1
|
Terbot JW, Soni V, Versoza CJ, Pfeifer SP, Jensen JD. Inferring the Demographic History of Aye-Ayes (Daubentonia madagascariensis) from High-Quality, Whole-Genome, Population-Level Data. Genome Biol Evol 2025; 17:evae281. [PMID: 39749927 PMCID: PMC11746965 DOI: 10.1093/gbe/evae281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025] Open
Abstract
The nocturnal aye-aye, Daubentonia madagascariensis, is one of the most elusive lemurs on the island of Madagascar. The timing of its activity and arboreal lifestyle has generally made it difficult to obtain accurate assessments of population size using traditional census methods. Therefore, alternative estimates provided by population genetic inference are essential for yielding much needed information for conservation measures and for enabling ecological and evolutionary studies of this species. Here, we utilize genomic data from 17 individuals-including 5 newly sequenced, high-coverage genomes-to estimate this history. Essential to this estimation are recently published annotations of the aye-aye genome which allow for variation at putatively neutral genomic regions to be included in the estimation procedures, and regions subject to selective constraints, or in linkage to such sites, to be excluded owing to the biasing effects of selection on demographic inference. By comparing a variety of demographic estimation tools to develop a well-supported model of population history, we find strong support for two demes, separating northern Madagascar from the rest of the island. Additionally, we find that the aye-aye has experienced two severe reductions in population size. The first occurred rapidly, ∼3,000 to 5,000 years ago, and likely corresponded with the arrival of humans to Madagascar. The second occurred over the past few decades and is likely related to substantial habitat loss, suggesting that the species is still undergoing population decline and remains at great risk for extinction.
Collapse
Affiliation(s)
- John W Terbot
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Vivak Soni
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Cyril J Versoza
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Susanne P Pfeifer
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Jeffrey D Jensen
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
2
|
Terbot JW, Soni V, Versoza CJ, Pfeifer SP, Jensen JD. Inferring the demographic history of aye-ayes ( Daubentonia madagascariensis) from high-quality, whole-genome, population-level data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.08.622659. [PMID: 39605532 PMCID: PMC11601231 DOI: 10.1101/2024.11.08.622659] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The nocturnal aye-aye, Daubentonia madagascariensis, is one of the most elusive lemurs on the island of Madagascar. The timing of its activity and arboreal lifestyle has generally made it difficult to obtain accurate assessments of population size using traditional census methods. Therefore, alternative estimates provided by population genetic inference are essential for yielding much needed information for conservation measures and for enabling ecological and evolutionary studies of this species. Here, we utilize genomic data from 17 unrelated individuals - including 5 newly sequenced, high-coverage genomes - to estimate this history. Essential to this estimation are recently published annotations of the aye-aye genome which allow for variation at putatively neutral genomic regions to be included in the estimation procedures, and regions subject to selective constraints, or in linkage to such sites, to be excluded owing to the biasing effects of selection on demographic inference. By comparing a variety of demographic estimation tools to develop a well-supported model of population history, we find strong support for the species to consist of two demes, separating northern Madagascar from the rest of the island. Additionally, we find that the aye-aye has experienced two severe reductions in population size. The first occurred rapidly, approximately 3,000 to 5,000 years ago, and likely corresponded with the arrival of humans to Madagascar. The second occurred over the past few decades and is likely related to substantial habitat loss, suggesting that the species is still undergoing population decline and remains at great risk for extinction.
Collapse
Affiliation(s)
- John W. Terbot
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Vivak Soni
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Cyril J. Versoza
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Susanne P. Pfeifer
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Jeffrey D. Jensen
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
3
|
Waddell PJ, Bouckaert R. An independent base composition of each rate class for improved likelihood-based phylogeny estimation; the 5rf model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.610719. [PMID: 39282393 PMCID: PMC11398347 DOI: 10.1101/2024.09.03.610719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
The combination of a time reversible Markov process with a "hidden" mixture of gamma distributed relative site rates plus invariant sites have become the most favoured options for likelihood and other probabilistic models of nucleotide evolution (e.g., tr4gi which approximates a gamma with four rate classes). However, these models assume a homogeneous and stationary distribution of nucleotide (character or base) frequencies. Here, we explore the potential benefits and pitfalls of allowing each rate category (rate class) of a 4gi mixture model to have its own base frequencies. This is achieved by starting each of the five rate classes, at the tree's root, with its own free choice of nucleotide frequencies to create a 4gi5rf model or a 5rf model in shorthand. We assess the practical identifiability of this approach with a BEAST 2 implementation, aiming to determine if it can accurately estimate credibility intervals and expected values for a wide range of plausible parameter values. Practical identifiability, as distinguished from mathematical identifiability, gauges the model's ability to identify parameters in real-world scenarios, as opposed to theoretically with infinite data. One of the most common types of phylogenetic data is mitochondrial DNA (mtDNA) protein coding sequence. It is often assumed current models analyse robustly such data and that higher likelihood/posterior probability models do better. However, this abstract shows that vertebrate mtDNA remains a very difficult type of data to fully model, and that dramatically higher likelihoods do not mean a model is measurably more accurate with respect to recovering key parameters of biological interest (e.g., monophyletic groups, their support and their ages). The 4gi5rf model considerably improves marginal likelihoods and seems to reverse some apparent errors exacerbated by the 4gi model, while introducing others. Problems appear to be linked to non-stationary DNA repair processes that alter the mutation/substitution spectra across lineages and time. We also show such problems are not unique to mtDNA and are encountered in analysing nuclear sequences. Non-stationarity of DNA repair processes mutation/substitution spectra thus pose an active challenge to obtaining reliable inferences of relationships and divergence times near the root of placental mammals, for example. An open source implementation is available under the LGPL 3.0 license in the beastbooster package for BEAST 2, available from https://github.com/rbouckaert/beastbooster.
Collapse
Affiliation(s)
- Peter J. Waddell
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Remco Bouckaert
- Centre for Computational Evolution, University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Guevara EE, Greene LK, Blanco MB, Farmer C, Ranaivonasy J, Ratsirarson J, Mahefarisoa KL, Rajaonarivelo T, Rakotondrainibe HH, Junge RE, Williams CV, Rambeloson E, Rasoanaivo HA, Rahalinarivo V, Andrianandrianina LH, Clayton JB, Rothman RS, Lawler RR, Bradley BJ, Yoder AD. Molecular Adaptation to Folivory and the Conservation Implications for Madagascar’s Lemurs. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.736741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The lemurs of Madagascar include numerous species characterized by folivory across several families. Many extant lemuriform folivores exist in sympatry in Madagascar’s remaining forests. These species avoid feeding competition by adopting different dietary strategies within folivory, reflected in behavioral, morphological, and microbiota diversity across species. These conditions make lemurs an ideal study system for understanding adaptation to leaf-eating. Most folivorous lemurs are also highly endangered. The significance of folivory for conservation outlook is complex. Though generalist folivores may be relatively well equipped to survive habitat disturbance, specialist folivores occupying narrow dietary niches may be less resilient. Characterizing the genetic bases of adaptation to folivory across species and lineages can provide insights into their differential physiology and potential to resist habitat change. We recently reported accelerated genetic change in RNASE1, a gene encoding an enzyme (RNase 1) involved in molecular adaptation in mammalian folivores, including various monkeys and sifakas (genus Propithecus; family Indriidae). Here, we sought to assess whether other lemurs, including phylogenetically and ecologically diverse folivores, might show parallel adaptive change in RNASE1 that could underlie a capacity for efficient folivory. We characterized RNASE1 in 21 lemur species representing all five families and members of the three extant folivorous lineages: (1) bamboo lemurs (family Lemuridae), (2) sportive lemurs (family Lepilemuridae), and (3) indriids (family Indriidae). We found pervasive sequence change in RNASE1 across all indriids, a dN/dS value > 3 in this clade, and evidence for shared change in isoelectric point, indicating altered enzymatic function. Sportive and bamboo lemurs, in contrast, showed more modest sequence change. The greater change in indriids may reflect a shared strategy emphasizing complex gut morphology and microbiota to facilitate folivory. This case study illustrates how genetic analysis may reveal differences in functional traits that could influence species’ ecology and, in turn, their resilience to habitat change. Moreover, our results support the body of work demonstrating that not all primate folivores are built the same and reiterate the need to avoid generalizations about dietary guild in considering conservation outlook, particularly in lemurs where such diversity in folivory has probably led to extensive specialization via niche partitioning.
Collapse
|
5
|
Walker JA, Jordan VE, Storer JM, Steely CJ, Gonzalez-Quiroga P, Beckstrom TO, Rewerts LC, St Romain CP, Rockwell CE, Rogers J, Jolly CJ, Konkel MK, Batzer MA. Alu insertion polymorphisms shared by Papio baboons and Theropithecus gelada reveal an intertwined common ancestry. Mob DNA 2019; 10:46. [PMID: 31788036 PMCID: PMC6880559 DOI: 10.1186/s13100-019-0187-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/01/2019] [Indexed: 12/16/2022] Open
Abstract
Background Baboons (genus Papio) and geladas (Theropithecus gelada) are now generally recognized as close phylogenetic relatives, though morphologically quite distinct and generally classified in separate genera. Primate specific Alu retrotransposons are well-established genomic markers for the study of phylogenetic and population genetic relationships. We previously reported a computational reconstruction of Papio phylogeny using large-scale whole genome sequence (WGS) analysis of Alu insertion polymorphisms. Recently, high coverage WGS was generated for Theropithecus gelada. The objective of this study was to apply the high-throughput "poly-Detect" method to computationally determine the number of Alu insertion polymorphisms shared by T. gelada and Papio, and vice versa, by each individual Papio species and T. gelada. Secondly, we performed locus-specific polymerase chain reaction (PCR) assays on a diverse DNA panel to complement the computational data. Results We identified 27,700 Alu insertions from T. gelada WGS that were also present among six Papio species, with nearly half (12,956) remaining unfixed among 12 Papio individuals. Similarly, each of the six Papio species had species-indicative Alu insertions that were also present in T. gelada. In general, P. kindae shared more insertion polymorphisms with T. gelada than did any of the other five Papio species. PCR-based genotype data provided additional support for the computational findings. Conclusions Our discovery that several thousand Alu insertion polymorphisms are shared by T. gelada and Papio baboons suggests a much more permeable reproductive barrier between the two genera then previously suspected. Their intertwined evolution likely involves a long history of admixture, gene flow and incomplete lineage sorting.
Collapse
Affiliation(s)
- Jerilyn A Walker
- 1Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, Louisiana, 70803 USA
| | - Vallmer E Jordan
- 1Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, Louisiana, 70803 USA
| | - Jessica M Storer
- 1Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, Louisiana, 70803 USA
| | - Cody J Steely
- 1Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, Louisiana, 70803 USA
| | - Paulina Gonzalez-Quiroga
- 1Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, Louisiana, 70803 USA
| | - Thomas O Beckstrom
- 1Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, Louisiana, 70803 USA
| | - Lydia C Rewerts
- 1Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, Louisiana, 70803 USA
| | - Corey P St Romain
- 1Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, Louisiana, 70803 USA
| | - Catherine E Rockwell
- 1Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, Louisiana, 70803 USA
| | - Jeffrey Rogers
- 2Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA.,3Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Clifford J Jolly
- 4Department of Anthropology, New York University, New York, NY 10003 USA
| | - Miriam K Konkel
- 1Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, Louisiana, 70803 USA.,Department of Genetics & Biochemistry, Clemson Center for Human Genetics, Clemson, SC 29634 USA
| | | | - Mark A Batzer
- 1Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, Louisiana, 70803 USA
| |
Collapse
|
6
|
Storer JM, Mierl JR, Brantley SA, Threeton B, Sukharutski Y, Rewerts LC, St Romain CP, Foreman MM, Baker JN, Walker JA, Orkin JD, Melin AD, Phillips KA, Konkel MK, Batzer MA. Amplification Dynamics of Platy-1 Retrotransposons in the Cebidae Platyrrhine Lineage. Genome Biol Evol 2019; 11:1105-1116. [PMID: 30888417 PMCID: PMC6464705 DOI: 10.1093/gbe/evz062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2019] [Indexed: 12/11/2022] Open
Abstract
Platy-1 elements are Platyrrhine-specific, short interspersed elements originally discovered in the Callithrix jacchus (common marmoset) genome. To date, only the marmoset genome has been analyzed for Platy-1 repeat content. Here, we report full-length Platy-1 insertions in other New World monkey (NWM) genomes (Saimiri boliviensis, squirrel monkey; Cebus imitator, capuchin monkey; and Aotus nancymaae, owl monkey) and analyze the amplification dynamics of lineage-specific Platy-1 insertions. A relatively small number of full-length and lineage-specific Platy-1 elements were found in the squirrel, capuchin, and owl monkey genomes compared with the marmoset genome. In addition, only a few older Platy-1 subfamilies were recovered in this study, with no Platy-1 subfamilies younger than Platy-1-6. By contrast, 62 Platy-1 subfamilies were discovered in the marmoset genome. All of the lineage-specific insertions found in the squirrel and capuchin monkeys were fixed present. However, ∼15% of the lineage-specific Platy-1 loci in Aotus were polymorphic for insertion presence/absence. In addition, two new Platy-1 subfamilies were identified in the owl monkey genome with low nucleotide divergences compared with their respective consensus sequences, suggesting minimal ongoing retrotransposition in the Aotus genus and no current activity in the Saimiri, Cebus, and Sapajus genera. These comparative analyses highlight the finding that the high number of Platy-1 elements discovered in the marmoset genome is an exception among NWM analyzed thus far, rather than the rule. Future studies are needed to expand upon our knowledge of Platy-1 amplification in other NWM genomes.
Collapse
Affiliation(s)
| | - Jackson R Mierl
- Department of Biological Sciences, Louisiana State University
| | | | | | | | - Lydia C Rewerts
- Department of Biological Sciences, Louisiana State University
| | | | | | - Jasmine N Baker
- Department of Biological Sciences, Louisiana State University
| | | | - Joseph D Orkin
- Department of Anthropology and Archaeology & Department of Medical Genetics, University of Calgary, Alberta, Canada
| | - Amanda D Melin
- Department of Anthropology and Archaeology & Department of Medical Genetics, University of Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, N.W. Calgary, Alberta, Canada
| | - Kimberley A Phillips
- Department of Psychology, Trinity University.,Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| | - Miriam K Konkel
- Department of Biological Sciences, Louisiana State University.,Department of Genetics & Biochemistry, Clemson University
| | - Mark A Batzer
- Department of Biological Sciences, Louisiana State University
| |
Collapse
|
7
|
Virus discovery reveals frequent infection by diverse novel members of the Flaviviridae in wild lemurs. Arch Virol 2018; 164:509-522. [PMID: 30460488 DOI: 10.1007/s00705-018-4099-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 10/31/2018] [Indexed: 12/13/2022]
Abstract
Lemurs are highly endangered mammals inhabiting the forests of Madagascar. In this study, we performed virus discovery on serum samples collected from 84 wild lemurs and identified viral sequence fragments from 4 novel viruses within the family Flaviviridae, including members of the genera Hepacivirus and Pegivirus. The sifaka hepacivirus (SifHV, two genotypes) and pegivirus (SifPgV, two genotypes) were discovered in the diademed sifaka (Propithecus diadema), while other pegiviral fragments were detected in samples from the indri (Indri indri, IndPgV) and the weasel sportive lemur (Lepilemur mustelinus, LepPgV). Although data are preliminary, each viral species appeared host species-specific and frequent infection was detected (18 of 84 individuals were positive for at least one virus). The complete coding sequence and partial 5' and 3' untranslated regions (UTRs) were obtained for SifHV and its genomic organization was consistent with that of other hepaciviruses, with one unique polyprotein and highly structured UTRs. Phylogenetic analyses showed the SifHV belonged to a clade that includes several viral species identified in rodents from Asia and North America, while SifPgV and IndPgV were more closely related to pegiviral species A and C, that include viruses found in humans as well as New- and Old-World monkeys. Our results support the current proposed model of virus-host co-divergence with frequent occurrence of cross-species transmission for these genera and highlight how the discovery of more members of the Flaviviridae can help clarify the ecology and evolutionary history of these viruses. Furthermore, this knowledge is important for conservation and captive management of lemurs.
Collapse
|
8
|
Jordan VE, Walker JA, Beckstrom TO, Steely CJ, McDaniel CL, St Romain CP, Worley KC, Phillips-Conroy J, Jolly CJ, Rogers J, Konkel MK, Batzer MA. A computational reconstruction of Papio phylogeny using Alu insertion polymorphisms. Mob DNA 2018; 9:13. [PMID: 29632618 PMCID: PMC5885306 DOI: 10.1186/s13100-018-0118-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/26/2018] [Indexed: 12/17/2022] Open
Abstract
Background Since the completion of the human genome project, the diversity of genome sequencing data produced for non-human primates has increased exponentially. Papio baboons are well-established biological models for studying human biology and evolution. Despite substantial interest in the evolution of Papio, the systematics of these species has been widely debated, and the evolutionary history of Papio diversity is not fully understood. Alu elements are primate-specific transposable elements with a well-documented mutation/insertion mechanism and the capacity for resolving controversial phylogenetic relationships. In this study, we conducted a whole genome analysis of Alu insertion polymorphisms unique to the Papio lineage. To complete these analyses, we created a computational algorithm to identify novel Alu insertions in next-generation sequencing data. Results We identified 187,379 Alu insertions present in the Papio lineage, yet absent from M. mulatta [Mmul8.0.1]. These elements were characterized using genomic data sequenced from a panel of twelve Papio baboons: two from each of the six extant Papio species. These data were used to construct a whole genome Alu-based phylogeny of Papio baboons. The resulting cladogram fully-resolved relationships within Papio. Conclusions These data represent the most comprehensive Alu-based phylogenetic reconstruction reported to date. In addition, this study produces the first fully resolved Alu-based phylogeny of Papio baboons. Electronic supplementary material The online version of this article (10.1186/s13100-018-0118-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vallmer E Jordan
- 1Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803 USA
| | - Jerilyn A Walker
- 1Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803 USA
| | - Thomas O Beckstrom
- 1Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803 USA
| | - Cody J Steely
- 1Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803 USA
| | - Cullen L McDaniel
- 1Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803 USA
| | - Corey P St Romain
- 1Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803 USA
| | | | - Kim C Worley
- 2Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA.,3Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Jane Phillips-Conroy
- 4Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Clifford J Jolly
- 5Department of Anthropology, New York University, New York, NY 10003 USA
| | - Jeffrey Rogers
- 2Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA.,3Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Miriam K Konkel
- 1Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803 USA.,6Department of Genetics & Biochemistry, Clemson University, Clemson, SC 29634 USA
| | - Mark A Batzer
- 1Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803 USA
| |
Collapse
|
9
|
Baker JN, Walker JA, Denham MW, Loupe CD, Batzer MA. Recently integrated Alu insertions in the squirrel monkey ( Saimiri) lineage and application for population analyses. Mob DNA 2018; 9:9. [PMID: 29449901 PMCID: PMC5808450 DOI: 10.1186/s13100-018-0114-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/05/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The evolution of Alu elements has been ongoing in primate lineages and Alu insertion polymorphisms are widely used in phylogenetic and population genetics studies. Alu subfamilies in the squirrel monkey (Saimiri), a New World Monkey (NWM), were recently reported. Squirrel monkeys are commonly used in biomedical research and often require species identification. The purpose of this study was two-fold: 1) Perform locus-specific PCR analyses on recently integrated Alu insertions in Saimiri to determine their amplification dynamics, and 2) Identify a subset of Alu insertion polymorphisms with species informative allele frequency distributions between the Saimiri sciureus and Saimiri boliviensis groups. RESULTS PCR analyses were performed on a DNA panel of 32 squirrel monkey individuals for 382 Alu insertion events ≤2% diverged from 46 different Alu subfamily consensus sequences, 25 Saimiri specific and 21 NWM specific Alu subfamilies. Of the 382 loci, 110 were polymorphic for presence / absence among squirrel monkey individuals, 35 elements from 14 different Saimiri specific Alu subfamilies and 75 elements from 19 different NWM specific Alu subfamilies (13 of 46 subfamilies analyzed did not contain polymorphic insertions). Of the 110 Alu insertion polymorphisms, 51 had species informative allele frequency distributions between Saimiri sciureus and Saimiri boliviensis groups. CONCLUSIONS This study confirms the evolution of Alu subfamilies in Saimiri and provides evidence for an ongoing and prolific expansion of these elements in Saimiri with many active subfamilies concurrently propagating. The subset of polymorphic Alu insertions with species informative allele frequency distribution between Saimiri sciureus and Saimiri boliviensis will be instructive for specimen identification and conservation biology.
Collapse
Affiliation(s)
- Jasmine N. Baker
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803 USA
| | - Jerilyn A. Walker
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803 USA
| | - Michael W. Denham
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803 USA
| | - Charles D. Loupe
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803 USA
| | - Mark A. Batzer
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803 USA
| |
Collapse
|
10
|
The phylogenetic system of primates—character evolution in the light of a consolidated tree. ORG DIVERS EVOL 2016. [DOI: 10.1007/s13127-016-0279-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Platt RN, Zhang Y, Witherspoon DJ, Xing J, Suh A, Keith MS, Jorde LB, Stevens RD, Ray DA. Targeted Capture of Phylogenetically Informative Ves SINE Insertions in Genus Myotis. Genome Biol Evol 2015; 7:1664-75. [PMID: 26014613 PMCID: PMC4494050 DOI: 10.1093/gbe/evv099] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Identification of retrotransposon insertions in nonmodel taxa can be technically challenging and costly. This has inhibited progress in understanding retrotransposon insertion dynamics outside of a few well-studied species. To address this problem, we have extended a retrotransposon-based capture and sequence method (ME-Scan [mobile element scanning]) to identify insertions belonging to the Ves family of short interspersed elements (SINEs) across seven species of the bat genus Myotis. We identified between 120,000 and 143,000 SINE insertions in six taxa lacking a draft genome by comparing to the M. lucifugus reference genome. On average, each Ves insertion was sequenced to 129.6 × coverage. When mapped back to the M. lucifugus reference genome, all insertions were confidently assigned within a 10-bp window. Polymorphic Ves insertions were identified in each taxon based on their mapped locations. Using cross-species comparisons and the identified insertion positions, a presence–absence matrix was created for approximately 796,000 insertions. Dollo parsimony analysis of more than 85,000 phylogenetically informative insertions recovered strongly supported, monophyletic clades that correspond with the biogeography of each taxa. This phylogeny is similar to previously published mitochondrial phylogenies, with the exception of the placement of M. vivesi. These results support the utility of our variation on ME-Scan to identify polymorphic retrotransposon insertions in taxa without a reference genome and for large-scale retrotransposon-based phylogenetics.
Collapse
Affiliation(s)
- Roy N Platt
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University Department of Biological Sciences, Texas Tech University
| | - Yuhua Zhang
- Bionomics Research & Technology Center, Environmental and Occupational Health Science Institute, Rutgers, The State University of New Jersey
| | | | - Jinchuan Xing
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey
| | - Alexander Suh
- Department of Evolutionary Biology, Uppsala University, Sweden
| | - Megan S Keith
- Department of Biological Sciences, Texas Tech University
| | - Lynn B Jorde
- Department of Human Genetics, University of Utah Health Sciences Center
| | - Richard D Stevens
- Department of Natural Resources Management and the Museum of Texas Tech University
| | - David A Ray
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University Department of Biological Sciences, Texas Tech University
| |
Collapse
|
12
|
Walters-Conte KB, Johnson DLE, Johnson WE, O’Brien SJ, Pecon-Slattery J. The dynamic proliferation of CanSINEs mirrors the complex evolution of Feliforms. BMC Evol Biol 2014; 14:137. [PMID: 24947429 PMCID: PMC4084570 DOI: 10.1186/1471-2148-14-137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 06/11/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Repetitive short interspersed elements (SINEs) are retrotransposons ubiquitous in mammalian genomes and are highly informative markers to identify species and phylogenetic associations. Of these, SINEs unique to the order Carnivora (CanSINEs) yield novel insights on genome evolution in domestic dogs and cats, but less is known about their role in related carnivores. In particular, genome-wide assessment of CanSINE evolution has yet to be completed across the Feliformia (cat-like) suborder of Carnivora. Within Feliformia, the cat family Felidae is composed of 37 species and numerous subspecies organized into eight monophyletic lineages that likely arose 10 million years ago. Using the Felidae family as a reference phylogeny, along with representative taxa from other families of Feliformia, the origin, proliferation and evolution of CanSINEs within the suborder were assessed. RESULTS We identified 93 novel intergenic CanSINE loci in Feliformia. Sequence analyses separated Feliform CanSINEs into two subfamilies, each characterized by distinct RNA polymerase binding motifs and phylogenetic associations. Subfamily I CanSINEs arose early within Feliformia but are no longer under active proliferation. Subfamily II loci are more recent, exclusive to Felidae and show evidence for adaptation to extant RNA polymerase activity. Further, presence/absence distributions of CanSINE loci are largely congruent with taxonomic expectations within Feliformia and the less resolved nodes in the Felidae reference phylogeny present equally ambiguous CanSINE data. SINEs are thought to be nearly impervious to excision from the genome. However, we observed a nearly complete excision of a CanSINEs locus in puma (Puma concolor). In addition, we found that CanSINE proliferation in Felidae frequently targeted existing CanSINE loci for insertion sites, resulting in tandem arrays. CONCLUSIONS We demonstrate the existence of at least two SINE families within the Feliformia suborder, one of which is actively involved in insertional mutagenesis. We find SINEs are powerful markers of speciation and conclude that the few inconsistencies with expected patterns of speciation likely represent incomplete lineage sorting, species hybridization and SINE-mediated genome rearrangement.
Collapse
Affiliation(s)
- Kathryn B Walters-Conte
- Department of Biology, American University, 101 Hurst Hall 4440 Massachusetts Ave, Washington, DC 20016, USA
| | - Diana LE Johnson
- Department of Biological Sciences, The George Washington University, 2036 G St, Washington, DC 20009, USA
| | - Warren E Johnson
- Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA 22630, USA
| | - Stephen J O’Brien
- Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, 41 A, Sredniy Avenue St., Petersburg 199034, Russia
| | - Jill Pecon-Slattery
- Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA 22630, USA
| |
Collapse
|
13
|
Kamath PL, Elleder D, Bao L, Cross PC, Powell JH, Poss M. The population history of endogenous retroviruses in mule deer (Odocoileus hemionus). J Hered 2014; 105:173-87. [PMID: 24336966 PMCID: PMC3920814 DOI: 10.1093/jhered/est088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 09/27/2013] [Accepted: 10/24/2013] [Indexed: 11/13/2022] Open
Abstract
Mobile elements are powerful agents of genomic evolution and can be exceptionally informative markers for investigating species and population-level evolutionary history. While several studies have utilized retrotransposon-based insertional polymorphisms to resolve phylogenies, few population studies exist outside of humans. Endogenous retroviruses are LTR-retrotransposons derived from retroviruses that have become stably integrated in the host genome during past infections and transmitted vertically to subsequent generations. They offer valuable insight into host-virus co-evolution and a unique perspective on host evolutionary history because they integrate into the genome at a discrete point in time. We examined the evolutionary history of a cervid endogenous gammaretrovirus (CrERVγ) in mule deer (Odocoileus hemionus). We sequenced 14 CrERV proviruses (CrERV-in1 to -in14), and examined the prevalence and distribution of 13 proviruses in 262 deer among 15 populations from Montana, Wyoming, and Utah. CrERV absence in white-tailed deer (O. virginianus), identical 5' and 3' long terminal repeat (LTR) sequences, insertional polymorphism, and CrERV divergence time estimates indicated that most endogenization events occurred within the last 200000 years. Population structure inferred from CrERVs (F ST = 0.008) and microsatellites (θ = 0.01) was low, but significant, with Utah, northwestern Montana, and a Helena herd being particularly differentiated. Clustering analyses indicated regional structuring, and non-contiguous clustering could often be explained by known translocations. Cluster ensemble results indicated spatial localization of viruses, specifically in deer from northeastern and western Montana. This study demonstrates the utility of endogenous retroviruses to elucidate and provide novel insight into both ERV evolutionary history and the history of contemporary host populations.
Collapse
Affiliation(s)
- Pauline L Kamath
- the US Geological Survey, Northern Rocky Mountain Science Center, Bozeman, MT 59715
| | | | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- K. H. Dausmann
- Department of Animal Ecology and Conservation, Biocentre Grindel; University of Hamburg; Hamburg Germany
| |
Collapse
|
15
|
McLain AT, Carman GW, Fullerton ML, Beckstrom TO, Gensler W, Meyer TJ, Faulk C, Batzer MA. Analysis of western lowland gorilla (Gorilla gorilla gorilla) specific Alu repeats. Mob DNA 2013; 4:26. [PMID: 24262036 PMCID: PMC4177385 DOI: 10.1186/1759-8753-4-26] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 10/23/2013] [Indexed: 02/07/2023] Open
Abstract
Background Research into great ape genomes has revealed widely divergent activity levels over time for Alu elements. However, the diversity of this mobile element family in the genome of the western lowland gorilla has previously been uncharacterized. Alu elements are primate-specific short interspersed elements that have been used as phylogenetic and population genetic markers for more than two decades. Alu elements are present at high copy number in the genomes of all primates surveyed thus far. The AluY subfamily and its derivatives have been recognized as the evolutionarily youngest Alu subfamily in the Old World primate lineage. Results Here we use a combination of computational and wet-bench laboratory methods to assess and catalog AluY subfamily activity level and composition in the western lowland gorilla genome (gorGor3.1). A total of 1,075 independent AluY insertions were identified and computationally divided into 10 subfamilies, with the largest number of gorilla-specific elements assigned to the canonical AluY subfamily. Conclusions The retrotransposition activity level appears to be significantly lower than that seen in the human and chimpanzee lineages, while higher than that seen in orangutan genomes, indicative of differential Alu amplification in the western lowland gorilla lineage as compared to other Homininae.
Collapse
Affiliation(s)
- Adam T McLain
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Bleykasten-Grosshans C, Friedrich A, Schacherer J. Genome-wide analysis of intraspecific transposon diversity in yeast. BMC Genomics 2013; 14:399. [PMID: 23768249 PMCID: PMC4022208 DOI: 10.1186/1471-2164-14-399] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 06/06/2013] [Indexed: 02/02/2023] Open
Abstract
Background In the model organism Saccharomyces cerevisiae, the transposable elements (TEs) consist of LTR (Long Terminal Repeat) retrotransposons called Ty elements belonging to five families, Ty1 to Ty5. They take the form of either full-length coding elements or non-coding solo-LTRs corresponding to remnants of former transposition events. Although the biological features of Ty elements have been studied in detail in S. cerevisiae and the Ty content of the reference strain (S288c) was accurately annotated, the Ty-related intra-specific diversity has not been closely investigated so far. Results In this study, we investigated the Ty contents of 41 available genomes of isolated S. cerevisiae strains of diverse geographical and ecological origins. The strains were compared in terms of the number of Ty copies, the content of the potential transpositionally active elements and the genomic insertion maps. The strain repertoires were also investigated in the closely related Ty1 and Ty2 families and subfamilies. Conclusions This is the first genome-wide analysis of the diversity associated to the Ty elements, carried out for a large set of S. cerevisiae strains. The results of the present analyses suggest that the current Ty-related polymorphism has resulted from multiple causes such as differences between strains, between Ty families and over time, in the recent transpositional activity of Ty elements. Some new Ty1 variants were also identified, and we have established that Ty1 variants have different patterns of distribution among strains, which further contributes to the strain diversity.
Collapse
Affiliation(s)
- Claudine Bleykasten-Grosshans
- CNRS, Department of Genetics, Genomics and Microbiology, University of Strasbourg, UMR 7156, 28, rue Goethe, Strasbourg, 67083, France.
| | | | | |
Collapse
|
17
|
Springer MS, Meredith RW, Gatesy J, Emerling CA, Park J, Rabosky DL, Stadler T, Steiner C, Ryder OA, Janečka JE, Fisher CA, Murphy WJ. Macroevolutionary dynamics and historical biogeography of primate diversification inferred from a species supermatrix. PLoS One 2012; 7:e49521. [PMID: 23166696 PMCID: PMC3500307 DOI: 10.1371/journal.pone.0049521] [Citation(s) in RCA: 270] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 10/09/2012] [Indexed: 01/24/2023] Open
Abstract
Phylogenetic relationships, divergence times, and patterns of biogeographic descent among primate species are both complex and contentious. Here, we generate a robust molecular phylogeny for 70 primate genera and 367 primate species based on a concatenation of 69 nuclear gene segments and ten mitochondrial gene sequences, most of which were extracted from GenBank. Relaxed clock analyses of divergence times with 14 fossil-calibrated nodes suggest that living Primates last shared a common ancestor 71-63 Ma, and that divergences within both Strepsirrhini and Haplorhini are entirely post-Cretaceous. These results are consistent with the hypothesis that the Cretaceous-Paleogene mass extinction of non-avian dinosaurs played an important role in the diversification of placental mammals. Previous queries into primate historical biogeography have suggested Africa, Asia, Europe, or North America as the ancestral area of crown primates, but were based on methods that were coopted from phylogeny reconstruction. By contrast, we analyzed our molecular phylogeny with two methods that were developed explicitly for ancestral area reconstruction, and find support for the hypothesis that the most recent common ancestor of living Primates resided in Asia. Analyses of primate macroevolutionary dynamics provide support for a diversification rate increase in the late Miocene, possibly in response to elevated global mean temperatures, and are consistent with the fossil record. By contrast, diversification analyses failed to detect evidence for rate-shift changes near the Eocene-Oligocene boundary even though the fossil record provides clear evidence for a major turnover event ("Grande Coupure") at this time. Our results highlight the power and limitations of inferring diversification dynamics from molecular phylogenies, as well as the sensitivity of diversification analyses to different species concepts.
Collapse
Affiliation(s)
- Mark S. Springer
- Department of Biology, University of California Riverside, Riverside, California, United States of America
| | - Robert W. Meredith
- Department of Biology, University of California Riverside, Riverside, California, United States of America
- Department of Biology and Molecular Biology, Montclair State University, Montclair, New Jersey, United States of America
| | - John Gatesy
- Department of Biology, University of California Riverside, Riverside, California, United States of America
| | - Christopher A. Emerling
- Department of Biology, University of California Riverside, Riverside, California, United States of America
| | - Jong Park
- Department of Biology, University of California Riverside, Riverside, California, United States of America
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Daniel L. Rabosky
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Tanja Stadler
- Institut für Integrative Biologie, Eidgenössiche Technische Hochschule Zurich, Zurich, Switzerland
| | - Cynthia Steiner
- San Diego Zoo Institute for Conservation Research, San Diego Zoo Global, San Diego, California, United States of America
| | - Oliver A. Ryder
- San Diego Zoo Institute for Conservation Research, San Diego Zoo Global, San Diego, California, United States of America
| | - Jan E. Janečka
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | - Colleen A. Fisher
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | - William J. Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|