1
|
Németh Z, Demeter F, Dobó J, Gál P, Cervenak L. Complement MASP-1 Modifies Endothelial Wound Healing. Int J Mol Sci 2024; 25:4048. [PMID: 38612857 PMCID: PMC11012537 DOI: 10.3390/ijms25074048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Endothelial wound-healing processes are fundamental for the maintenance and restoration of the circulatory system and are greatly affected by the factors present in the blood. We have previously shown that the complement protein mannan-binding lectin-associated serine protease-1 (MASP-1) induces the proinflammatory activation of endothelial cells and is able to cooperate with other proinflammatory activators. Our aim was to investigate the combined effect of mechanical wounding and MASP-1 on endothelial cells. Transcriptomic analysis showed that MASP-1 alters the expression of wound-healing-related and angiogenesis-related genes. Both wounding and MASP-1 induced Ca2+ mobilization when applied individually. However, MASP-1-induced Ca2+ mobilization was inhibited when the treatment was preceded by wounding. Mechanical wounding promoted CREB phosphorylation, and the presence of MASP-1 enhanced this effect. Wounding induced ICAM-1 and VCAM-1 expression on endothelial cells, and MASP-1 pretreatment further increased VCAM-1 levels. MASP-1 played a role in the subsequent stages of angiogenesis, facilitating the breakdown of the endothelial capillary network on Matrigel®. Our findings extend our general understanding of endothelial wound healing and highlight the importance of complement MASP-1 activation in wound-healing processes.
Collapse
Affiliation(s)
- Zsuzsanna Németh
- Department of Internal Medicine and Haematology, Semmelweis University, 1085 Budapest, Hungary; (Z.N.)
| | - Flóra Demeter
- Department of Internal Medicine and Haematology, Semmelweis University, 1085 Budapest, Hungary; (Z.N.)
| | - József Dobó
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary
| | - Péter Gál
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary
| | - László Cervenak
- Department of Internal Medicine and Haematology, Semmelweis University, 1085 Budapest, Hungary; (Z.N.)
| |
Collapse
|
2
|
Mencel ML, Bittner GD. Repair of traumatic lesions to the plasmalemma of neurons and other cells: Commonalities, conflicts, and controversies. Front Physiol 2023; 14:1114779. [PMID: 37008019 PMCID: PMC10050709 DOI: 10.3389/fphys.2023.1114779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/14/2023] [Indexed: 03/17/2023] Open
Abstract
Neuroscientists and Cell Biologists have known for many decades that eukaryotic cells, including neurons, are surrounded by a plasmalemma/axolemma consisting of a phospholipid bilayer that regulates trans-membrane diffusion of ions (including calcium) and other substances. Cells often incur plasmalemmal damage via traumatic injury and various diseases. If the damaged plasmalemma is not rapidly repaired within minutes, activation of apoptotic pathways by calcium influx often results in cell death. We review publications reporting what is less-well known (and not yet covered in neuroscience or cell biology textbooks): that calcium influx at the lesion sites ranging from small nm-sized holes to complete axonal transection activates parallel biochemical pathways that induce vesicles/membrane-bound structures to migrate and interact to restore original barrier properties and eventual reestablishment of the plasmalemma. We assess the reliability of, and problems with, various measures (e.g., membrane voltage, input resistance, current flow, tracer dyes, confocal microscopy, transmission and scanning electron microscopy) used individually and in combination to assess plasmalemmal sealing in various cell types (e.g., invertebrate giant axons, oocytes, hippocampal and other mammalian neurons). We identify controversies such as plug versus patch hypotheses that attempt to account for currently available data on the subcellular mechanisms of plasmalemmal repair/sealing. We describe current research gaps and potential future developments, such as much more extensive correlations of biochemical/biophysical measures with sub-cellular micromorphology. We compare and contrast naturally occurring sealing with recently-discovered artificially-induced plasmalemmal sealing by polyethylene glycol (PEG) that bypasses all natural pathways for membrane repair. We assess other recent developments such as adaptive membrane responses in neighboring cells following injury to an adjacent cell. Finally, we speculate how a better understanding of the mechanisms involved in natural and artificial plasmalemmal sealing is needed to develop better clinical treatments for muscular dystrophies, stroke and other ischemic conditions, and various cancers.
Collapse
Affiliation(s)
- Marshal L. Mencel
- Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, TX, United States
| | - George D. Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, TX, United States
- *Correspondence: George D. Bittner,
| |
Collapse
|
3
|
Houthaeve G, De Smedt SC, Braeckmans K, De Vos WH. The cellular response to plasma membrane disruption for nanomaterial delivery. NANO CONVERGENCE 2022; 9:6. [PMID: 35103909 PMCID: PMC8807741 DOI: 10.1186/s40580-022-00298-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Delivery of nanomaterials into cells is of interest for fundamental cell biological research as well as for therapeutic and diagnostic purposes. One way of doing so is by physically disrupting the plasma membrane (PM). Several methods that exploit electrical, mechanical or optical cues have been conceived to temporarily disrupt the PM for intracellular delivery, with variable effects on cell viability. However, apart from acute cytotoxicity, subtler effects on cell physiology may occur as well. Their nature and timing vary with the severity of the insult and the efficiency of repair, but some may provoke permanent phenotypic alterations. With the growing palette of nanoscale delivery methods and applications, comes a need for an in-depth understanding of this cellular response. In this review, we summarize current knowledge about the chronology of cellular events that take place upon PM injury inflicted by different delivery methods. We also elaborate on their significance for cell homeostasis and cell fate. Based on the crucial nodes that govern cell fitness and functionality, we give directions for fine-tuning nano-delivery conditions.
Collapse
Affiliation(s)
- Gaëlle Houthaeve
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
4
|
Hagan ML, Balayan V, McGee-Lawrence ME. Plasma membrane disruption (PMD) formation and repair in mechanosensitive tissues. Bone 2021; 149:115970. [PMID: 33892174 PMCID: PMC8217198 DOI: 10.1016/j.bone.2021.115970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/26/2021] [Accepted: 04/17/2021] [Indexed: 01/04/2023]
Abstract
Mammalian cells employ an array of biological mechanisms to detect and respond to mechanical loading in their environment. One such mechanism is the formation of plasma membrane disruptions (PMD), which foster a molecular flux across cell membranes that promotes tissue adaptation. Repair of PMD through an orchestrated activity of molecular machinery is critical for cell survival, and the rate of PMD repair can affect downstream cellular signaling. PMD have been observed to influence the mechanical behavior of skin, alveolar, and gut epithelial cells, aortic endothelial cells, corneal keratocytes and epithelial cells, cardiac and skeletal muscle myocytes, neurons, and most recently, bone cells including osteoblasts, periodontal ligament cells, and osteocytes. PMD are therefore positioned to affect the physiological behavior of a wide range of vertebrate organ systems including skeletal and cardiac muscle, skin, eyes, the gastrointestinal tract, the vasculature, the respiratory system, and the skeleton. The purpose of this review is to describe the processes of PMD formation and repair across these mechanosensitive tissues, with a particular emphasis on comparing and contrasting repair mechanisms and downstream signaling to better understand the role of PMD in skeletal mechanobiology. The implications of PMD-related mechanisms for disease and potential therapeutic applications are also explored.
Collapse
Affiliation(s)
- Mackenzie L Hagan
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd., CB1101, Augusta, GA, USA
| | - Vanshika Balayan
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd., CB1101, Augusta, GA, USA
| | - Meghan E McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd., CB1101, Augusta, GA, USA; Department of Orthopaedic Surgery, Augusta University, Augusta, GA, USA.
| |
Collapse
|
5
|
Signaling pathways involved in adaptive responses to cell membrane disruption. CURRENT TOPICS IN MEMBRANES 2019; 84:99-127. [PMID: 31610867 DOI: 10.1016/bs.ctm.2019.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Plasma membrane disruption occurs frequently in many animal tissues. Cell membrane disruption induces not only a rapid and massive influx of Ca2+ into the cytosol but also an efflux or release of various signaling molecules, such as ATP, from the cytosol; in turn, these signaling molecules stimulate a variety of pathways in both wounded and non-wounded neighboring cells. These signals first trigger cell membrane repair responses in the wounded cell but then induce an adaptive response, which results in faster membrane repair in the event of future wounds in both wounded and non-wounded neighboring cells. In addition, signaling pathways stimulated by membrane disruption induce other adaptive responses, including cell survival, regeneration, migration, and proliferation. This chapter summarizes the role of intra- and intercellular signaling pathways in adaptive responses triggered by cell membrane disruption.
Collapse
|
6
|
Mikolajewicz N, Sehayek S, Wiseman PW, Komarova SV. Transmission of Mechanical Information by Purinergic Signaling. Biophys J 2019; 116:2009-2022. [PMID: 31053261 DOI: 10.1016/j.bpj.2019.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/26/2019] [Accepted: 04/08/2019] [Indexed: 12/27/2022] Open
Abstract
The skeleton constantly interacts and adapts to the physical world. We have previously reported that physiologically relevant mechanical forces lead to small repairable membrane injuries in bone-forming osteoblasts, resulting in release of ATP and stimulation of purinergic (P2) calcium responses in neighboring cells. The goal of this study was to develop a theoretical model describing injury-related ATP and ADP release, their extracellular diffusion and degradation, and purinergic responses in neighboring cells. After validation using experimental data for intracellular free calcium elevations, ATP, and vesicular release after mechanical stimulation of a single osteoblast, the model was scaled to a tissue-level injury to investigate how purinergic signaling communicates information about injuries with varying geometries. We found that total ATP released, peak extracellular ATP concentration, and the ADP-mediated signaling component contributed complementary information regarding the mechanical stimulation event. The total amount of ATP released governed spatial factors, such as the maximal distance from the injury at which purinergic responses were stimulated. The peak ATP concentration reflected the severity of an individual cell injury, allowing to discriminate between minor and severe injuries that released similar amounts of ATP because of differences in injury repair, and determined temporal aspects of the response, such as signal propagation velocity. ADP-mediated signaling became relevant only in larger tissue-level injuries, conveying information about the distance to the injury site and its geometry. Thus, we identified specific features of extracellular ATP and ADP spatiotemporal signals that depend on tissue mechanoresilience and encode the severity, scope, and proximity of the mechanical stimulus.
Collapse
Affiliation(s)
- Nicholas Mikolajewicz
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada; Shriners Hospital for Children-Canada, Montreal, Quebec, Canada
| | | | - Paul W Wiseman
- Department of Physics, Montreal, Quebec, Canada; Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Svetlana V Komarova
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada; Shriners Hospital for Children-Canada, Montreal, Quebec, Canada.
| |
Collapse
|
7
|
Togo T. Autocrine purinergic signaling stimulated by cell membrane disruption is involved in both cell membrane repair and adaptive response in MDCK cells. Biochem Biophys Res Commun 2019; 511:161-164. [PMID: 30777329 DOI: 10.1016/j.bbrc.2019.02.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/11/2019] [Indexed: 01/18/2023]
Abstract
Disruption and repair of plasma membranes is normally observed in many animal tissues. Recent studies demonstrated that wounding of Madin-Darby canine kidney cells potentiates membrane repair in cells adjacent to wounded cells via paracrine purinergic signaling. The present study demonstrated that cyclic adenosine monophosphate signaling in a wounded cell was induced by autocrine purinergic signaling, and protein kinase A potentiates membrane resealing for repeated wounds in those cells. Furthermore, the present study revealed that an increase in the intracellular free Ca2+ concentration upon cell membrane disruption was not only due to Ca2+ influx through the wound site, but also because of autocrine purinergic signaling. Although the influx of extracellular Ca2+ is essential for membrane resealing, the present study suggested that an increase in the intracellular free Ca2+ concentration induced by autocrine signaling accelerates membrane resealing of the initial cell membrane disruption.
Collapse
Affiliation(s)
- Tatsuru Togo
- Department of Anatomy, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki, Kanagawa 216-8511, Japan.
| |
Collapse
|
8
|
Horn A, Jaiswal JK. Cellular mechanisms and signals that coordinate plasma membrane repair. Cell Mol Life Sci 2018; 75:3751-3770. [PMID: 30051163 PMCID: PMC6541445 DOI: 10.1007/s00018-018-2888-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/13/2018] [Accepted: 07/23/2018] [Indexed: 02/08/2023]
Abstract
Plasma membrane forms the barrier between the cytoplasm and the environment. Cells constantly and selectively transport molecules across their plasma membrane without disrupting it. Any disruption in the plasma membrane compromises its selective permeability and is lethal, if not rapidly repaired. There is a growing understanding of the organelles, proteins, lipids, and small molecules that help cells signal and efficiently coordinate plasma membrane repair. This review aims to summarize how these subcellular responses are coordinated and how cellular signals generated due to plasma membrane injury interact with each other to spatially and temporally coordinate repair. With the involvement of calcium and redox signaling in single cell and tissue repair, we will discuss how these and other related signals extend from single cell repair to tissue level repair. These signals link repair processes that are activated immediately after plasma membrane injury with longer term processes regulating repair and regeneration of the damaged tissue. We propose that investigating cell and tissue repair as part of a continuum of wound repair mechanisms would be of value in treating degenerative diseases.
Collapse
Affiliation(s)
- Adam Horn
- Center for Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC, 20010-2970, USA
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Jyoti K Jaiswal
- Center for Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC, 20010-2970, USA.
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
9
|
Togo T. Cell membrane disruption stimulates cAMP and Ca 2+ signaling to potentiate cell membrane resealing in neighboring cells. Biol Open 2017; 6:1814-1819. [PMID: 29092813 PMCID: PMC5769656 DOI: 10.1242/bio.028977] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Disruption of cellular plasma membranes is a common event in many animal tissues, and the membranes are usually rapidly resealed. Moreover, repeated membrane disruptions within a single cell reseal faster than the initial wound in a protein kinase A (PKA)- and protein kinase C (PKC)-dependent manner. In addition to wounded cells, recent studies have demonstrated that wounding of Madin-Darby canine kidney (MDCK) cells potentiates membrane resealing in neighboring cells in the short-term by purinergic signaling, and in the long-term by nitric oxide/protein kinase G signaling. In the present study, real-time imaging showed that cell membrane disruption stimulated cAMP synthesis and Ca2+ mobilization from intracellular stores by purinergic signaling in neighboring MDCK cells. Furthermore, inhibition of PKA and PKC suppressed the ATP-mediated short-term potentiation of membrane resealing in neighboring cells. These results suggest that cell membrane disruption stimulates PKA and PKC via purinergic signaling to potentiate cell membrane resealing in neighboring MDCK cells.
Collapse
Affiliation(s)
- Tatsuru Togo
- Department of Anatomy, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki, Kanagawa 216-8511, Japan
| |
Collapse
|
10
|
Plasma membrane and cytoskeleton dynamics during single-cell wound healing. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015. [DOI: 10.1016/j.bbamcr.2015.07.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Short-term potentiation of membrane resealing in neighboring cells is mediated by purinergic signaling. Purinergic Signal 2015; 10:283-90. [PMID: 24122144 DOI: 10.1007/s11302-013-9387-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022] Open
Abstract
Resealing of a disrupted plasma membrane in the micron-size range requires Ca(2+)-regulated exocytosis. When cells are wounded twice, the second membrane disruption reseals more quickly than the initial wound. This response is protein kinase C (PKC)-dependent and protein kinase A dependent in the early stages. In the long term (24 h), potentiation of membrane resealing in a wounded cell depends on gene expression mediated by a transcription factor, cyclic adenosine monophosphate response element binding protein(CREB), which is activated by a PKC-dependent and p38 mitogen-activated protein kinase-dependent pathway. In addition,a recent study demonstrated that wounding of Madin–Darby canine kidney (MDCK) cells potentiates membrane resealing in neighboring cells by activating CREB-dependent gene expression through nitric oxide (NO) signaling. The present study demonstrated that wounding of MDCK cells induces short-term potentiation of membrane resealing in neighboring cells in addition to a long-term response. Inhibition of purinergic signaling suppressed short-term potentiation of membrane resealing in neighboring cells, but not long-term potentiation. By contrast, inhibition of NO signaling did not suppress the short-term response in neighboring cells. These results suggest that cell membrane disruption stimulates at least two intercellular signaling pathways, NO and purinergic signaling, to potentiate cell membrane resealing in neighboring cells.
Collapse
|