transcriptome map of wolfberry and establishes an association between m6A and the trait of male sterility in wolfberry.
Collapse
Affiliation(s)
- Jiawen Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chujun Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Sifan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mengmeng Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenlan Mu
- College of Life Science, Ningxia University, Yinchuan, Ningxia, 750021, China
| | - Jing Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yutong Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Cuiping Guan
- College of Life Science, Ningxia University, Yinchuan, Ningxia, 750021, China.
| | - Chuang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
3
|
TMT-based comparative proteomic analysis of the male-sterile mutant ms01 sheds light on sporopollenin production and pollen development in wucai (Brassica campestris L.). J Proteomics 2022; 254:104475. [PMID: 35007766 DOI: 10.1016/j.jprot.2021.104475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 11/21/2022]
Abstract
A spontaneous male-sterile mutant ms01 was discovered from the excellent high-generation inbred line 'hx12-6-3' in wucai. Compared with wild-type 'hx12-6-3', ms01 displayed complete male sterility with degenerated stamens and no pollen. In this study, cytological observation revealed that the tapetum of the anthers of ms01 had degraded in advance, and microspore development had stagnated in the mononuclear stage, ultimately resulting in completely aborted pollen. Genetic analysis indicated that the sterility of ms01 was controlled by a single recessive nuclear gene. In the differential proteomic analysis of 'hx12-6-3' and ms01 flower buds using a tandem mass tags-based approach, a comparison of two stages (stage a and stage e) revealed 1272 differentially abundant proteins (DAPs). The abnormal variation of the anther cuticle, pollen coat, and sporopollenin production were effected by lipid metabolism and phenylpropanoid biosynthesis in the mutant ms01. Further analysis elucidated that pollen development was associated with amino acid metabolism, protein synthesis and degradation, carbohydrate metabolism, flavonoid biosynthesis and glutathione metabolism. These results provide novel insights into the molecular mechanism of GMS (genic male sterility) in wucai. SIGNIFICANCE: ms01, as the first indentified spontaneous male-sterile mutant in wucai, plays a significant role in the initial study of GMS (genic male sterility). In our study, the key DAPs related to anther and pollen development were obtained by TMT-based comparative proteomic analysis. We found that the abnormal accumulation of H2O2 might induce premature degradation of the tapetum, causing anther metabolism disorder and pollen abortion. This process involved multiple DAPs and formed a complex regulatory network that generated a series of physiological metabolic alterations, ultimately leading to male sterility. Our results provide a theoretical foundation for further research on the complex anther and pollen development process.
Collapse
|
4
|
Zhao H, Wang J, Qu Y, Peng R, Magwanga RO, Liu F, Huang J. Transcriptomic and proteomic analyses of a new cytoplasmic male sterile line with a wild Gossypium bickii genetic background. BMC Genomics 2020; 21:859. [PMID: 33267770 PMCID: PMC7709281 DOI: 10.1186/s12864-020-07261-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 11/19/2020] [Indexed: 11/29/2022] Open
Abstract
Background Cotton is an important fiber crop but has serious heterosis effects, and cytoplasmic male sterility (CMS) is the major cause of heterosis in plants. However, to the best of our knowledge, no studies have investigated CMS Yamian A in cotton with the genetic background of Australian wild Gossypium bickii. Conjoint transcriptomic and proteomic analysis was first performed between Yamian A and its maintainer Yamian B. Results We detected 550 differentially expressed transcript-derived fragments (TDFs) and at least 1013 proteins in anthers at various developmental stages. Forty-two TDFs and 11 differentially expressed proteins (DEPs) were annotated by analysis in the genomic databases of G. austral, G. arboreum and G. hirsutum. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed to better understand the functions of these TDFs and DEPs. Transcriptomic and proteomic results showed that UDP-glucuronosyl/UDP-glucosyltransferase, 60S ribosomal protein L13a-4-like, and glutathione S-transferase were upregulated; while heat shock protein Hsp20, ATPase, F0 complex, and subunit D were downregulated at the microspore abortion stage of Yamian A. In addition, several TDFs from the transcriptome and several DEPs from the proteome were detected and confirmed by quantitative real-time PCR as being expressed in the buds of seven different periods of development. We established the databases of differentially expressed genes and proteins between Yamian A and its maintainer Yamian B in the anthers at various developmental stages and constructed an interaction network based on the databases for a comprehensive understanding of the mechanism underlying CMS with a wild cotton genetic background. Conclusion We first analyzed the molecular mechanism of CMS Yamian A from the perspective of omics, thereby providing an experimental basis and theoretical foundation for future research attempting to analyze the abortion mechanism of new CMS with a wild Gossypium bickii background and to realize three-line matching. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07261-y.
Collapse
Affiliation(s)
- Haiyan Zhao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.,School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Jianshe Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.,School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Yunfang Qu
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Renhai Peng
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Richard Odongo Magwanga
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Jinling Huang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
5
|
Development of High Yielding Glutinous Cytoplasmic Male Sterile Rice (Oryza sativa L.) Lines through CRISPR/Cas9 Based Mutagenesis of Wx and TGW6 and Proteomic Analysis of Anther. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8120290] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Development of high yielding and more palatable glutinous rice is an important goal in breeding and long-standing cultural interaction in Asia. In this study, the TGW6 and Wx, major genes conferring 1000 grain weight (GW) and amylose content (AC), were edited in a maintainer line by CRISPR/Cas9 technology. Four targets were assembled in pYLCRISPR/Cas9Pubi-H vector and T0 mutant plants were obtained through Agrobacterium mediated transformation with 90% mutation frequency having 28% homozygous mutations without off-target effects in three most likely sites of each target and expression level of target genes in mutant lines was significantly decreased (P < 0.01), the GW and gel consistency (GC) were increased, and the AC and gelatinization temperature (GT) were decreased significantly and grain appearance was opaque, while there was no change in starch content (SC) and other agronomic traits. Mutations were inheritable and some T1 plants were re-edited but T2 generation was completely stable. The pollen fertility status was randomly distributed, and the mutant maintainer lines were hybridized with Cytoplasmic Male Sterile (CMS) line 209A and after subsequent backcrossing the two glutinous CMS lines were obtained in BC2F1. The identified proteins from anthers of CMS and maintainer line were closely associated with transcription, metabolism, signal transduction, and protein biosynthesis. Putative mitochondrial NAD+-dependent malic enzyme was absent in CMS line which caused the pollen sterility because of insufficient energy, while upregulation of putative acetyl-CoA synthetase and Isoamylase in both lines might have strong relationship with CMS and amylose content. High yielding glutinous CMS lines will facilitate hybrid rice breeding and investigations of proteins linked to male sterility will provide the insights to complicated metabolic network in anther development.
Collapse
|
6
|
Zhang C, Yu D, Ke F, Zhu M, Xu J, Zhang M. Seedless mutant 'Wuzi Ougan' (Citrus suavissima Hort. ex Tanaka 'seedless') and the wild type were compared by iTRAQ-based quantitative proteomics and integratedly analyzed with transcriptome to improve understanding of male sterility. BMC Genet 2018; 19:106. [PMID: 30458706 PMCID: PMC6245639 DOI: 10.1186/s12863-018-0693-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022] Open
Abstract
Background Bud mutation is a vital method of citrus. ‘Wuzi Ougan’ (mutant type, MT) as a bud variant of ‘Ougan’ (wild type, WT) was first found in 1996 and has become popular because of its male sterility and seedless character. Previous analysis of its cytological sections and transcriptome revealed that the abnormal microsporogenesis that occurs before the tetrad stage of anther development might be the result of down-regulated oxidation-reduction biological processes in MT. To reveal the mechanism behind the male sterility in MT at the post-transcriptional stage, proteome profiling and integrative analysis on previously obtained transcriptome and proteome data were performed in two strains. Results The proteome profiling was performed by iTRAQ (isobaric Tags for relative and absolute quantitation) analysis and 6201 high-confidence proteins were identified, among which there were 487 differentially expressed proteins (DEPs) in one or more developmental stages of anthers between MT and WT. The main functional subcategories associated with the main category biological process into which the DEPs were classified were sporopollenin biosynthesis process and pollen exine formation. The enriched pathways were phenylpropanoid biosynthesis, flavonoid biosynthesis, and phenylalanine metabolism. Moreover, there were eight pathways linked in terms of being related to phenylpropanoid metabolism. Eighteen important genes related to phenylpropanoid metabolism were also analysized by qRT-PCR (quantitative real time PCR). An integrative analysis of the fold change at the transcript (log2 FPKM ratios) and protein (log1.2 iTRAQ ratios) levels was performed to reveal the consistency of gene expression at transcriptional and proteomic level. In general, the expression of genes and proteins tended to be positively correlated, in which the correlation coefficients were 0.3414 (all genes and all proteins) and 0.5686 (DEPs and according genes). Conclusion This study is the first to offer a comprehensive understanding of the gene regulation in ‘Wuzi Ougan’ and its wild type, especially during the microsporocyte to meiosis stage. Specifically, the involved genes include those in phenylpropanoid biosynthesis, flavonoid biosynthesis, and phenylalanine metabolism, as determined by integrative transcriptome and proteome analysis. Electronic supplementary material The online version of this article (10.1186/s12863-018-0693-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chi Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, No.666, WuSu Street, Hangzhou, Zhejiang province, People's Republic of China, 311300.,The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, 311300, China
| | - Dihu Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, No.666, WuSu Street, Hangzhou, Zhejiang province, People's Republic of China, 311300
| | - Fuzhi Ke
- Zhejiang Citrus Research Institute, Huangyan, 318020, China
| | - Mimi Zhu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, No.666, WuSu Street, Hangzhou, Zhejiang province, People's Republic of China, 311300
| | - Jianguo Xu
- Zhejiang Citrus Research Institute, Huangyan, 318020, China
| | - Min Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, No.666, WuSu Street, Hangzhou, Zhejiang province, People's Republic of China, 311300. .,The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, 311300, China.
| |
Collapse
|
7
|
Wang F, Zhong X, Huang L, Fang W, Chen F, Teng N. Cellular and molecular characteristics of pollen abortion in chrysanthemum cv. Kingfisher. PLANT MOLECULAR BIOLOGY 2018; 98:233-247. [PMID: 30203234 DOI: 10.1007/s11103-018-0777-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/04/2018] [Indexed: 05/21/2023]
Abstract
Microspore degeneration at the tetrad stage is associated with tapetum degeneration retardation. Some genes and proteins related to cell senescence and death are the key factors for pollen abortion. Chrysanthemum (Chrysanthemum morifolium) is a major floriculture crop in the world, but pollen contamination is an urgent problem to be solved in chrysanthemum production. C. morifolium 'Kingfisher' is a chrysanthemum cultivar that does not contain any pollen in mature anthers, thus it is a very important material for developing chrysanthemum without pollen contamination. However, the mechanism of its pollen abortion remains unclear. In this study, the cellular and molecular mechanisms of 'Kingfisher' pollen abortion were investigated using transmission electron microscopy, RNA sequencing, isobaric tags for relative and absolute quantitation, and bioinformatics. It was found that the meiosis of microspore mother cells was normal before the tetrad stage, the microspores began to degenerate at the tetrad stage, and no microspores were observed in the anthers after the tetrad stage. In addition, transcriptomic and proteomic analyses showed that some genes and proteins related to cell senescence and death were identified to be implicated in chrysanthemum pollen abortion. These results indicated that the tetrad stage was the main period of pollen abortion, and the genes and proteins related to cell senescence and death contributed to pollen abortion. These add to our understanding of chrysanthemum pollen abortion and will be helpful for development of flowers without pollen contamination in the future.
Collapse
Affiliation(s)
- Fan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture, Nanjing, 210095, China
| | - Xinghua Zhong
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture, Nanjing, 210095, China
| | - Lulu Huang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture, Nanjing, 210095, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture, Nanjing, 210095, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture, Nanjing, 210095, China
| | - Nianjun Teng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture, Nanjing, 210095, China.
| |
Collapse
|
8
|
Shi J, Chen L, Zheng R, Guan C, Wang Y, Liang W, Yang S, Wang L, Gong L, Zheng G, Huang B. Comparative phenotype and microRNAome in developing anthers of wild-type and male-sterile Lycium barbarum L. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:349-359. [PMID: 30080623 DOI: 10.1016/j.plantsci.2018.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/13/2018] [Accepted: 06/20/2018] [Indexed: 05/06/2023]
Abstract
Lycium barbarum L. (L. barbarum) is an economically important plant, as its fruit is highly marketable for its healthy nutrient content. In this study, we characterized the anther development of a major cultivar (Ningqi No. 1) and a male-sterile mutant (Ningqi No. 5) of L. barbarum. We initially investigated the phenotypes of Ningqi No. 1 and Ningqi No. 5 using microscopy and chemical staining, which showed that Ningqi No. 5 failed in the degradation of anther callose, leading to an absence of mature pollen grains and thus to male sterility. Then, to understand the dynamic profile of miRNA expression during the development of the anthers, we collected anther samples from both Ningqi No. 1 and Ningqi No. 5 throughout anther development, and we further identified 137 novel miRNAs from these anther samples by using next-generation deep sequencing technology. Of these 137 novel miRNAs, 96 miRNAs were conserved miRNAs classified into 65 miRNA families, including a few well-known miRNA families related to anther development, such as miR156, miR159 and miR172. In addition, the remaining 41 miRNAs were considered lineage-specific miRNAs, which had no orthologues in other species. The expression data showed that 45 of the 137 miRNAs were differentially expressed in the different samples, including 4 Ningqi No. 5-specific miRNAs and 15 stage-specific miRNAs. The expression patterns of six miRNAs and their predicted targets were verified by Q-PCR, and one of miRNAs and its target were chosen for transient co-expression in Nicotiana benthamiana leaves to verify the correlations between the miRNA and its predicted target. Overall, the identification of the miRNAs in the anther development of Ningqi No. 1 and Ningqi No. 5 provides a valuable resource for understanding the molecular mechanisms of male sterility in L. barbarum.
Collapse
Affiliation(s)
- Jing Shi
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ning Xia University, Ning Xia, China
| | - Liang Chen
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei, China
| | - Rui Zheng
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ning Xia University, Ning Xia, China
| | - Cuiping Guan
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ning Xia University, Ning Xia, China
| | - Yujiong Wang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ning Xia University, Ning Xia, China
| | - Wenyu Liang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ning Xia University, Ning Xia, China
| | - Shujuan Yang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ning Xia University, Ning Xia, China
| | - Lijuan Wang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ning Xia University, Ning Xia, China
| | - Lei Gong
- Agricultural Bio-Technology Center, Ningxia Academy of Agriculture and Forestry Science, Ning Xia, China
| | - Guobao Zheng
- Agricultural Bio-Technology Center, Ningxia Academy of Agriculture and Forestry Science, Ning Xia, China
| | - Binquan Huang
- Department of Plant Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
iTRAQ-Based Proteomics Analyses of Sterile/Fertile Anthers from a Thermo-Sensitive Cytoplasmic Male-Sterile Wheat with Aegilops kotschyi Cytoplasm. Int J Mol Sci 2018; 19:ijms19051344. [PMID: 29724073 PMCID: PMC5983606 DOI: 10.3390/ijms19051344] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 12/29/2022] Open
Abstract
A “two-line hybrid system” was developed, previously based on thermo-sensitive cytoplasmic male sterility in Aegilops kotschyi (K-TCMS), which can be used in wheat breeding. The K-TCMS line exhibits complete male sterility and it can be used to produce hybrid wheat seeds during the normal wheat-growing season; it propagates via self-pollination at high temperatures. Isobaric tags for relative and absolute quantification-based quantitative proteome and bioinformatics analyses of the TCMS line KTM3315A were conducted under different fertility conditions to understand the mechanisms of fertility conversion in the pollen development stages. In total, 4639 proteins were identified, the differentially abundant proteins that increased/decreased in plants with differences in fertility were mainly involved with energy metabolism, starch and sucrose metabolism, phenylpropanoid biosynthesis, protein synthesis, translation, folding, and degradation. Compared with the sterile condition, many of the proteins that related to energy and phenylpropanoid metabolism increased during the anther development stage. Thus, we suggest that energy and phenylpropanoid metabolism pathways are important for fertility conversion in K-TCMS wheat. These findings provide valuable insights into the proteins involved with anther and pollen development, thereby, helping to further understand the mechanism of TCMS in wheat.
Collapse
|
10
|
Identification of Proteins Involved in Carbohydrate Metabolism and Energy Metabolism Pathways and Their Regulation of Cytoplasmic Male Sterility in Wheat. Int J Mol Sci 2018; 19:ijms19020324. [PMID: 29360773 PMCID: PMC5855548 DOI: 10.3390/ijms19020324] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/13/2018] [Accepted: 01/21/2018] [Indexed: 01/09/2023] Open
Abstract
Cytoplasmic male sterility (CMS) where no functional pollen is produced has important roles in wheat breeding. The anther is a unique organ for male gametogenesis and its abnormal development can cause male sterility. However, the mechanisms and regulatory networks related to plant male sterility are poorly understood. In this study, we conducted comparative analyses using isobaric tags for relative and absolute quantification (iTRAQ) of the pollen proteins in a CMS line and its wheat maintainer. Differentially abundant proteins (DAPs) were analyzed based on Gene Ontology classifications, metabolic pathways and transcriptional regulation networks using Blast2GO. We identified 5570 proteins based on 23,277 peptides, which matched with 73,688 spectra, including proteins in key pathways such as glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase and 6-phosphofructokinase 1 in the glycolysis pathway, isocitrate dehydrogenase and citrate synthase in the tricarboxylic acid cycle and nicotinamide adenine dinucleotide (NADH)-dehydrogenase and adenosine-triphosphate (ATP) synthases in the oxidative phosphorylation pathway. These proteins may comprise a network that regulates male sterility in wheat. Quantitative real time polymerase chain reaction (qRT-PCR) analysis, ATP assays and total sugar assays validated the iTRAQ results. These DAPs could be associated with abnormal pollen grain formation and male sterility. Our findings provide insights into the molecular mechanism related to male sterility in wheat.
Collapse
|
11
|
Liu H, Zhang G, Wang J, Li J, Song Y, Qiao L, Niu N, Wang J, Ma S, Li L. Chemical hybridizing agent SQ-1-induced male sterility in Triticum aestivum L.: a comparative analysis of the anther proteome. BMC PLANT BIOLOGY 2018; 18:7. [PMID: 29304738 PMCID: PMC5755283 DOI: 10.1186/s12870-017-1225-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/22/2017] [Indexed: 05/05/2023]
Abstract
BACKGROUND Heterosis is widely used to increase the yield of many crops. However, as wheat is a self-pollinating crop, hybrid breeding is not so successful in this organism. Even though male sterility induced by chemical hybridizing agents is an important aspect of crossbreeding, the mechanisms by which these agents induce male sterility in wheat is not well understood. RESULTS We performed proteomic analyses using the wheat Triticum aestivum L.to identify those proteins involved in physiological male sterility (PHYMS) induced by the chemical hybridizing agent CHA SQ-1. A total of 103 differentially expressed proteins were found by 2D-PAGE and subsequently identified by MALDI-TOF/TOF MS/MS. In general, these proteins had obvious functional tendencies implicated in carbohydrate metabolism, oxidative stress and resistance, protein metabolism, photosynthesis, and cytoskeleton and cell structure. In combination with phenotypic, tissue section, and bioinformatics analyses, the identified differentially expressed proteins revealed a complex network behind the regulation of PHYMS and pollen development. Accordingly, we constructed a protein network of male sterility in wheat, drawing relationships between the 103 differentially expressed proteins and their annotated biological pathways. To further validate our proposed protein network, we determined relevant physiological values and performed real-time PCR assays. CONCLUSIONS Our proteomics based approach has enabled us to identify certain tendencies in PHYMS anthers. Anomalies in carbohydrate metabolism and oxidative stress, together with premature tapetum degradation, may be the cause behind carbohydrate starvation and male sterility in CHA SQ-1 treated plants. Here, we provide important insight into the mechanisms underlying CHA SQ-1-induced male sterility. Our findings have practical implications for the application of hybrid breeding in wheat.
Collapse
Affiliation(s)
- Hongzhan Liu
- National Yangling Agricultural Biotechnology & Breeding Center / Yangling Branch of State Wheat Improvement Centre / Wheat Breeding Engineering Research Center, Ministry of Education /Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Gaisheng Zhang
- National Yangling Agricultural Biotechnology & Breeding Center / Yangling Branch of State Wheat Improvement Centre / Wheat Breeding Engineering Research Center, Ministry of Education /Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Junsheng Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Jingjing Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Yulong Song
- National Yangling Agricultural Biotechnology & Breeding Center / Yangling Branch of State Wheat Improvement Centre / Wheat Breeding Engineering Research Center, Ministry of Education /Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lin Qiao
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Na Niu
- National Yangling Agricultural Biotechnology & Breeding Center / Yangling Branch of State Wheat Improvement Centre / Wheat Breeding Engineering Research Center, Ministry of Education /Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Junwei Wang
- National Yangling Agricultural Biotechnology & Breeding Center / Yangling Branch of State Wheat Improvement Centre / Wheat Breeding Engineering Research Center, Ministry of Education /Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shoucai Ma
- National Yangling Agricultural Biotechnology & Breeding Center / Yangling Branch of State Wheat Improvement Centre / Wheat Breeding Engineering Research Center, Ministry of Education /Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lili Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| |
Collapse
|
12
|
Li J, Yang S, Gai J. Transcriptome comparative analysis between the cytoplasmic male sterile line and fertile line in soybean (Glycine max (L.) Merr.). Genes Genomics 2017. [DOI: 10.1007/s13258-017-0578-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Li J, Ding X, Han S, He T, Zhang H, Yang L, Yang S, Gai J. Differential proteomics analysis to identify proteins and pathways associated with male sterility of soybean using iTRAQ-based strategy. J Proteomics 2016; 138:72-82. [PMID: 26921830 DOI: 10.1016/j.jprot.2016.02.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/27/2016] [Accepted: 02/19/2016] [Indexed: 12/11/2022]
Abstract
To further elucidate the molecular mechanism of cytoplasmic male sterility (CMS) in soybean, a differential proteomic analysis was completed between the CMS line NJCMS1A and its maintainer NJCMS1B using iTRAQ-based strategy. As a result, 180 differential abundance proteins (DAPs) were identified, of which, 60 were down-regulated and 120 were up-regulated in NJCMS1A compared with NJCMS1B. Bioinformatic analysis showed that 167 DAPs were annotated in 41 Gene Ontology functional groups, 106 DAPs were classified into 20 clusters of orthologous groups of protein categories, and 128 DAPs were enrichment in 53 KEGG pathways. Fifteen differential level proteins/genes with the same expression pattern were identified in the further conjoint analysis of DAPs and the previously reported differential expression genes. Moreover, multiple reaction monitoring test, qRT-PCR analysis and enzyme activity assay validated that the iTRAQ results were reliable. Based on functional analysis of DAPs, we concluded that male sterility in NJCMS1A might be related to insufficiencies in energy supply, unbalance of protein synthesis and degradation, disruption of flavonoid synthesis, programmed cell death, abnormalities of substance metabolism, etc. These results might facilitate our understanding of the molecular mechanisms behind CMS in soybean. BIOLOGICAL SIGNIFICANCE Soybean is an important global crop that provides protein and oil. Heterosis is a significantly potential approach to increase the yield of soybean. Cytoplasmic male sterility (CMS) plays a vital role in the production of hybrid seeds. However, the genetic and molecular mechanisms of male sterility in soybean still need to be further elucidated. In the present paper, a differential proteomic analysis was carried out and the results showed that several key proteins involved in key pathways were associated with male sterility in soybean. This work provides a new insight to understand the genetic and molecular mechanisms underlying CMS in soybean.
Collapse
Affiliation(s)
- Jiajia Li
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Xianlong Ding
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Shaohuai Han
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Tingting He
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Hao Zhang
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Longshu Yang
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Shouping Yang
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Junyi Gai
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
14
|
Involvement of a universal amino acid synthesis impediment in cytoplasmic male sterility in pepper. Sci Rep 2016; 6:23357. [PMID: 26987793 PMCID: PMC4796900 DOI: 10.1038/srep23357] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/04/2016] [Indexed: 01/17/2023] Open
Abstract
To explore the mechanisms of pepper (Capsicum annuum L.) cytoplasmic male sterility (CMS), we studied the different maturation processes of sterile and fertile pepper anthers. A paraffin section analysis of the sterile anthers indicated an abnormality of the tapetal layer and an over-vacuolization of the cells. The quantitative proteomics results showed that the expression of histidinol dehydrogenase (HDH), dihydroxy-acid dehydratase (DAD), aspartate aminotransferase (ATAAT), cysteine synthase (CS), delta-1-pyrroline-5-carboxylate synthase (P5CS), and glutamate synthetase (GS) in the amino acid synthesis pathway decreased by more than 1.5-fold. Furthermore, the mRNA and protein expression levels of DAD, ATAAT, CS and P5CS showed a 2- to 16-fold increase in the maintainer line anthers. We also found that most of the amino acid content levels decreased to varying degrees during the anther tapetum period of the sterile line, whereas these levels increased in the maintainer line. The results of our study indicate that during pepper anther development, changes in amino acid synthesis are significant and accompany abnormal tapetum maturity, which is most likely an important cause of male sterility in pepper.
Collapse
|
15
|
Zheng H, Yu X, Yuan Y, Zhang Y, Zhang Z, Zhang J, Zhang M, Ji C, Liu Q, Tao J. The VviMYB80 Gene is Abnormally Expressed in Vitis vinifera L. cv. 'Zhong Shan Hong' and its Expression in Tobacco Driven by the 35S Promoter Causes Male Sterility. PLANT & CELL PHYSIOLOGY 2016; 57:540-57. [PMID: 26858283 DOI: 10.1093/pcp/pcw011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 01/10/2016] [Indexed: 06/05/2023]
Abstract
Anther development is a very precise and complicated process. In Arabidopsis, the AtMYB80 transcription factor regulates genes involved in pollen development and controls the timing of tapetal programmed cell death (PCD). In this study, we isolated and characterized cDNA for VviMYB80 expressed in flower buds of male-sterile Vitis vinifera L. cv. 'Zhong Shan Hong', a late-maturing cultivar derived from self-progeny of cv. 'Wink'. VviMYB80 belongs to the MYB80 subfamily and clusters with AtMYB35/TDF1 in a distinct clade. We found that in flower buds, expression of the VviMYB80 gene in cv. 'Zhong Shan Hong' sharply increased at the tetrad stage, resulting in a higher and earlier transcript level than that found in cv. 'Wink'. Expression of the VviMYB80 gene, driven by the 35S promoter, caused pleiotropic effects on the stamens, including smaller and shriveled anthers, delayed dehiscence, fewer seeds, shorter anther filaments, distorted pollen shape and a lack of cytoplasm, with the tapetum exhibiting hypertrophy in transformed tobacco. These results suggest that VviMYB80 may play an important role in stamen development and that expression of VviMYB80 driven by the 35S promoter in tobacco induces male sterility.
Collapse
Affiliation(s)
- Huan Zheng
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095 PR China Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi, Bunkyo, Tokyo, 113-8657 Japan
| | - Xiaojuan Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095 PR China
| | - Yue Yuan
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095 PR China
| | - Yaguang Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095 PR China
| | - Zhen Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095 PR China
| | - Jiyu Zhang
- Institute of Botany, Jiangsu Province and the Chinese Academy of Sciences, Nanjing, 210095 PR China
| | - Meng Zhang
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi, Bunkyo, Tokyo, 113-8657 Japan
| | - Chenfei Ji
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095 PR China
| | - Qian Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095 PR China
| | - Jianmin Tao
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095 PR China
| |
Collapse
|
16
|
Omidvar V, Mohorianu I, Dalmay T, Fellner M. Identification of miRNAs with potential roles in regulation of anther development and male-sterility in 7B-1 male-sterile tomato mutant. BMC Genomics 2015; 16:878. [PMID: 26511108 PMCID: PMC4625851 DOI: 10.1186/s12864-015-2077-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 10/13/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The 7B-1 tomato line (Solanum lycopersicum cv. Rutgers) is a photoperiod-sensitive male-sterile mutant, with potential application in hybrid seed production. Small RNAs (sRNAs) in tomato have been mainly characterized in fruit development and ripening, but none have been studied with respect to flower development and regulation of male-sterility. Using sRNA sequencing, we identified miRNAs that are potentially involved in anther development and regulation of male-sterility in 7B-1 mutant. RESULTS Two sRNA libraries from 7B-1 and wild type (WT) anthers were sequenced and thirty two families of known miRNAs and 23 new miRNAs were identified in both libraries. MiR390, miR166, miR159 were up-regulated and miR530, miR167, miR164, miR396, miR168, miR393, miR8006 and two new miRNAs, miR#W and miR#M were down-regulated in 7B-1 anthers. Ta-siRNAs were not differentially expressed and likely not associated with 7B-1 male-sterility. miRNA targets with potential roles in anther development were validated using 5'-RACE. QPCR analysis showed differential expression of miRNA/target pairs of interest in anthers and stem of 7B-1, suggesting that they may regulate different biological processes in these tissues. Expression level of most miRNA/target pairs showed negative correlation, except for few. In situ hybridization showed predominant expression of miR159, GAMYBL1, PMEI and cystatin in tapetum, tetrads and microspores. CONCLUSION Overall, we identified miRNAs with potential roles in anther development and regulation of male-sterility in 7B-1. A number of new miRNAs were also identified from tomato for the first time. Our data could be used as a benchmark for future studies of the molecular mechanisms of male-sterility in other crops.
Collapse
Affiliation(s)
- Vahid Omidvar
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany AS CR, Šlechtitelů 11, CZ-78371, Olomouc, Czech Republic.
| | - Irina Mohorianu
- School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, UK. .,School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
| | - Martin Fellner
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany AS CR, Šlechtitelů 11, CZ-78371, Olomouc, Czech Republic.
| |
Collapse
|
17
|
Fang W, Zhao F, Sun Y, Xie D, Sun L, Xu Z, Zhu W, Yang L, Zhao Y, Lv S, Tang Z, Nie L, Li W, Hou J, Duan Z, Yu Y, Yang X. Transcriptomic Profiling Reveals Complex Molecular Regulation in Cotton Genic Male Sterile Mutant Yu98-8A. PLoS One 2015; 10:e0133425. [PMID: 26382878 PMCID: PMC4575049 DOI: 10.1371/journal.pone.0133425] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/26/2015] [Indexed: 01/13/2023] Open
Abstract
Although cotton genic male sterility (GMS) plays an important role in the utilization of hybrid vigor, its precise molecular mechanism remains unclear. To characterize the molecular events of pollen abortion, transcriptome analysis, combined with histological observations, was conducted in the cotton GMS line, Yu98-8A. A total of 2,412 genes were identified as significant differentially expressed genes (DEGs) before and during the critical pollen abortion stages. Bioinformatics and biochemical analysis showed that the DEGs mainly associated with sugars and starch metabolism, oxidative phosphorylation, and plant endogenous hormones play a critical and complicated role in pollen abortion. These findings extend a better understanding of the molecular events involved in the regulation of pollen abortion in genic male sterile cotton, which may provide a foundation for further research studies on cotton heterosis breeding.
Collapse
Affiliation(s)
- Weiping Fang
- Economic Crop Research Institute, Henan Academy of Agriculture Sciences, Zhengzhou, Henan province, 450002, R.P. China
- * E-mail: (WPF); (XJY)
| | - Fu'an Zhao
- Economic Crop Research Institute, Henan Academy of Agriculture Sciences, Zhengzhou, Henan province, 450002, R.P. China
| | - Yao Sun
- Economic Crop Research Institute, Henan Academy of Agriculture Sciences, Zhengzhou, Henan province, 450002, R.P. China
| | - Deyi Xie
- Economic Crop Research Institute, Henan Academy of Agriculture Sciences, Zhengzhou, Henan province, 450002, R.P. China
| | - Li Sun
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Zhenzhen Xu
- State Key Laboratory of Cotton Biology, Cotton Research Institute, Chinese Academy of Agriculture Sciences, Anyang, Henan province, 455000, R.P. China
| | - Wei Zhu
- Agronomy College, Henan Agricultural University, Zhengzhou, Henan province, 450002, R.P. China
| | - Lirong Yang
- Plant Protection Research Institute, Henan Academy of Agriculture Sciences, Zhengzhou, Henan province, 450002, R.P. China
| | - Yuanming Zhao
- Economic Crop Research Institute, Henan Academy of Agriculture Sciences, Zhengzhou, Henan province, 450002, R.P. China
| | - Shuping Lv
- Economic Crop Research Institute, Henan Academy of Agriculture Sciences, Zhengzhou, Henan province, 450002, R.P. China
| | - Zhongjie Tang
- Economic Crop Research Institute, Henan Academy of Agriculture Sciences, Zhengzhou, Henan province, 450002, R.P. China
| | - Lihong Nie
- Economic Crop Research Institute, Henan Academy of Agriculture Sciences, Zhengzhou, Henan province, 450002, R.P. China
| | - Wu Li
- Economic Crop Research Institute, Henan Academy of Agriculture Sciences, Zhengzhou, Henan province, 450002, R.P. China
| | - Jianan Hou
- Economic Crop Research Institute, Henan Academy of Agriculture Sciences, Zhengzhou, Henan province, 450002, R.P. China
| | - Zhengzheng Duan
- Economic Crop Research Institute, Henan Academy of Agriculture Sciences, Zhengzhou, Henan province, 450002, R.P. China
| | - Yuebo Yu
- Economic Crop Research Institute, Henan Academy of Agriculture Sciences, Zhengzhou, Henan province, 450002, R.P. China
| | - Xiaojie Yang
- Economic Crop Research Institute, Henan Academy of Agriculture Sciences, Zhengzhou, Henan province, 450002, R.P. China
- * E-mail: (WPF); (XJY)
| |
Collapse
|
18
|
Liu J, Pang C, Wei H, Song M, Meng Y, Ma J, Fan S, Yu S. iTRAQ-facilitated proteomic profiling of anthers from a photosensitive male sterile mutant and wild-type cotton (Gossypium hirsutum L.). J Proteomics 2015; 126:68-81. [PMID: 26047712 DOI: 10.1016/j.jprot.2015.05.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/20/2015] [Accepted: 05/25/2015] [Indexed: 11/28/2022]
Abstract
Male sterility is a common phenomenon in flowering plants, and it has been successfully developed in several crops by taking advantage of heterosis. Cotton (Gossypium hirsutum L.) is an important economic crop, used mainly for the production of textile fiber. Using a space mutation breeding technique, a novel photosensitive genetic male sterile mutant CCRI9106 was isolated from the wild-type upland cotton cultivar CCRI040029. To use CCRI9106 in cotton hybrid breeding, it is of great importance to study the molecular mechanisms of its male sterility. Here, histological and iTRAQ-facilitated proteomic analyses of anthers were performed to explore male sterility mechanisms of the mutant. Scanning and transmission electron microscopy of the anthers showed that the development of pollen wall in CCRI9106 was severely defective with a lack of exine formation. At the protein level, 6121 high-confidence proteins were identified and 325 of them showed differential expression patterns between mutant and wild-type anthers. The proteins up- or down-regulated in MT anthers were mainly involved in exine formation, protein degradation, calcium ion binding,etc. These findings provide valuable information on the proteins involved in anther and pollen development, and contribute to elucidate the mechanism of male sterility in upland cotton.
Collapse
Affiliation(s)
- Ji Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan Province, China
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan Province, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan Province, China
| | - Meizhen Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan Province, China
| | - Yanyan Meng
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South Central University for Nationalities, Wuhan 430064, Hubei Province, China
| | - Jianhui Ma
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan Province, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan Province, China.
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan Province, China.
| |
Collapse
|
19
|
Liu J, Pang C, Wei H, Song M, Meng Y, Fan S, Yu S. Proteomic analysis of anthers from wild-type and photosensitive genetic male sterile mutant cotton (Gossypium hirsutum L.). BMC PLANT BIOLOGY 2014; 14:390. [PMID: 25547499 PMCID: PMC4311434 DOI: 10.1186/s12870-014-0390-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 12/17/2014] [Indexed: 05/23/2023]
Abstract
BACKGROUND Male sterility is a common phenomenon in flowering plant species, and it has been successfully developed in several crops by taking advantage of heterosis. Using space mutation breeding of upland cotton, a novel photosensitive genetic male sterile (PGMS) mutant was isolated. To take advantage of the PGMS lines in cotton hybrid breeding, it is of great importance to study the molecular mechanisms of its male sterility. RESULTS Delayed degradation of the PGMS anther tapetum occurred at different developmental stages as shown by analysis of anther cross-sections. To gain detailed insights into the cellular defects that occurred during PGMS pollen development, we used a differential proteomic approach to investigate the protein profiles of mutant and wild-type anthers at the tetrad, uninucleate and binucleate pollen stages. This approach identified 62 differentially expressed protein spots, including 19 associated with energy and metabolic pathways, 7 involved with pollen tube growth, 5 involved with protein metabolism, and 4 involved with pollen wall development. The remaining 27 protein spots were classified into other functional processes, such as protein folding and assembly (5 spots), and stress defense (4 spots). These differentially expressed proteins strikingly affected pollen development in the PGMS mutant anther and resulted in abnormal pollen grain formation, which may be the key reason for its male sterility. CONCLUSIONS This work represents the first study using comparative proteomics between fertile and PGMS cotton plants to identify PGMS-related proteins. The results demonstrate the presence of a complicated metabolic network in anther development and advance our understanding of the molecular mechanisms of microgamete formation, providing insights into the molecular mechanisms of male sterility.
Collapse
Affiliation(s)
- Ji Liu
- />College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi Province China
- />State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan Province China
| | - Chaoyou Pang
- />State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan Province China
| | - Hengling Wei
- />State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan Province China
| | - Meizhen Song
- />State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan Province China
| | - Yanyan Meng
- />Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Soiences, South Central University for Nationalities, Wuhan, 430064 Hubei Province China
| | - Shuli Fan
- />State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan Province China
| | - Shuxun Yu
- />College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi Province China
- />State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan Province China
| |
Collapse
|
20
|
Proteome alterations of reverse photoperiod-sensitive genic male sterile rice (Oryza sativa L.) at fertility transformation stage. Genes Genomics 2014. [DOI: 10.1007/s13258-014-0205-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
21
|
Shukla P, Singh NK, Kumar D, Vijayan S, Ahmed I, Kirti PB. Expression of a pathogen-induced cysteine protease (AdCP) in tapetum results in male sterility in transgenic tobacco. Funct Integr Genomics 2014; 14:307-17. [PMID: 24615687 DOI: 10.1007/s10142-014-0367-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/17/2014] [Accepted: 02/24/2014] [Indexed: 01/26/2023]
Abstract
Usable male sterility systems have immense potential in developing hybrid varieties in crop plants, which can also be used as a biological safety containment to prevent horizontal transgene flow. Barnase-Barstar system developed earlier was the first approach to engineer male sterility in plants. In an analogous situation, we have evolved a system of inducing pollen abortion and male sterility in transgenic tobacco by expressing a plant gene coding for a protein with known developmental function in contrast to the Barnase-Barstar system, which deploys genes of prokaryotic origin, i.e., from Bacillus amyloliquefaciens. We have used a plant pathogen-induced gene, cysteine protease for inducing male sterility. This gene was identified in the wild peanut, Arachis diogoi differentially expressed when it was challenged with the late leaf spot pathogen, Phaeoisariopsis personata. Arachis diogoi cysteine protease (AdCP) was expressed under the strong tapetum-specific promoter (TA29) and tobacco transformants were generated. Morphological and histological analysis of AdCP transgenic plants showed ablated tapetum and complete pollen abortion in three transgenic lines. Furthermore, transcript analysis displayed the expression of cysteine protease in these male sterile lines and the expression of the protein was identified in western blot analysis using its polyclonal antibody raised in the rabbit system.
Collapse
Affiliation(s)
- Pawan Shukla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | | | | | | | | | | |
Collapse
|
22
|
Yan J, Tian H, Wang S, Shao J, Zheng Y, Zhang H, Guo L, Ding Y. Pollen developmental defects in ZD-CMS rice line explored by cytological, molecular and proteomic approaches. J Proteomics 2014; 108:110-23. [PMID: 24878425 DOI: 10.1016/j.jprot.2014.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/13/2014] [Accepted: 05/19/2014] [Indexed: 10/25/2022]
Abstract
UNLABELLED Cytoplasmic male sterility (CMS) is a widely observed phenomenon, which is especially useful in hybrid seed production. Meixiang A (MxA) is a new rice CMS line derived from a pollen-free sterile line named Yunnan ZidaoA (ZD-CMS). In this study, a homologous WA352 gene with variation in two nucleotides was identified in MxA. Cytological analysis revealed that MxA was aborted in the early uninucleate stage. The protein expression profiles of MxA and its maintainer line MeixiangB (MxB) were systematically compared using iTRAQ-based quantitative proteomics technology using young florets at the early uninucleate stage. A total of 688 proteins were quantified in both rice lines, and 45 of these proteins were found to be differentially expressed. Bioinformatics analysis indicated a large number of the proteins involved in carbohydrate metabolism or the stress response were downregulated in MxA, suggesting that these metabolic processes had been hindered during pollen development in MxA. The ROS (reactive oxygen species) level was increased in the mitochondrion of MxA, and further ultrastructural analysis showed the mitochondria with disrupted cristae in the rice CMS line MxA. These findings substantially contribute to our knowledge of pollen developmental defects in ZD-CMS rice line. BIOLOGICAL SIGNIFICANCE MeixiangA (MxA) is a new type of rice CMS line, which is derived from pollen-free sterile line Yunnan ZidaoA. In this study, the cytological, molecular and proteomic approaches were used to study the characteristics of this new CMS line. Cytological study indicates the CMS line is aborted at the early uninucleate stage. A potential sterile gene ZD352 is identified in MxA, the protein product of which is mainly accumulated at the MMC/Meiotic stage. iTRAQ based proteomic analysis is performed to study the relevant proteins involved in the CMS occurance, 45 proteins are found to be significant differentially expressed and these proteins are involved in many cellular processes such as carbohydrate metabolism, stress response, protein synthesis. To our knowledge, this is the first report using the iTRAQ-labeled quantitative proteomic to study the protein expression variation during the abortion processes between a CMS line and its maintainer line. These results provide new insights on the CMS mechanisms of ZD-CMS rice line.
Collapse
Affiliation(s)
- Junjie Yan
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Han Tian
- State Key Laboratory of Virology, Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Shuzhen Wang
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Jinzhen Shao
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Yinzhen Zheng
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Hongyuan Zhang
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Lin Guo
- State Key Laboratory of Virology, Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Yi Ding
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China.
| |
Collapse
|
23
|
Differential proteomic studies of the genic male-sterile line and fertile line anthers of upland cotton (Gossypium hirsutum L.). Genes Genomics 2014. [DOI: 10.1007/s13258-014-0176-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
Wu Z, Cheng J, Qin C, Hu Z, Yin C, Hu K. Differential proteomic analysis of anthers between cytoplasmic male sterile and maintainer lines in Capsicum annuum L. Int J Mol Sci 2013; 14:22982-96. [PMID: 24264042 PMCID: PMC3856101 DOI: 10.3390/ijms141122982] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 10/31/2013] [Accepted: 11/05/2013] [Indexed: 12/01/2022] Open
Abstract
Cytoplasmic male sterility (CMS), widely used in the production of hybrid seeds, is a maternally inherited trait resulting in a failure to produce functional pollen. In order to identify some specific proteins associated with CMS in pepper, two-dimensional gel electrophoresis (2-DE) was applied to proteomic analysis of anthers/buds between a CMS line (designated NA3) and its maintainer (designated NB3) in Capsicum annuum L. Thirty-three spots showed more than 1.5-fold in either CMS or its maintainer. Based on mass spectrometry, 27 spots representing 23 distinct proteins in these 33 spots were identified. Proteins down-regulated in CMS anthers/buds includes ATP synthase D chain, formate dehydrogenase, alpha-mannosidas, RuBisCO large subunit-binding protein subunit beta, chloroplast manganese stabilizing protein-II, glutathione S-transferase, adenosine kinase isoform 1T-like protein, putative DNA repair protein RAD23-4, putative caffeoyl-CoA 3-O-methyltransferase, glutamine synthetase (GS), annexin Cap32, glutelin, allene oxide cyclase, etc. In CMS anthers/buds, polyphenol oxidase, ATP synthase subunit beta, and actin are up-regulated. It was predicted that male sterility in NA3 might be related to energy metabolism turbulence, excessive ethylene synthesis, and suffocation of starch synthesis. The present study lays a foundation for future investigations of gene functions associated with pollen development and cytoplasmic male sterility, and explores the molecular mechanism of CMS in pepper.
Collapse
Affiliation(s)
- Zhiming Wu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Zhongkai Road 501, Guangzhou 510225, Guangdong, China; E-Mails: (Z.W.); (C.Y.)
| | - Jiaowen Cheng
- College of Horticulture, South China Agricultural University, Wushan Road 483, Guangzhou 510640, Guangdong, China; E-Mails: (J.C.); (Z.H.)
| | - Cheng Qin
- Zunyi Institute of Agricultural Sciences, Zunyi 563102, Guizhou, China; E-Mail:
- Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, Sichuan, China
| | - Zhiqun Hu
- College of Horticulture, South China Agricultural University, Wushan Road 483, Guangzhou 510640, Guangdong, China; E-Mails: (J.C.); (Z.H.)
| | - Caixia Yin
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Zhongkai Road 501, Guangzhou 510225, Guangdong, China; E-Mails: (Z.W.); (C.Y.)
| | - Kailin Hu
- College of Horticulture, South China Agricultural University, Wushan Road 483, Guangzhou 510640, Guangdong, China; E-Mails: (J.C.); (Z.H.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-20-8528-3320; Fax: +86-20-8528-0228
| |
Collapse
|