1
|
Pipaliya SV, Dacks JB, Croxen MA. Genomic survey maps differences in the molecular complement of vesicle formation machinery between Giardia intestinalis assemblages. PLoS Negl Trop Dis 2023; 17:e0011837. [PMID: 38109380 PMCID: PMC10758263 DOI: 10.1371/journal.pntd.0011837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 01/01/2024] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
Giardia intestinalis is a globally important microbial pathogen with considerable public health, agricultural, and economic burden. Genome sequencing and comparative analyses have elucidated G. intestinalis to be a taxonomically diverse species consisting of at least eight different sub-types (assemblages A-H) that can infect a great variety of animal hosts, including humans. The best studied of these are assemblages A and B which have a broad host range and have zoonotic transmissibility towards humans where clinical Giardiasis can range from asymptomatic to diarrheal disease. Epidemiological surveys as well as previous molecular investigations have pointed towards critical genomic level differences within numerous molecular pathways and families of parasite virulence factors within assemblage A and B isolates. In this study, we explored the necessary machinery for the formation of vesicles and cargo transport in 89 Canadian isolates of assemblage A and B G. intestinalis. Considerable variability within the molecular complement of the endolysosomal ESCRT protein machinery, adaptor coat protein complexes, and ARF regulatory system have previously been reported. Here, we confirm inter-assemblage, but find no intra-assemblage variation within the trafficking systems examined. This variation includes losses of subunits belonging to the ESCRTIII as well as novel lineage specific duplications in components of the COPII machinery, ARF1, and ARFGEF families (BIG and CYTH). Since differences in disease manifestation between assemblages A and B have been controversially reported, our findings may well have clinical implications and even taxonomic, as the membrane trafficking system underpin parasite survival, pathogenesis, and propagation.
Collapse
Affiliation(s)
- Shweta V. Pipaliya
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Joel B. Dacks
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Canada
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice [Budweis], Czech Republic
| | - Matthew A. Croxen
- Division of Diagnostic and Applied Microbiology, Department of Lab Medicine and Pathology, University of Alberta, Edmonton, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Alberta Precision Laboratories, Alberta Public Health Laboratory, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Zimmann N, Rada P, Žárský V, Smutná T, Záhonová K, Dacks J, Harant K, Hrdý I, Tachezy J. Proteomic Analysis of Trichomonas vaginalis Phagolysosome, Lysosomal Targeting, and Unconventional Secretion of Cysteine Peptidases. Mol Cell Proteomics 2022; 21:100174. [PMID: 34763061 PMCID: PMC8717582 DOI: 10.1016/j.mcpro.2021.100174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 11/25/2022] Open
Abstract
The lysosome represents a central degradative compartment of eukaryote cells, yet little is known about the biogenesis and function of this organelle in parasitic protists. Whereas the mannose 6-phosphate (M6P)-dependent system is dominant for lysosomal targeting in metazoans, oligosaccharide-independent sorting has been reported in other eukaryotes. In this study, we investigated the phagolysosomal proteome of the human parasite Trichomonas vaginalis, its protein targeting and the involvement of lysosomes in hydrolase secretion. The organelles were purified using Percoll and OptiPrep gradient centrifugation and a novel purification protocol based on the phagocytosis of lactoferrin-covered magnetic nanoparticles. The analysis resulted in a lysosomal proteome of 462 proteins, which were sorted into 21 classes. Hydrolases represented the largest functional class and included proteases, lipases, phosphatases, and glycosidases. Identification of a large set of proteins involved in vesicular trafficking (80) and turnover of actin cytoskeleton rearrangement (29) indicate a dynamic phagolysosomal compartment. Several cysteine proteases such as TvCP2 were previously shown to be secreted. Our experiments showed that secretion of TvCP2 was strongly inhibited by chloroquine, which increases intralysosomal pH, thus indicating that TvCP2 secretion occurs through lysosomes rather than the classical secretory pathway. Unexpectedly, we identified divergent homologues of the M6P receptor TvMPR in the phagolysosomal proteome, although T. vaginalis lacks enzymes for M6P formation. To test whether oligosaccharides are involved in lysosomal targeting, we selected the lysosome-resident cysteine protease CLCP, which possesses two glycosylation sites. Mutation of any of the sites redirected CLCP to the secretory pathway. Similarly, the introduction of glycosylation sites to secreted β-amylase redirected this protein to lysosomes. Thus, unlike other parasitic protists, T. vaginalis seems to utilize glycosylation as a recognition marker for lysosomal hydrolases. Our findings provide the first insight into the complexity of T. vaginalis phagolysosomes, their biogenesis, and role in the unconventional secretion of cysteine peptidases.
Collapse
Affiliation(s)
- Nadine Zimmann
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Petr Rada
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Vojtěch Žárský
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Tamara Smutná
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Kristína Záhonová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Joel Dacks
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Karel Harant
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Ivan Hrdý
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic.
| |
Collapse
|
3
|
Benchimol M. Giardia intestinalis can interact, change its shape and internalize large particles and microorganisms. Parasitology 2021; 148:500-510. [PMID: 33280628 PMCID: PMC11010223 DOI: 10.1017/s0031182020002292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/05/2020] [Accepted: 11/25/2020] [Indexed: 11/06/2022]
Abstract
Giardia intestinalis is a parasitic protozoan that inhabits its vertebrate hosts' upper small intestine and is the most common cause of waterborne diarrhoea worldwide. Giardia trophozoites present few organelles, and among them, they possess peripheral vesicles (PVs), which are considered an endosomal-lysosomal system. All experimental procedures carried out until now indicate that Giardia ingests macromolecules by fluid-phase and receptor-mediated endocytic pathways. Still, there is no description concerning the interaction and ingestion of large materials. Here, we tested Giardia's capacity to interact with large particles; once, in vivo, it inhabits an environment with a microbiota. We tested protozoan interaction with yeasts, bacteria, latex beads, ferritin and albumin, in different times of interaction and used several microscopy techniques (light microscopy, scanning electron microscopy and transmission electron microscopy) to follow their fate. Giardia interacted with all of the materials we tested. Projections of the plasma membrane similar to pseudopods were seen. As albumin, small markers were found in the PVs while the larger materials were not seen there. Large vacuoles containing large latex beads were detected intracellularly. Thus, we observed that: (1) Giardia interacts with large materials; (2) Giardia can display an amoeboid shape and exhibit membrane projections when in contact with microorganisms and large inorganic materials; (3) the region of the exit of the ventral flagella is very active when in contact with large materials, although all cell surface also present activity in the interactions; (4) intracellular vacuoles, which are not the PVs, present ingested large beads.
Collapse
Affiliation(s)
- Marlene Benchimol
- UNIGRANRIO-Universidade do Grande Rio-Duque de Caxias-Rio de Janeiro, Rio de Janeiro, Brazil
- UFRJ-Universidade Federal do Rio de Janeiro-Instituto de Biofísica Carlos Chagas Filho-Laboratório de Ultraestrutura Celular Hertha Meyer, and Instituto Nacional de Ciência e Tecnologia-INBEB, Centro Nacional de Biologia Estrutural e Bioimagens-CENABIO, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Exosome Biogenesis in the Protozoa Parasite Giardia lamblia: A Model of Reduced Interorganellar Crosstalk. Cells 2019; 8:cells8121600. [PMID: 31835439 PMCID: PMC6953089 DOI: 10.3390/cells8121600] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 11/17/2022] Open
Abstract
: Extracellular vesicles (EVs) facilitate intercellular communication and are considered a promising therapeutic tool for the treatment of infectious diseases. These vesicles involve microvesicles (MVs) and exosomes and selectively transfer proteins, lipids, mRNAs, and microRNAs from one cell to another. While MVs are formed by extrusion of the plasma membrane, exosomes are a population of vesicles of endosomal origin that are stored inside the multivesicular bodies (MVBs) as intraluminal vesicles (ILVs) and are released when the MVBs fuse with the plasma membrane. Biogenesis of exosomes may be driven by the endosomal sorting complex required for transport (ESCRT) machinery or may be ESCRT independent, and it is still debated whether these are entirely separate pathways. In this manuscript, we report that the protozoan parasite, Giardia lamblia, although lacking a classical endo-lysosomal pathway, is able to produce and release exosome-like vesicles (ElV). By using a combination of biochemical and cell biology analyses, we found that the ElVs have the same size, shape, and protein and lipid composition as exosomes described for other eukaryotic cells. Moreover, we established that some endosome/lysosome peripheral vacuoles (PVs) contain ILV during the stationary phase. Our results indicate that ILV formation and ElV release depend on the ESCRT-associated AAA+-ATPase Vps4a, Rab11, and ceramide in this parasite. Interestingly, EIV biogenesis and release seems to occur in Giardia despite the fact that this parasite has lost most of the ESCRT machinery components during evolution and is unable to produce ceramide de novo. The differences in protozoa parasite EV composition, origin, and release may reveal functional and structural properties of EVs and, thus, may provide information on cell-to-cell communication and on survival mechanisms.
Collapse
|
5
|
Rópolo AS, Feliziani C, Touz MC. Unusual proteins in Giardia duodenalis and their role in survival. ADVANCES IN PARASITOLOGY 2019; 106:1-50. [PMID: 31630755 DOI: 10.1016/bs.apar.2019.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The capacity of the parasite Giardia duodenalis to perform complex functions with minimal amounts of proteins and organelles has attracted increasing numbers of scientists worldwide, trying to explain how this parasite adapts to internal and external changes to survive. One explanation could be that G. duodenalis evolved from a structurally complex ancestor by reductive evolution, resulting in adaptation to its parasitic lifestyle. Reductive evolution involves the loss of genes, organelles, and functions that commonly occur in many parasites, by which the host renders some structures and functions redundant. However, there is increasing data that Giardia possesses proteins able to perform more than one function. During recent decades, the concept of moonlighting was described for multitasking proteins, which involves only proteins with an extra independent function(s). In this chapter, we provide an overview of unusual proteins in Giardia that present multifunctional properties depending on the location and/or parasite requirement. We also discuss experimental evidence that may allow some giardial proteins to be classified as moonlighting proteins by examining the properties of moonlighting proteins in general. Up to date, Giardia does not seem to require the numerous redundant proteins present in other organisms to accomplish its normal functions, and thus this parasite may be an appropriate model for understanding different aspects of moonlighting proteins, which may be helpful in the design of drug targets.
Collapse
Affiliation(s)
- Andrea S Rópolo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Constanza Feliziani
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María C Touz
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
6
|
Koeller CM, Bangs JD. Processing and targeting of cathepsin L (TbCatL) to the lysosome in
Trypanosoma brucei. Cell Microbiol 2019; 21:e12980. [DOI: 10.1111/cmi.12980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/29/2018] [Accepted: 11/07/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Carolina M. Koeller
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences University at Buffalo (SUNY) Buffalo New York USA
| | - James D. Bangs
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences University at Buffalo (SUNY) Buffalo New York USA
| |
Collapse
|
7
|
Faso C, Hehl AB. A cytonaut's guide to protein trafficking in Giardia lamblia. ADVANCES IN PARASITOLOGY 2019; 106:105-127. [PMID: 31630756 DOI: 10.1016/bs.apar.2019.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Over the past years, the subcellular organization of the Excavata member Giardia lamblia (syn. duodenalis, intestinalis) has been investigated in considerable detail. There are several reasons for this endeavour which go beyond this parasite's medical importance and are mostly concerned with its reduced subcellular complexity and debated evolutionary status. One may say that simplification has emerged as a paradigm for the evolution of Giardia's subcellular architecture. However, a complete appreciation of the evolutionary and ecological significance of this phenomenon is far from complete. In this chapter, we present and discuss the most recent data on the main trafficking pathways in G. lamblia which include endo- and exo-cytosis, organellar import and function. We provide perspectives on open questions concerning organelle replication and inheritance and include a technical outlook on methods and approaches to genetic manipulations in G. lamblia. A better understanding of G. lamblia subcellular organization at the morphological and molecular level complements any effort aimed at elucidating this parasitic species' evolutionary status and could provide us with the basis for novel strategies to interfere with parasite transmission and/or pathogenesis.
Collapse
Affiliation(s)
- Carmen Faso
- Laboratory of Molecular Parasitology, Institute of Parasitology, University of Zurich (ZH), Zürich, Switzerland
| | - Adrian B Hehl
- Laboratory of Molecular Parasitology, Institute of Parasitology, University of Zurich (ZH), Zürich, Switzerland.
| |
Collapse
|
8
|
Membrane-Associated Proteins in Giardia lamblia. Genes (Basel) 2018; 9:genes9080404. [PMID: 30103435 PMCID: PMC6115752 DOI: 10.3390/genes9080404] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 01/01/2023] Open
Abstract
The manner in which membrane-associated proteins interact with the membrane defines their subcellular fate and function. This interaction relies on the characteristics of the proteins, their journey after synthesis, and their interaction with other proteins or enzymes. Understanding these properties may help to define the function of a protein and also the role of an organelle. In the case of microorganisms like protozoa parasites, it may help to understand singular features that will eventually lead to the design of parasite-specific drugs. The protozoa parasite Giardia lamblia is an example of a widespread parasite that has been infecting humans and animals from ancestral times, adjusting itself to the changes of the environment inside and outside the host. Several membrane-associated proteins have been posted in the genome database GiardiaDB, although only a few of them have been characterized. This review discusses the data regarding membrane-associated proteins in relationship with lipids and specific organelles and their implication in the discovery of anti-giardial therapies.
Collapse
|
9
|
Recabarren-Leiva D, Alarcón M. New insights into the gene expression associated to amyotrophic lateral sclerosis. Life Sci 2018; 193:110-123. [DOI: 10.1016/j.lfs.2017.12.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/01/2017] [Accepted: 12/10/2017] [Indexed: 12/11/2022]
|
10
|
Zamponi N, Zamponi E, Mayol GF, Lanfredi-Rangel A, Svärd SG, Touz MC. Endoplasmic reticulum is the sorting core facility in the Golgi-lacking protozoanGiardia lamblia. Traffic 2017; 18:604-621. [DOI: 10.1111/tra.12501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/02/2017] [Accepted: 07/06/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Nahuel Zamponi
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC - CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
| | - Emiliano Zamponi
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC - CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
| | - Gonzalo F. Mayol
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC - CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
| | | | - Staffan G. Svärd
- Department of Cell and Molecular Biology; Uppsala University; Uppsala Sweden
| | - María C. Touz
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC - CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
| |
Collapse
|
11
|
Touz MC, Zamponi N. Sorting without a Golgi complex. Traffic 2017; 18:637-645. [DOI: 10.1111/tra.12500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/01/2017] [Accepted: 07/06/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Maria C. Touz
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC - CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
| | - Nahuel Zamponi
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC - CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
| |
Collapse
|
12
|
Abstract
Three neurodegenerative diseases [Amyotrophic Lateral Sclerosis (ALS), Parkinson's disease (PD) and Alzheimer's disease (AD)] have many characteristics like pathological mechanisms and genes. In this sense some researchers postulate that these diseases share the same alterations and that one alteration in a specific protein triggers one of these diseases. Analyses of gene expression may shed more light on how to discover pathways, pathologic mechanisms associated with the disease, biomarkers and potential therapeutic targets. In this review, we analyze four microarrays related to three neurodegenerative diseases. We will systematically examine seven genes (CHN1, MDH1, PCP4, RTN1, SLC14A1, SNAP25 and VSNL1) that are altered in the three neurodegenerative diseases. A network was built and used to identify pathways, miRNA and drugs associated with ALS, AD and PD using Cytoscape software an interaction network based on the protein interactions of these genes. The most important affected pathway is PI3K-Akt signalling. Thirteen microRNAs (miRNA-19B1, miRNA-107, miRNA-124-1, miRNA-124-2, miRNA-9-2, miRNA-29A, miRNA-9-3, miRNA-328, miRNA-19B2, miRNA-29B2, miRNA-124-3, miRNA-15A and miRNA-9-1) and four drugs (Estradiol, Acetaminophen, Resveratrol and Progesterone) for new possible treatments were identified.
Collapse
Affiliation(s)
| | - Marcelo Alarcón
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile; Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca 3460000, Chile.
| |
Collapse
|
13
|
Klinger CM, Ramirez-Macias I, Herman EK, Turkewitz AP, Field MC, Dacks JB. Resolving the homology-function relationship through comparative genomics of membrane-trafficking machinery and parasite cell biology. Mol Biochem Parasitol 2016; 209:88-103. [PMID: 27444378 PMCID: PMC5140719 DOI: 10.1016/j.molbiopara.2016.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/12/2016] [Accepted: 07/16/2016] [Indexed: 10/21/2022]
Abstract
With advances in DNA sequencing technology, it is increasingly common and tractable to informatically look for genes of interest in the genomic databases of parasitic organisms and infer cellular states. Assignment of a putative gene function based on homology to functionally characterized genes in other organisms, though powerful, relies on the implicit assumption of functional homology, i.e. that orthology indicates conserved function. Eukaryotes reveal a dazzling array of cellular features and structural organization, suggesting a concomitant diversity in their underlying molecular machinery. Significantly, examples of novel functions for pre-existing or new paralogues are not uncommon. Do these examples undermine the basic assumption of functional homology, especially in parasitic protists, which are often highly derived? Here we examine the extent to which functional homology exists between organisms spanning the eukaryotic lineage. By comparing membrane trafficking proteins between parasitic protists and traditional model organisms, where direct functional evidence is available, we find that function is indeed largely conserved between orthologues, albeit with significant adaptation arising from the unique biological features within each lineage.
Collapse
Affiliation(s)
- Christen M Klinger
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Emily K Herman
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
14
|
Feliziani C, Zamponi N, Gottig N, Rópolo AS, Lanfredi-Rangel A, Touz MC. The giardial ENTH protein participates in lysosomal protein trafficking and endocytosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:646-59. [PMID: 25576518 DOI: 10.1016/j.bbamcr.2014.12.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/18/2014] [Accepted: 12/30/2014] [Indexed: 12/01/2022]
Abstract
In the protozoa parasite Giardia lamblia, endocytosis and lysosomal protein trafficking are vital parasite-specific processes that involve the action of the adaptor complexes AP-1 and AP-2 and clathrin. In this work, we have identified a single gene in Giardia encoding a protein containing an ENTH domain that defines monomeric adaptor proteins of the epsin family. This domain is present in the epsin or epsin-related (epsinR) adaptor proteins, which are implicated in endocytosis and Golgi-to-endosome protein trafficking, respectively, in other eukaryotic cells. We found that GlENTHp (for G. lamblia ENTH protein) localized in the cytosol, strongly interacted with PI3,4,5P3, was associated with the alpha subunit of AP-2, clathrin and ubiquitin and was involved in receptor-mediated endocytosis. It also bonded PI4P, the gamma subunit of AP-1 and was implicated in ER-to-PV trafficking. Alteration of the GlENTHp function severely affected trophozoite growth showing an unusual accumulation of dense material in the lysosome-like peripheral vacuoles (PVs), indicating that GlENTHp might be implicated in the maintenance of PV homeostasis. In this study, we showed evidence suggesting that GlENTHp might function as a monomeric adaptor protein supporting the findings of other group indicating that GlENTHp might be placed at the beginning of the ENTH family.
Collapse
Affiliation(s)
- Constanza Feliziani
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC, CONICET, Universidad Nacional de Córdoba, Friuli 2434, Córdoba, Argentina
| | - Nahuel Zamponi
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC, CONICET, Universidad Nacional de Córdoba, Friuli 2434, Córdoba, Argentina
| | - Natalia Gottig
- Molecular Biology Division, Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario, CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Andrea S Rópolo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC, CONICET, Universidad Nacional de Córdoba, Friuli 2434, Córdoba, Argentina
| | | | - Maria C Touz
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC, CONICET, Universidad Nacional de Córdoba, Friuli 2434, Córdoba, Argentina.
| |
Collapse
|
15
|
Comparative biochemistry of Giardia, Hexamita and Spironucleus: Enigmatic diplomonads. Mol Biochem Parasitol 2014; 197:43-9. [DOI: 10.1016/j.molbiopara.2014.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/03/2014] [Accepted: 10/03/2014] [Indexed: 12/30/2022]
|
16
|
Miras SL, Merino MC, Gottig N, Rópolo AS, Touz MC. The giardial VPS35 retromer subunit is necessary for multimeric complex assembly and interaction with the vacuolar protein sorting receptor. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2628-2638. [PMID: 23810936 DOI: 10.1016/j.bbamcr.2013.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/15/2013] [Accepted: 06/17/2013] [Indexed: 11/15/2022]
Abstract
The retromer is a pentameric protein complex that mediates the retrograde transport of acid hydrolase receptors between endosomes and the trans-Golgi network and is conserved across all eukaryotes. Unlike other eukaryotes, the endomembrane system of Giardia trophozoite is simple and is composed only of the endoplasmic reticulum and peripheral vesicles (PVs), which may represent an ancient organellar system converging compartments such as early and late endosomes and lysosomes. Sorting and trafficking of membrane proteins and soluble hydrolases from the endoplasmic reticulum to the PVs have been described as specific and conserved but whether the giardial retromer participates in receptor recycling remains elusive. Homologs of the retromer Vacuolar Protein Sorting (Vps35p, Vps26p, and Vps29p) have been identified in this parasite. Cloning the GlVPS35 subunit and antisera production enabled the localization of this protein in the PVs as well as in the cytosol. Tagged expression of the subunits was used to demonstrate their association with membranes, and immunofluorescence confocal laser scanning revealed high degrees of colabeling between the retromer subunits and also with the endoplasmic reticulum and PV compartment markers. Protein-protein interaction data revealed interaction between the subunits of GlVPS35 and the cytosolic domain of the hydrolase receptor GlVps. Altogether our data provide original information on the molecular interactions that mediate assembly of the cargo-selective retromer subcomplex and its involvement in the recycling of the acid hydrolase receptor in this parasite.
Collapse
Affiliation(s)
- Silvana L Miras
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María C Merino
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Natalia Gottig
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario, CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Andrea S Rópolo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María C Touz
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|