1
|
Mazuelas H, Magallón-Lorenz M, Uriarte-Arrazola I, Negro A, Rosas I, Blanco I, Castellanos E, Lázaro C, Gel B, Carrió M, Serra E. Unbalancing cAMP and Ras/MAPK pathways as a therapeutic strategy for cutaneous neurofibromas. JCI Insight 2024; 9:e168826. [PMID: 38175707 PMCID: PMC11143965 DOI: 10.1172/jci.insight.168826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
Cutaneous neurofibromas (cNFs) are benign Schwann cell (SC) tumors arising from subepidermal glia. Individuals with neurofibromatosis type 1 (NF1) may develop thousands of cNFs, which greatly affect their quality of life. cNF growth is driven by the proliferation of NF1-/- SCs and their interaction with the NF1+/- microenvironment. We analyzed the crosstalk between human cNF-derived SCs and fibroblasts (FBs), identifying an expression signature specific to the SC-FB interaction. We validated the secretion of proteins involved in immune cell migration, suggesting a role of SC-FB crosstalk in immune cell recruitment. The signature also captured components of developmental signaling pathways, including the cAMP elevator G protein-coupled receptor 68 (GPR68). Activation of Gpr68 by ogerin in combination with the MEK inhibitor (MEKi) selumetinib reduced viability and induced differentiation and death of human cNF-derived primary SCs, a result corroborated using an induced pluripotent stem cell-derived 3D neurofibromasphere model. Similar results were obtained using other Gpr68 activators or cAMP analogs/adenylyl cyclase activators in combination with selumetinib. Interestingly, whereas primary SC cultures restarted their proliferation after treatment with selumetinib alone was stopped, the combination of ogerin-selumetinib elicited a permanent halt on SC expansion that persisted after drug removal. These results indicate that unbalancing the Ras and cAMP pathways by combining MEKi and cAMP elevators could be used as a potential treatment for cNFs.
Collapse
Affiliation(s)
- Helena Mazuelas
- Hereditary Cancer Group, Translational Cancer Research Program, and
| | | | | | - Alejandro Negro
- Clinical Genomics Research Group, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Badalona, Barcelona, Spain
- Genetics Service, Germans Trias i Pujol University Hospital, Can Ruti Campus, Badalona, Barcelona, Spain
| | - Inma Rosas
- Clinical Genomics Research Group, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Badalona, Barcelona, Spain
- Genetics Service, Germans Trias i Pujol University Hospital, Can Ruti Campus, Badalona, Barcelona, Spain
| | - Ignacio Blanco
- Clinical Genomics Research Group, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Badalona, Barcelona, Spain
- Genetics Service, Germans Trias i Pujol University Hospital, Can Ruti Campus, Badalona, Barcelona, Spain
| | - Elisabeth Castellanos
- Clinical Genomics Research Group, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Badalona, Barcelona, Spain
- Genetics Service, Germans Trias i Pujol University Hospital, Can Ruti Campus, Badalona, Barcelona, Spain
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO-IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Spain
| | - Bernat Gel
- Hereditary Cancer Group, Translational Cancer Research Program, and
- Departament de Fonaments Clínics, Facultat de Medicina i Ciències de la Salut, University of Barcelona, Barcelona, Spain
| | - Meritxell Carrió
- Hereditary Cancer Group, Translational Cancer Research Program, and
| | - Eduard Serra
- Hereditary Cancer Group, Translational Cancer Research Program, and
- Centro de Investigación Biomédica en Red de Cáncer, Spain
| |
Collapse
|
2
|
Carrió M, Gel B, Terribas E, Zucchiatti AC, Moliné T, Rosas I, Teulé Á, Ramón Y Cajal S, López-Gutiérrez JC, Blanco I, Castellanos E, Lázaro C, Stemmer-Rachamimov A, Romagosa C, Serra E. Analysis of intratumor heterogeneity in Neurofibromatosis type 1 plexiform neurofibromas and neurofibromas with atypical features: Correlating histological and genomic findings. Hum Mutat 2018; 39:1112-1125. [PMID: 29774626 DOI: 10.1002/humu.23552] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/29/2018] [Accepted: 05/12/2018] [Indexed: 01/11/2023]
Abstract
Plexiform neurofibromas (PNFs) are benign peripheral nerve sheath tumors involving large nerves present in 30%-50% Neurofibromatosis type 1 (NF1) patients. Atypical neurofibromas (ANF) are distinct nodular lesions with atypical features on histology that arise from PNFs. The risk and timeline of malignant transformation in ANF is difficult to assess. A recent NIH workshop has stratified ANFs and separated a subgroup with multiple atypical features and higher risk of malignant transformation termed atypical neurofibromatous neoplasms with uncertain biological potential (ANNUBP). We performed an analysis of intratumor heterogeneity on eight PNFs to link histological and genomic findings. Tumors were homogeneous although histological and molecular heterogeneity was identified. All tumors were 2n, almost mutation-free and had a clonal NF1(-/-) origin. Two ANFs from the same patient showed atypical features on histology and deletions of CDKN2A/B. One of the ANFs exhibited different areas in which the degree of histological atypia correlated with the heterozygous or homozygous loss of the CDKN2A/B loci. CDKN2A/B deletions in different areas originated independently. Results may indicate that loss of a single CDKN2A/B copy in NF1(-/-) cells is sufficient to start ANF development and that total inactivation of both copies of CDKN2A/B is necessary to form an ANNUBP.
Collapse
Affiliation(s)
- Meritxell Carrió
- Hereditary Cancer Group, Germans Trias i Pujol Research Institute (IGTP), PMPPC-CIBERONC, Can Ruti Campus, Badalona, Barcelona, Spain
| | - Bernat Gel
- Hereditary Cancer Group, Germans Trias i Pujol Research Institute (IGTP), PMPPC-CIBERONC, Can Ruti Campus, Badalona, Barcelona, Spain
| | - Ernest Terribas
- Hereditary Cancer Group, Germans Trias i Pujol Research Institute (IGTP), PMPPC-CIBERONC, Can Ruti Campus, Badalona, Barcelona, Spain
| | | | - Teresa Moliné
- Department of Pathology, Vall d'Hebron University Hospital (VHIR-CIBERONC), Barcelona, Spain
| | - Inma Rosas
- Hereditary Cancer Group, Germans Trias i Pujol Research Institute (IGTP), PMPPC-CIBERONC, Can Ruti Campus, Badalona, Barcelona, Spain
| | - Álex Teulé
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO-IDIBELL-CIBERONC), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Santiago Ramón Y Cajal
- Department of Pathology, Vall d'Hebron University Hospital (VHIR-CIBERONC), Barcelona, Spain
| | | | - Ignacio Blanco
- Clinical Genetics and Genetic Counselling Program, Germans Trias i Pujol University Hospital (HUGTiP), Can Ruti Campus, Badalona, Barcelona, Spain
| | - Elisabeth Castellanos
- Hereditary Cancer Group, Germans Trias i Pujol Research Institute (IGTP), PMPPC-CIBERONC, Can Ruti Campus, Badalona, Barcelona, Spain
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO-IDIBELL-CIBERONC), L'Hospitalet de Llobregat, Barcelona, Spain
| | | | - Cleofé Romagosa
- Department of Pathology, Vall d'Hebron University Hospital (VHIR-CIBERONC), Barcelona, Spain
| | - Eduard Serra
- Hereditary Cancer Group, Germans Trias i Pujol Research Institute (IGTP), PMPPC-CIBERONC, Can Ruti Campus, Badalona, Barcelona, Spain
| |
Collapse
|
3
|
Terribas E, Garcia-Linares C, Lázaro C, Serra E. Probe-based quantitative PCR assay for detecting constitutional and somatic deletions in the NF1 gene: application to genetic testing and tumor analysis. Clin Chem 2013; 59:928-37. [PMID: 23386700 DOI: 10.1373/clinchem.2012.194217] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND About 5% of patients with neurofibromatosis type 1 (NF1) bear constitutional microdeletions that encompass NF1 (neurofibromin 1) and neighboring genes. These patients are characterized by the development of a high number of dermal neurofibromas (dNFs), mental retardation, and an increased risk of developing a malignant peripheral nerve sheath tumor (MPNST). Additionally, 10% of somatic second hits identified in dNFs are caused by deletions involving the NF1 gene. To detect constitutional and somatic deletions, we developed a probe-based quantitative PCR (qPCR) assay for interrogating the copy number status of 11 loci distributed along a 2.8-Mb region around the NF1 gene. METHODS We developed the qPCR assay with Universal ProbeLibrary technology (Roche) and designed a Microsoft Excel spreadsheet to analyze qPCR data for copy number calculations. The assay fulfilled the essential aspects of the MIQE (minimum information for publication of quantitative real-time PCR experiments) guidelines and used the qBase relative quantification framework for calculations. RESULTS The assay was validated with a set of DNA samples with known constitutional or somatic NF1 deletions. The assay showed high diagnostic sensitivity and specificity and distinguished between Type-1, Type-2, and atypical constitutional microdeletions in 14 different samples. It also identified 16 different somatic deletions in dNFs. These results were confirmed by multiplex ligation-dependent probe amplification. CONCLUSIONS The qPCR assay provides a methodology for detecting constitutional NF1 microdeletions that could be incorporated as an additional technique in a genetic-testing setting. It also permits the identification of somatic NF1 deletions in tissues with a high percentage of cells bearing 2 copies of the NF1 gene.
Collapse
Affiliation(s)
- Ernest Terribas
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona, Barcelona, Spain
| | | | | | | |
Collapse
|