1
|
Yuan S, Khodursky S, Geng J, Sharma P, Spin JM, Tsao P, Levin MG, Damrauer SM. Identifying Circulating Protein Mediators in the Link Between Smoking and Abdominal Aortic Aneurysm: An Integrated Analysis of Human Proteomic and Genomic Data. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.27.25322973. [PMID: 40061319 PMCID: PMC11888489 DOI: 10.1101/2025.02.27.25322973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Background Smoking is a well-established risk factor for abdominal aortic aneurysm (AAA). However, the molecular pathways underlying this relationship remain poorly understood. This study aimed to identify circulating protein mediators that may explain the association between smoking and AAA. Methods We conducted a network Mendelian randomization (MR) study utilizing summary-level data from the largest available genome-wide association studies. Our primary smoking exposure was the lifetime smoking index, with smoking initiation and cigarettes per day included as supplementary traits. The AAA dataset comprised 39,221 cases and 1,086,107 controls. Protein data were sourced from two large cohorts: UKB-PPP, where proteins were measured using the Olink platform in 54,219 individuals, and deCODE, where proteins were measured using the SomaScan platform in 35,559 individuals. Two-sample MR was employed to estimate the association between smoking and AAA (βtotal) and between smoking and circulating protein levels (β1). Summary data-based MR was then used to assess the association between smoking-related proteins and AAA risk (β2). Mediation pathways were identified based on the directionality of effect estimates, and the corresponding mediation effects were quantified. Results Genetically predicted smoking traits were consistently associated with an increased risk of AAA. The lifetime smoking index was associated with the levels of 543 out of 5,764 unique circulating proteins, with 470 of these associations replicated in supplementary analyses using additional smoking traits and protein sources. Among the smoking-related proteins, genetically predicted levels of 22 were associated with AAA risk. Eight mediation pathways were identified accounting for 42.7% of the total smoking-AAA association and with mediation effects >4% for ADAMTS15, IL1RN, MMP12, PGF, PCSK9, and UXS1. Conclusion This study identified numerous circulating proteins potentially causally linked to smoking, and eight of these proteins were found to mediate the association between smoking and AAA risk.
Collapse
Affiliation(s)
- Shuai Yuan
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Samuel Khodursky
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jiawei Geng
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Pranav Sharma
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Joshua M. Spin
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Philip Tsao
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael G. Levin
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott M. Damrauer
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Paterson MA, Pilbrow AP, Frampton CM, Cameron VA, Troughton RW, Pemberton CJ, Lund M, Devlin GP, Richards AM, Doughty RN, Palmer BR. Plasma soluble fms-like tyrosine kinase-1, placental growth factor, and vascular endothelial growth factor system gene variants as predictors of survival in heart failure. Eur J Heart Fail 2024; 26:1804-1813. [PMID: 38980212 DOI: 10.1002/ejhf.3368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/09/2024] [Accepted: 06/21/2024] [Indexed: 07/10/2024] Open
Abstract
AIMS Soluble fms-like tyrosine kinase-1 (sFlt-1) and placental growth factor (PlGF), components of the vascular endothelial growth factor (VEGF) system, play key roles in angiogenesis. Reports of elevated plasma levels of sFlt-1 and PlGF in coronary heart disease and heart failure (HF) led us to investigate their utility, and VEGF system gene single nucleotide polymorphisms (SNPs), as prognostic biomarkers in HF. METHODS AND RESULTS ELISA assays for sFlt-1, PlGF and N-terminal pro-B-type natriuretic peptide (NT-proBNP) were performed on baseline plasma samples from the PEOPLE cohort (n = 890), a study of outcomes among patients after an episode of acute decompensated HF. Eight SNPs potentially associated with sFlt-1 or PlGF levels were genotyped. sFlt-1 and PlGF were assayed in 201 subjects from the Canterbury Healthy Volunteers Study (CHVS) matched to PEOPLE participants. All-cause death was the major endpoint for clinical outcome considered. In PEOPLE participants, mean plasma levels for both sFlt-1 (125 ± 2.01 pg/ml) and PlGF (17.5 ± 0.21 pg/ml) were higher (both p < 0.044) than in the CHVS cohort (81.2 ± 1.31 pg/ml and 15.5 ± 0.32 pg/ml, respectively). sFlt-1 was higher in HF with reduced ejection fraction compared to HF with preserved ejection fraction (p = 0.005). The PGF gene SNP rs2268616 was univariately associated with death (p = 0.016), and was also associated with PlGF levels, as was rs2268614 genotype. Cox proportional hazards modelling (n = 695, 246 deaths) showed plasma sFlt-1, but not PlGF, predicted survival (hazard ratio 6.44, 95% confidence interval 2.57-16.1; p < 0.001) in PEOPLE, independent of age, NT-proBNP, ischaemic aetiology, diabetic status and beta-blocker therapy. CONCLUSIONS Plasma sFlt-1 concentrations have potential as an independent predictor of survival and may be complementary to established prognostic biomarkers in HF.
Collapse
Affiliation(s)
- Melinda A Paterson
- Department of Medicine, Christchurch Heart Institute, University of Otago Christchurch, Christchurch, New Zealand
| | - Anna P Pilbrow
- Department of Medicine, Christchurch Heart Institute, University of Otago Christchurch, Christchurch, New Zealand
| | - Chris M Frampton
- Department of Medicine, Christchurch Heart Institute, University of Otago Christchurch, Christchurch, New Zealand
| | - Vicky A Cameron
- Department of Medicine, Christchurch Heart Institute, University of Otago Christchurch, Christchurch, New Zealand
| | - Richard W Troughton
- Department of Medicine, Christchurch Heart Institute, University of Otago Christchurch, Christchurch, New Zealand
| | - Chris J Pemberton
- Department of Medicine, Christchurch Heart Institute, University of Otago Christchurch, Christchurch, New Zealand
| | - Mayanna Lund
- Cardiology Department, Middlemore Hospital, Auckland, New Zealand
| | - Gerard P Devlin
- Department of Cardiology, Waikato District Health Board, Hamilton, New Zealand
| | - A Mark Richards
- Department of Medicine, Christchurch Heart Institute, University of Otago Christchurch, Christchurch, New Zealand
- Cardiovascular Research Institute, National University of Singapore, Singapore, Singapore
| | - Robert N Doughty
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Barry R Palmer
- Department of Medicine, Christchurch Heart Institute, University of Otago Christchurch, Christchurch, New Zealand
- School of Health Sciences, College of Health, Massey University, Wellington, New Zealand
| |
Collapse
|
3
|
Svyatova G, Mirzakhmetova D, Berezina G, Murtazaliyeva A. Candidate genes related to acute cerebral circulatory disorders in Preeclampsia in the Kazakh Population. J Stroke Cerebrovasc Dis 2023; 32:107392. [PMID: 37776726 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND The purpose of this study is to conduct a comparative analysis of the population frequencies of alleles and genotypes of polymorphic variants of coagulation and fibrinolysis genes SERPINE1 rs1799889, ITGA2 rs1126643, THBD rs1042580, FII rs1799963, FV rs6025, FVII rs6046, angiogenesis and endothelial dysfunction PGF rs12411, FLT1 rs4769612, KDR rs2071559, ACE rs4340, GWAS associated with the development of acute cerebral circulatory disorders in preeclampsia, in an ethnically homogeneous population of Kazakhs with previously studied populations of the world. METHODS The genomic database was analysed based on the results of genotyping of 1800 conditionally healthy individuals of Kazakh nationality ∼2.5 million SNPs using OmniChip 2.5 M Illumina chips at the DECODE Iceland Genomic Center as part of the joint implementation of the project "Genetic Studies of Preeclampsia in Populations of Central Asia and Europe" (InterPregGen) within the 7th Framework Programme of the European Commission under Grant Agreement No. 282540. RESULT The study discovered a significantly higher population frequency of carrying the unfavorable rs1126643 allele of the ITGA2 gene polymorphism when compared with European populations. The population frequencies of carrying minor alleles of the SERPINE1 (rs179988) and KDR (rs2071559) genes in the Kazakh population were significantly lower when compared with the previously studied populations of Europe and Asia. An intermediate frequency of unfavorable minor alleles between European and Asian populations was found in Kazakhs for gene polymorphisms: FV rs6025, PGF rs12411, and ACE rs4340. The genomic analysis determined the choice of polymorphisms for their further replicative genotyping in patients with ACCD in PE in the Kazakh population. CONCLUSION The obtained results will serve as a basis for the development of effective methods of early diagnosis and treatment of PE in pregnant women, carriers of unfavorable genotypes.
Collapse
Affiliation(s)
- Gulnara Svyatova
- Republican Medical Genetic Consultation, Scientific Center of Obstetrics, Gynecology and Perinatology, 050020, 125 Dostyk Ave., Almaty, Kazakhstan
| | - Dinara Mirzakhmetova
- Scientific Center of Obstetrics, Gynecology and Perinatology, 050020, 125 Dostyk Ave., Almaty, Kazakhstan.
| | - Galina Berezina
- Republican Medical Genetic Consultation, Scientific Center of Obstetrics, Gynecology and Perinatology, 050020, 125 Dostyk Ave., Almaty, Kazakhstan
| | - Alexandra Murtazaliyeva
- Republican Medical Genetic Consultation, Scientific Center of Obstetrics, Gynecology and Perinatology, 050020, 125 Dostyk Ave., Almaty, Kazakhstan
| |
Collapse
|
4
|
Zdesenko G, Mduluza T, Mutapi F. Pharmacogenetics of Praziquantel Metabolism: Evaluating the Cytochrome P450 Genes of Zimbabwean Patients During a Schistosomiasis Treatment. Front Genet 2022; 13:914372. [PMID: 35754834 PMCID: PMC9213834 DOI: 10.3389/fgene.2022.914372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Schistosomiasis is a parasitic disease infecting over 236 million people annually, with the majority affected residing on the African continent. Control of this disease is reliant on the drug praziquantel (PZQ), with treatment success dependent on an individual reaching PZQ concentrations lethal to schistosomes. Despite the complete reliance on PZQ to treat schistosomiasis in Africa, the characterization of the pharmacogenetics associated with PZQ metabolism in African populations has been sparse. We aimed to characterize genetic variation in the drug-metabolising cytochrome P450 enzymes (CYPs) and determine the association between each variant and the efficacy of PZQ treatment in Zimbabwean patients exposed to Schistosoma haematobium infection. Genomic DNA from blood samples of 114 case-control Zimbabweans infected with schistosomes were sequenced using the CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4, and CYP3A5 genes as targets. Bioinformatic tools were used to identify and predict functional effects of detected single nucleotide polymorphisms (SNPs). A random forest (RF) model was then used to assess SNPs most predictive of PZQ efficacy, with a misclassification rate of 29%. SNPs were detected across all six genes, with 70 SNPs identified and multiple functional changes to the CYP enzymes predicted. Only four SNPs were significantly associated with PZQ efficacy using χ2 tests, with rs951840747 (OR: 3.61, p = 0.01) in the CYP1A2 gene having the highest odds of an individual possessing this SNP clearing infection, and rs6976017 (OR: 2.19, p = 0.045) of CYP3A5 determined to be the most predictive of PZQ efficacy via the RF. Only the rs28371702 (CC) genotype (OR: 2.36, p = 0.024) of CYP2D6 was significantly associated with an unsuccessful PZQ treatment. This study adds to the genomic characterization of the diverse populations in Africa and identifies variants relevant to other pharmacogenetic studies crucial for the development and usage of drugs in these populations.
Collapse
Affiliation(s)
- Grace Zdesenko
- Ashworth Laboratories, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom.,Ashworth Laboratories, NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA), University of Edinburgh, Edinburgh, United Kingdom
| | - Takafira Mduluza
- Ashworth Laboratories, NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA), University of Edinburgh, Edinburgh, United Kingdom.,Department of Biochemistry, University of Zimbabwe, Harare, Zimbabwe
| | - Francisca Mutapi
- Ashworth Laboratories, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom.,Ashworth Laboratories, NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA), University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Ruggiero D, Nutile T, Nappo S, Tirozzi A, Bellenguez C, Leutenegger AL, Ciullo M. Genetics of PlGF plasma levels highlights a role of its receptors and supports the link between angiogenesis and immunity. Sci Rep 2021; 11:16821. [PMID: 34413389 PMCID: PMC8376970 DOI: 10.1038/s41598-021-96256-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/28/2021] [Indexed: 11/29/2022] Open
Abstract
Placental growth factor (PlGF) is a member of the vascular endothelial growth factor family and is involved in bone marrow-derived cell activation, endothelial stimulation and pathological angiogenesis. High levels of PlGF have been observed in several pathological conditions especially in cancer, cardiovascular, autoimmune and inflammatory diseases. Little is known about the genetics of circulating PlGF levels. Indeed, although the heritability of circulating PlGF levels is around 40%, no studies have assessed the relation between PlGF plasma levels and genetic variants at a genome-wide level. In the current study, PlGF plasma levels were measured in a population-based sample of 2085 adult individuals from three isolated populations of South Italy. A GWAS was performed in a discovery cohort (N = 1600), followed by a de novo replication (N = 468) from the same populations. The meta-analysis of the discovery and replication samples revealed one signal significantly associated with PlGF circulating levels. This signal was mapped to the PlGF co-receptor coding gene NRP1, indicating its important role in modulating the PlGF plasma levels. Two additional signals, at the PlGF receptor coding gene FLT1 and RAPGEF5 gene, were identified at a suggestive level. Pathway and TWAS analyses highlighted genes known to be involved in angiogenesis and immune response, supporting the link between these processes and PlGF regulation. Overall, these data improve our understanding of the genetic variation underlying circulating PlGF levels. This in turn could lead to new preventive and therapeutic strategies for a wide variety of PlGF-related pathologies.
Collapse
Affiliation(s)
- Daniela Ruggiero
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", National Research Council of Italy (CNR), Via Pietro Castellino, 111, 80131, Naples, Italy.
- IRCCS Neuromed, Pozzilli, Isernia, Italy.
| | - Teresa Nutile
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", National Research Council of Italy (CNR), Via Pietro Castellino, 111, 80131, Naples, Italy
| | | | | | - Celine Bellenguez
- CHU Lille, U1167 - Labex DISTALZ - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Inserm, Institut Pasteur de Lille, Univ. Lille, 59000, Lille, France
| | - Anne-Louise Leutenegger
- UMR 946, Genetic Variation and Human Diseases, Inserm, 75010, Paris, France
- UMR946, Université Paris-Diderot, Sorbonne Paris Cité, 75010, Paris, France
| | - Marina Ciullo
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", National Research Council of Italy (CNR), Via Pietro Castellino, 111, 80131, Naples, Italy.
- IRCCS Neuromed, Pozzilli, Isernia, Italy.
| |
Collapse
|
6
|
Germline Genetic Variants of the Renin-Angiotensin System, Hypoxia and Angiogenesis in Non-Small Cell Lung Cancer Progression: Discovery and Validation Studies. Cancers (Basel) 2020; 12:cancers12123834. [PMID: 33353148 PMCID: PMC7766842 DOI: 10.3390/cancers12123834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The presence of polymorphic gene variants in the human genome provides extensive genetic (and eventually phenotypic) variation affecting both normal physiological mechanisms and cancer pathogenesis. Functional genetic polymorphisms might have predictive and/or prognostic value in lung cancer, opening novel opportunities to improve prediction and guide clinical reasoning and therapeutics in lung cancer patients. Recent knowledge pinpoints a pleiotropic role for renin-angiotensin system, particularly in the lung and mainly through locally regulated alternative molecules and secondary pathways. Dysregulation of this system play a role in cell proliferation, hypoxia and angiogenesis, which processes are involved in lung cancer progression. Here we suggest that polymorphic variants in genes coding for renin-angiotensin system might play a role in Non-Small Cell Lung Cancer progression. Abstract Introduction: The renin–angiotensin system (RAS) is involved in cell proliferation, immunoinflammatory response, hypoxia and angiogenesis, which are critical biological processes in lung cancer. Our aim was to study the association of putatively functional genetic polymorphisms in genes coding for proteins involved in RAS, hypoxia and angiogenesis with non-small cell lung cancer (NSCLC) prognosis. Methods: Genotyping of 52 germline variants from genes of the RAS and hypoxic/angiogenic factors/receptors was performed using MassARRAY iPLEX Gold in a retrospective cohort (n = 167) of advanced NSCLC patients. Validation of the resulting genetic markers was conducted in an independent group (n = 190), matched by clinicopathological characteristics. Results: Multivariate analysis on the discovery set revealed that MME rs701109 C carriers were protected from disease progression in comparison with homozygous T (hazard ratio (HR) = 0.5, 95% confidence interval (CI) = 0.2–0.8, p = 0.010). Homozygous A and T genotypes for KDR rs1870377 were at increased risk for disease progression and death compared to heterozygous (HR = 1.7, 95% CI = 1.2–2.5, p = 0.005 and HR = 2.1, 95% CI = 1.2–3.4, p = 0.006, respectively). Carriers of homozygous genotypes for ACE2 rs908004 presented increased risk for disease progression, only in the subgroup of patients without tumour actionable driver mutations (HR = 2.9, 95% CI = 1.3–6.3, p = 0.010). Importantly, the association of homozygous genotypes in MME rs701109 with risk for disease progression was confirmed after multivariate analysis in the validation set. Conclusion: This study provides evidence that MME polymorphism, which encodes neprilysin, may modulate progression-free survival in advanced NSCLC. Present genetic variation findings will foster basic, translational, and clinical research on their role in NSCLC.
Collapse
|
7
|
Involvement of Hdac3-mediated inhibition of microRNA cluster 17-92 in bronchopulmonary dysplasia development. Mol Med 2020; 26:99. [PMID: 33143661 PMCID: PMC7640435 DOI: 10.1186/s10020-020-00237-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/27/2020] [Indexed: 11/10/2022] Open
Abstract
Background The incidence of bronchopulmonary dysplasia (BPD), a chronic lung disease of newborns, has been paradoxically rising despite medical advances. Histone deacetylase 3 (Hdac3) has been reported to be a crucial regulator in alveologenesis. Hence, this study aims to investigate the mechanism of Hdac3 in the abnormal pulmonary angiogenesis and alveolarization of BPD. Methods A hyperoxia-induced BPD model of was developed in newborn mice, and primary lung fibroblasts were isolated from adult mice. Hdac3 was knocked out in vivo and knocked down in vitro, while microRNA (miR)-17 was downregulated in vivo and in vitro to clarify their roles in abnormal pulmonary angiogenesis and alveolarization. Mechanistic investigations were performed on the interplay of Hdac3, miR-17-92 cluster, enhancer of zeste homolog 1 (EZH1), p65 and placental growth factor (Pgf). Results Hdac3 was involved in abnormal alveolarization and angiogenesis in BPD mice. Further, the expression of the miR-17-92 cluster in BPD mice was downregulated by Hdac3. miR-17 was found to target EZH1, and Hdac3 rescued the inhibited EZH1 expression by miR-17 in lung fibroblasts. Additionally, EZH1 augmented Pgf expression by recruiting p65 thus enhancing the progression of BPD. Hdac3 augmented the recruitment of p65 in the Pgf promoter region through the miR-17/EZH1 axis, thus enhancing the transcription and expression of Pgf, which elicited abnormal angiogenesis and alveolarization of BPD mice. Conclusions Altogether, the present study revealed that Hdac3 activated the EZH1-p65-Pgf axis through inhibiting miR-17 in the miR-17-92 cluster, leading to accelerated abnormal pulmonary angiogenesis and alveolarization of BPD mice.
Collapse
|
8
|
Pourroostaei Ardakani P, Ramezani A, Piravar Z, Asgharimoghadam N, Behzadi R, Jafari Fesharaki M. Different Polymorphisms of Placental Growth Factor (PLGF) Gene in Iranian Women's Population with Pre-eclampsia. INTERNATIONAL JOURNAL OF CARDIOVASCULAR PRACTICE 2019. [DOI: 10.29252/ijcp-26694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
9
|
Young HS, Kamaly-Asl ID, Laws PM, Pemberton P, Griffiths CEM. Genetic interaction between placental growth factor and vascular endothelial growth factor A in psoriasis. Clin Exp Dermatol 2019; 45:302-308. [PMID: 31545526 PMCID: PMC7154646 DOI: 10.1111/ced.14102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2019] [Indexed: 01/13/2023]
Abstract
Background Expression of vascular endothelial growth factor A (VEGFA) is increased in chronic inflammatory skin diseases, including psoriasis, and loci for two VEGFA single nucleotide polymorphisms are associated with early‐onset psoriasis (presenting before the age of 40 years). Studies have suggested that expression of placenta growth factor (PGF) is also upregulated in cutaneous inflammation and that VEGFA‐mediated angiogenesis may be dependent on the simultaneous presence of PGF within the skin. Aim To elucidate the biological importance of PGF in psoriasis. Methods We investigated whether two commonly occurring PGF polymorphisms were associated with early‐onset psoriasis and the genetic interaction between VEGFA and PGF in psoriasis. Results We observed a significant (P = 0.04) association between rs2268614 TT and rs2268615 AA genotypes of PGF and early‐onset psoriasis. In addition, genetic complement, comprising the PGF rs2268615 AA genotype and the VEGFA −460 (rs833061) T allele, was significantly associated with the development of early‐onset psoriasis (P < 0.03). We identified that the VEGFA genotype influences PGF expression (P = 0.001) and that mean plasma levels of PGF are lower in patients with severe psoriasis compared with those with mild–moderate disease (P = 0.04). Conclusion Our observed genetic interaction between PGF and VEGFA appears relevant to psoriasis, a disease with an angiogenic basis, and may influence development of an antiangiogenic approach to treatment.
Collapse
Affiliation(s)
- H S Young
- The Dermatology Centre, Salford Royal Hospital, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.,Salford Royal Hospital, Manchester, UK
| | | | - P M Laws
- Department of Dermatology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - P Pemberton
- Department of Clinical Biochemistry, Manchester Royal Infirmary, Manchester, UK
| | - C E M Griffiths
- The Dermatology Centre, Salford Royal Hospital, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.,Salford Royal Hospital, Manchester, UK
| |
Collapse
|
10
|
Inflammatory cytokines and angiogenic factors as potential biomarkers in South African pancreatic ductal adenocarcinoma patients: A preliminary report. Pancreatology 2017; 17:438-444. [PMID: 28377069 DOI: 10.1016/j.pan.2017.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND/OBJECTIVES Several studies have investigated the association of differentially expressed cytokines with pancreatic ductal adenocarcinoma (PDAC), but none in African countries. This study aimed at investigating T-helper (Th) cell and angiogenic markers as diagnostic or prognostic biomarkers for PDAC in Black South Africans. METHODS We conducted a prospective, case-control study comprising of 34 PDAC patients and 27 control participants with either critical limb ischemia, abdominal aortic aneurysm or other abdominal pathology from causes other than pancreatic disease. Plasma levels of IL-2, IL-4, IL-6, IL-10, TNF, IFN-γ, IL-17A, VEGF, sVEGF-R1, FGF, PIGF, PDGF and P-selectin were measured using commercially available cytometric bead array, ELISA and multi-analyte Luminex kits. RESULTS Significantly higher levels of IFN-γ (p < 0.001), TNF (p < 0.001), IL-2 (p = 0.001), IL-4 (p < 0.01), IL-10 (p < 0.01), IL-17A (p < 0.01), PlGF (p < 0.0001) and basic FGF (p < 0.0001) were found in cases compared to control participants. PDAC patients with irresectable tumours had higher levels of VEGF (p = 0.02) and IL-6 (p = 0.01). A univariate analysis showed significant associations between IFN-γ, TNF, IL-10, -4, -2, basic FGF, PlGF and PDAC. In a multivariate logistic regression model, basic FGF (p = 0.002) and PlGF (p = 0.007) were independent risk factors for PDAC with a combined sensitivity of 71% and specificity of 100%. CONCLUSION Our preliminary data suggests a potential role for basic FGF and PlGF as diagnostic, and VEGF and IL-6 as prognostic biomarkers of PDAC in Black South African patients.
Collapse
|
11
|
Cengiz H, Kaya C, Ekin M, Yesil A, Dağdeviren H. Placental growth factor as a new marker for predicting abnormal glucose challenge test results. Gynecol Endocrinol 2013; 29:909-11. [PMID: 23841853 DOI: 10.3109/09513590.2013.813477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND To differentiate placental growth factor (PlGF) levels in pregnancies with normal and abnormal glucose challenge test (GCT) results. METHODS A total of 94 pregnant women underwent a 50 -g GCT as part of our routine antenatal screening protocol from September 2011 to January 2012. The patients were divided into three groups: (i) normal GCT, (ii) abnormal GCT and (iii) gestational diabetes mellitus (GDM) based on the screening results for gestational diabetes. The main outcome measure of the study was the relationship between PlGF and GCT results in non-diabetic pregnancies. The Kolmogorov-Smirnov test was used to check the normality of the variables' distributions. The Kruskal-Wallis and analysis of variance tests (Tukey's test) were used to analyze the qualitative parameters. RESULTS There were 53 (56.4%), 22 (23.4%) and 19 (20.2%) patients in the normal GCT, abnormal GCT and GDM groups, respectively. The PlGF level in the abnormal GCT group was 518 ± 307.6 pg/mL, which was the highest level in the study population, and there was a statistically significant difference compared with the other groups (p = 0.006). There were no statistically significant differences with respect to fetal birth weight among the three groups in our study. CONCLUSION PlGF can be used as a laboratory marker to predict which patients will have abnormal GCT results.
Collapse
Affiliation(s)
- Hüseyin Cengiz
- Department of Obstetrics and Gynecology, Bakirkoy Dr Sadi Konuk Teaching and Research Hospital, Istanbul, Turkey.
| | | | | | | | | |
Collapse
|