1
|
Shafiq N, Zameer R, Attiq N, Moveed A, Farooq A, Imtiaz F, Parveen S, Rashid M, Noor N. Integration of virtual screening of phytoecdysteroids as androgen receptor inhibitors by 3D-QSAR Model, CoMFA, molecular docking and ADMET analysis: An extensive and interactive machine learning. J Steroid Biochem Mol Biol 2024; 237:106427. [PMID: 38008365 DOI: 10.1016/j.jsbmb.2023.106427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/23/2023] [Accepted: 11/16/2023] [Indexed: 11/28/2023]
Abstract
Ecdysteroids, a class of naturally isolated polyhydroxylated sterols, stands at a very good place in the pharmaceutical industry from their medicinal point of views like anti-inflammatory, neuroprotective, anti-microbial, anti-diabetic, antioxidant, and anti-tumor effects. Due to their excellent antioxidant and anti-microbial potential, ecdysteroids have extensive use in skin products, especially derma creams. To monitor the best anti-acne phytoecdysteroids, here made use of different computational approaches, by using the rapid, easy, cost-effective and high throughput method to screen and identify ecdysteroids as androgen receptor inhibitors. 3D-QSAR study was carried out on a dataset of ecdysteroids by using comparative molecular field analysis (CoMFA) to determine the factors responsible for the activity of compounds. Statistically a cross-validated (q2) 0.1457 and regression coefficient (r2) 0.9713 indicated the best model. Contour map results showed the influence of steric effect to enhance activity. A molecular docking analysis was done to further find out the binding sites and their anti-acne potential against three crystal structured macromolecules (PDB ID: 2REQ, 2BAC, 4EM0). Docking results were further evaluated by prime MM-GBSA analysis and findings confirmed the accuracy. Toxicity by ADMET assessment was carried out and M2 was found as lead druglike with best anti-acne activity against Propionium acnes GehA lipase bacteria after passing all filters. This research study is novel because it is representing first effort to explore ecdysteroids class for their high therapeutic output as androgen receptor inhibitor by using computational tools and expectedly led to novel scaffold for androgen receptor inhibitor. This is a novel and new approach to investigate the ecdysteroids for first time for their practical applications.
Collapse
Affiliation(s)
- Nusrat Shafiq
- Synthetic and Natural Product Discovery Laboratory, Department of Chemistry, Government College Women University Faisalabad, 38000, Pakistan.
| | - Rabia Zameer
- Synthetic and Natural Product Discovery Laboratory, Department of Chemistry, Government College Women University Faisalabad, 38000, Pakistan
| | - Naila Attiq
- Synthetic and Natural Product Discovery Laboratory, Department of Chemistry, Government College Women University Faisalabad, 38000, Pakistan
| | - Aniqa Moveed
- Synthetic and Natural Product Discovery Laboratory, Department of Chemistry, Government College Women University Faisalabad, 38000, Pakistan
| | - Ariba Farooq
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Fazeelat Imtiaz
- Green Chemistry Laboratory, Department of Chemistry, Government College Women University Faisalabad, 38000, Pakistan
| | - Shagufta Parveen
- Synthetic and Natural Product Discovery Laboratory, Department of Chemistry, Government College Women University Faisalabad, 38000, Pakistan
| | - Maryam Rashid
- Synthetic and Natural Product Discovery Laboratory, Department of Chemistry, Government College Women University Faisalabad, 38000, Pakistan
| | - Nadia Noor
- Micro-Biology Laboratory, Department of Chemistry, Government College Women University Faisalabad, 38000, Pakistan
| |
Collapse
|
2
|
Biophysical and Biochemical Characterization of the Binding of the MarR-like Transcriptional Regulator Saro_0803 to the nov1 Promotor and Its Inhibition by Resveratrol. Biomolecules 2023; 13:biom13030541. [PMID: 36979476 PMCID: PMC10046596 DOI: 10.3390/biom13030541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Saro_0803 is a transcriptional factor modulating the transcription of the stilbene-degrading enzyme gene nov1 in Novosphingobium aromaticivorans DSM 12444. Reportedly, Saro_0803 undergoes resveratrol-mediated dissociation from the nov1 promotor and distinguishes resveratrol from its precursors, p-coumaric acid and trans-cinnamic acid, enabling the transcriptional factor to serve as a biosensor component for regulating resveratrol biosynthesis. However, little is known about the molecular mechanisms underlying the Saro_0803 interactions with either the nov1 promotor gene or resveratrol, which undermines the potential for Saro_0803 to be further modified for improved biosynthetic performance and other applications. Here, we report the discovery of the 22 bp A/T-rich Saro_0803 binding site near the −10 box of the nov1 promotor (named nov1p22bp). As validated by molecular docking-guided mutagenesis and binding affinity assays, the Saro_0803 binding of its target DNA sequence relies on charge-predominating interactions between several typical positively charged residues and nucleic acid. Furthermore, we semi-quantified the influence of resveratrol presence on Saro_0803–nov1p22bp interaction and identified a bilateral hydrophobic pocket within Saro_0803 comprising four aromatic residues that are crucial to maintaining the resveratrol binding capability of the transcriptional factor. Our data are beneficial to understanding saro_0803′s structural and functional properties, and could provide theoretical clues for future adaptations of this transcriptional factor.
Collapse
|
4
|
Chang YM, Ho CH, Chen CKM, Maestre-Reyna M, Chang-Chien MW, Wang AHJ. TcaR-ssDNA complex crystal structure reveals new DNA binding mechanism of the MarR family proteins. Nucleic Acids Res 2014; 42:5314-21. [PMID: 24531929 PMCID: PMC4005659 DOI: 10.1093/nar/gku128] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The teicoplanin-associated locus regulator (TcaR) regulates gene expression of proteins on the intercellular adhesion (ica) locus involved in staphylococci poly-N-acetylglucosamine biosynthesis. The absence of TcaR increases poly-N-acetylglucosamine production and promotes biofilm formation. Until recently, the mechanism of multiple antibiotic resistance regulator family protein members, such as TcaR, was restricted to binding double-stranded DNA. However, we recently found that TcaR strongly interacts with single-stranded DNA, which is a new role for this family of proteins. In this study, we report Staphylococcus epidermidis TcaR–single-stranded DNA complex structures. Our model suggests that TcaR and single-stranded DNA form a 61-symmetry polymer composed of TcaR dimers with single-stranded DNA that wraps outside the polymer and 12 nt per TcaR dimer. Single-stranded DNA binding to TcaR involves a large conformational change at the DNA binding lobe. Several point mutations involving the single-stranded DNA binding surface validate interactions between single-stranded DNA and TcaR. Our results extend the novel role of multiple antibiotic resistance regulator family proteins in staphylococci.
Collapse
Affiliation(s)
- Yu-Ming Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan, Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan, Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei 11529, Taiwan and Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Chun-Han Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan, Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan, Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei 11529, Taiwan and Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Cammy K.-M. Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan, Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan, Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei 11529, Taiwan and Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Manuel Maestre-Reyna
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan, Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan, Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei 11529, Taiwan and Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Masatoshi Weiting Chang-Chien
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan, Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan, Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei 11529, Taiwan and Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Andrew H.-J. Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan, Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan, Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei 11529, Taiwan and Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- *To whom correspondence should be addressed. Tel +886 2 2788 1981; Fax +886 2 2788 2043;
| |
Collapse
|
5
|
Chang YM, Chen CKM, Ko TP, Chang-Chien MW, Wang AHJ. Structural analysis of the antibiotic-recognition mechanism of MarR proteins. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1138-49. [PMID: 23695258 DOI: 10.1107/s0907444913007117] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 03/14/2013] [Indexed: 11/11/2022]
Abstract
Staphylococci cause a wide range of diseases in humans and animals, and the proteins of the multiple antibiotic-resistance repressor (MarR) family in staphylococci function as regulators of protein expression and confer resistance to multiple antibiotics. Diverse mechanisms such as biofilm formation, drug transport, drug modification etc. are associated with this resistance. In this study, crystal structures of the Staphylococcus aureus MarR homologue SAR2349 and its complex with salicylate and the aminoglycoside antibiotic kanamycin have been determined. The structure of SAR2349 shows for the first time that a MarR protein can interact directly with different classes of ligands simultaneously and highlights the importance and versatility of regulatory systems in bacterial antibiotic resistance. The three-dimensional structures of TcaR from S. epidermidis in complexes with chloramphenicol and with the aminoglycoside antibiotic streptomycin were also investigated. The crystal structures of the TcaR and SAR2349 complexes illustrate a general antibiotic-regulated resistance mechanism that may extend to other MarR proteins. To reveal the regulatory mechanism of the MarR proteins, the protein structures of this family were further compared and three possible mechanisms of regulation are proposed. These results are of general interest because they reveal a remarkably broad spectrum of ligand-binding modes of the multifunctional MarR proteins. This finding provides further understanding of antimicrobial resistance mechanisms in pathogens and strategies to develop new therapies against pathogens.
Collapse
Affiliation(s)
- Yu Ming Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | | |
Collapse
|