1
|
Wilsey R, Hodge S, Kenney K, Wahl J, Jaffery R, Brau A, Qiu Z, Lee M. Two alleles of unc-52 locus disrupting potential cell-binding motif of UNC-52. MICROPUBLICATION BIOLOGY 2020; 2020. [PMID: 32550495 PMCID: PMC7252330 DOI: 10.17912/micropub.biology.000250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rachel Wilsey
- One Bear Place 97388, Department of Biology, Baylor University, Waco, TX 76798, U.S.A
| | - Sabrina Hodge
- One Bear Place 97388, Department of Biology, Baylor University, Waco, TX 76798, U.S.A
| | - Krysta Kenney
- One Bear Place 97388, Department of Biology, Baylor University, Waco, TX 76798, U.S.A
| | - Jacob Wahl
- One Bear Place 97388, Department of Biology, Baylor University, Waco, TX 76798, U.S.A
| | - Roshni Jaffery
- One Bear Place 97388, Department of Biology, Baylor University, Waco, TX 76798, U.S.A
| | - Avery Brau
- One Bear Place 97388, Department of Biology, Baylor University, Waco, TX 76798, U.S.A
| | - Zhongqiang Qiu
- One Bear Place 97388, Department of Biology, Baylor University, Waco, TX 76798, U.S.A
| | - Myeongwoo Lee
- One Bear Place 97388, Department of Biology, Baylor University, Waco, TX 76798, U.S.A
| |
Collapse
|
2
|
Qiu Z, Sheesley P, Ahn JH, Yu EJ, Lee M. A Novel Mutation in an NPXY Motif of β Integrin Reveals Phenotypes Similar to him-4/hemicentin. Front Cell Dev Biol 2019; 7:247. [PMID: 31720287 PMCID: PMC6827421 DOI: 10.3389/fcell.2019.00247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/08/2019] [Indexed: 11/13/2022] Open
Abstract
Integrin, an αβ heterodimeric cell surface receptor for the extracellular matrix (ECM), carries two tyrosine phosphorylation motifs in the cytoplasmic tail of the β subunit. NPXY (Asn-Pro-x-Tyr) is a conserved tyrosine phosphorylation motif that binds to the phospho-tyrosine binding (PTB) domain. We generated a tyrosine to glutamic acid (E) mutation to modify tyrosine (Y) into a negatively charged amino NPXY in the βpat-3 integrin of Caenorhabditis elegans. The transgenic rescue animal displayed defects in gonad migration and tail morphology. Also, the mutant animals produced a high number of males, suggesting that the Y to E mutation in βpat-3 integrin causes a phenotype similar to that of Him mutant. Further analyses revealed that males of pat-3(Y804E) and him-4/hemicentin share additional phenotypes such as abnormal gonad and unsuccessful mating. A pat-3 transgenic rescue mutant with a non-polar phenylalanine (F) in NPXY, pat-3(Y792/804F), suppressed the high male number, defective mating, inviable zygote, and the abnormal gonad of him-4 mutants, indicating that Y to F mutation in both NPXY motifs suppressed the him-4 phenotypes. This finding supports the idea that the ECM determines the activation state in integrin NPXY motifs; him-4/hemicentin may directly or indirectly interact with integrins and maintain the NPXY non-charged. Our findings provide new insight into a suppressive role of an ECM molecule in integrin NPXY phosphorylation.
Collapse
Affiliation(s)
| | | | | | | | - Myeongwoo Lee
- Department of Biology, Baylor University, Waco, TX, United States
| |
Collapse
|
3
|
Hu B, Hua L, Ni W, Wu M, Yan D, Chen Y, Lu C, Chen B, Wan C. Nucleostemin/GNL3 promotes nucleolar polyubiquitylation of p27 kip1 to drive hepatocellular carcinoma progression. Cancer Lett 2016; 388:220-229. [PMID: 27998760 DOI: 10.1016/j.canlet.2016.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/09/2016] [Accepted: 12/09/2016] [Indexed: 01/31/2023]
Abstract
p27kip, as a cyclin dependent kinase inhibitor (CDKI), plays a pivotal role in the regulation of cell cycle progression and hepatocarcinogenesis. Herein, we revealed that p27 exhibited apparent nucleolar distribution and interacted with nucleolar protein nucleostemin (NS) in Hepatocellular carcinoma (HCC) cells. Furthermore, subcellular fractionation experiments demonstrated that nucleolar p27 had significantly higher level of polyubiquitylation, compared with nucleoplasmic fraction. Depletion of NS inhibited nucleolar polyubiquitylation of p27, indicating an involvement of NS in triggering p27 ubiquitylation and inactivation during HCC development. Moreover, we found that knockdown of NS promoted p27 to bind to CDK2-Cyclin E complex and inhibited the activity of CDK2, resulting in consequent cell cycle arrest in HCC cells. Furthermore, silencing NS expression reduced in vitro colony formation and in vivo tumor growth of HCC cells. Finally, we found that NS was upregulated in HCC tissues, compared with adjacent non-tumorous tissues. Kaplan-Meier analysis indicated patients with high expression of NS and low expression of p27 had significantly worsened prognosis. Our results suggested NS mediated p27-dependent cell cycle control via inducing nucleolar sequestration and polyubiquitylation of p27 in HCC. These findings help gain an insightful view into the mechanism underlying aberrant cell cycle progression during hepatocarcinogenesis, and thus benefit the development of molecular-targeted therapies in HCC.
Collapse
Affiliation(s)
- Baoying Hu
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China; Basic Medical Research Centre, Medical College, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Lu Hua
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Wenkai Ni
- Department of Gastroenterlogy, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Miaomiao Wu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Daliang Yan
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yuyan Chen
- Class 2 Grade 13, Clinical Medicine, Medical College, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Cuihua Lu
- Department of Gastroenterlogy, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Buyou Chen
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China.
| | - Chunhua Wan
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China.
| |
Collapse
|