1
|
Besirli CG, Nath M, Yao J, Pawar M, Myers AM, Zacks D, Fort PE. HSPB4/CRYAA Protect Photoreceptors during Retinal Detachment in Part through FAIM2 Regulation. Neurol Int 2024; 16:905-917. [PMID: 39311341 PMCID: PMC11417767 DOI: 10.3390/neurolint16050068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
Our previous study discussed crystallin family induction in an experimental rat model of retinal detachment. Therefore, we attempted to evaluate the role of α-crystallin in photoreceptor survival in an experimental model of retinal detachment, as well as its association with the intrinsically neuroprotective protein Fas-apoptotic inhibitory molecule 2 (FAIM2). Separation of retina and RPE was induced in rat and mouse eyes by subretinal injection of hyaluronic acid. Retinas were subsequently analyzed for the presence αA-crystallin (HSPB4) and αB-crystallin (HSPB5) proteins using immunohistochemistry and immunoblotting. Photoreceptor death was analyzed using terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) staining and cell counts. The 661W cells subjected to FasL were used as a cell model of photoreceptor degeneration to assess the mechanisms of the protective effect of αA-crystallin and its dependence on its phosphorylation on T148. We further evaluated the interaction between FAIM2 and αA-crystallin using a co-immunoprecipitation assay. Our results showed that α-crystallin protein levels were rapidly induced in response to retinal detachment, with αA-crystallin playing a particularly important role in protecting photoreceptors during retinal detachment. Our data also show that the photoreceptor intrinsically neuroprotective protein FAIM2 is induced and interacts with α-crystallins following retinal detachment. Mechanistically, our work also demonstrated that the phosphorylation of αA-crystallin is important for the interaction of αA-crystallin with FAIM2 and their neuroprotective effect. Thus, αA-crystallin is involved in the regulation of photoreceptor survival during retinal detachment, playing a key role in the stabilization of FAIM2, serving as an important modulator of photoreceptor cell survival under chronic stress conditions.
Collapse
Affiliation(s)
- Cagri G. Besirli
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA; (C.G.B.)
| | - Madhu Nath
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA; (C.G.B.)
| | - Jingyu Yao
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA; (C.G.B.)
| | - Mercy Pawar
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA; (C.G.B.)
| | - Angela M. Myers
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA; (C.G.B.)
| | - David Zacks
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA; (C.G.B.)
| | - Patrice E. Fort
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA; (C.G.B.)
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
2
|
Wubben TJ, Chaudhury S, Watch BT, Stuckey JA, Weh E, Fernando R, Goswami M, Pawar M, Rech JC, Besirli CG. Development of Novel Small-Molecule Activators of Pyruvate Kinase Muscle Isozyme 2, PKM2, to Reduce Photoreceptor Apoptosis. Pharmaceuticals (Basel) 2023; 16:ph16050705. [PMID: 37242488 DOI: 10.3390/ph16050705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Treatment options are lacking to prevent photoreceptor death and subsequent vision loss. Previously, we demonstrated that reprogramming metabolism via the pharmacologic activation of PKM2 is a novel photoreceptor neuroprotective strategy. However, the features of the tool compound used in those studies, ML-265, preclude its advancement as an intraocular, clinical candidate. This study sought to develop the next generation of small-molecule PKM2 activators, aimed specifically for delivery into the eye. Compounds were developed that replaced the thienopyrrolopyridazinone core of ML-265 and modified the aniline and methyl sulfoxide functional groups. Compound 2 demonstrated that structural changes to the ML-265 scaffold are tolerated from a potency and efficacy standpoint, allow for a similar binding mode to the target, and circumvent apoptosis in models of outer retinal stress. To overcome the low solubility and problematic functional groups of ML-265, compound 2's efficacious and versatile core structure for the incorporation of diverse functional groups was then utilized to develop novel PKM2 activators with improved solubility, lack of structural alerts, and retained potency. No other molecules are in the pharmaceutical pipeline for the metabolic reprogramming of photoreceptors. Thus, this study is the first to cultivate the next generation of novel, structurally diverse, small-molecule PKM2 activators for delivery into the eye.
Collapse
Affiliation(s)
- Thomas J Wubben
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Sraboni Chaudhury
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Brennan T Watch
- Department of Internal Medicine, Hematology and Oncology, Michigan Center for Therapeutic Innovation, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jeanne A Stuckey
- Departments of Biological Chemistry and Biophysics, Center for Structural Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eric Weh
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Roshini Fernando
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Moloy Goswami
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Mercy Pawar
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Jason C Rech
- Department of Internal Medicine, Hematology and Oncology, Michigan Center for Therapeutic Innovation, University of Michigan, Ann Arbor, MI 48109, USA
| | - Cagri G Besirli
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
3
|
Völkner M, Wagner F, Kurth T, Sykes AM, Del Toro Runzer C, Ebner LJA, Kavak C, Alexaki VI, Cimalla P, Mehner M, Koch E, Karl MO. Modeling inducible neuropathologies of the retina with differential phenotypes in organoids. Front Cell Neurosci 2023; 17:1106287. [PMID: 37213216 PMCID: PMC10196395 DOI: 10.3389/fncel.2023.1106287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/06/2023] [Indexed: 05/23/2023] Open
Abstract
Neurodegenerative diseases remain incompletely understood and therapies are needed. Stem cell-derived organoid models facilitate fundamental and translational medicine research. However, to which extent differential neuronal and glial pathologic processes can be reproduced in current systems is still unclear. Here, we tested 16 different chemical, physical, and cell functional manipulations in mouse retina organoids to further explore this. Some of the treatments induce differential phenotypes, indicating that organoids are competent to reproduce distinct pathologic processes. Notably, mouse retina organoids even reproduce a complex pathology phenotype with combined photoreceptor neurodegeneration and glial pathologies upon combined (not single) application of HBEGF and TNF, two factors previously associated with neurodegenerative diseases. Pharmacological inhibitors for MAPK signaling completely prevent photoreceptor and glial pathologies, while inhibitors for Rho/ROCK, NFkB, and CDK4 differentially affect them. In conclusion, mouse retina organoids facilitate reproduction of distinct and complex pathologies, mechanistic access, insights for further organoid optimization, and modeling of differential phenotypes for future applications in fundamental and translational medicine research.
Collapse
Affiliation(s)
- Manuela Völkner
- Technische Universität Dresden, Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Felix Wagner
- Technische Universität Dresden, Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Thomas Kurth
- Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform Core Facility Electron Microscopy and Histology, Dresden, Germany
| | - Alex M. Sykes
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Lynn J. A. Ebner
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Cagri Kavak
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Vasileia Ismini Alexaki
- Technische Universität Dresden, Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Dresden, Germany
| | - Peter Cimalla
- Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Department of Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, Dresden, Germany
| | - Mirko Mehner
- Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Department of Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, Dresden, Germany
| | - Edmund Koch
- Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Department of Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, Dresden, Germany
| | - Mike O. Karl
- Technische Universität Dresden, Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
- *Correspondence: Mike O. Karl, ,
| |
Collapse
|
4
|
Zacks DN, Kocab AJ, Choi JJ, Gregory-Ksander MS, Cano M, Handa JT. Cell Death in AMD: The Rationale for Targeting Fas. J Clin Med 2022; 11:jcm11030592. [PMID: 35160044 PMCID: PMC8836408 DOI: 10.3390/jcm11030592] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 11/21/2022] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of irreversible blindness in the developed world. While great advances have been made in the treatment of the neovascular (“wet”) form of the disease, there is still a significant need for therapies that prevent the vision loss associated with the advanced forms of dry, atrophic AMD. In this atrophic form, retinal pigment epithelial (RPE) and photoreceptor cell death is the ultimate cause of vision loss. In this review, we summarize the cell death pathways and their relation to RPE and retinal cell death in AMD. We review the data that support targeting programmed cell death through inhibition of the Fas receptor as a novel approach to preserve these structures and that this effect results from inhibiting both canonical death pathway activation and reducing the associated inflammatory response. These data lay the groundwork for current clinical strategies targeting the Fas pathway in this devastating disease.
Collapse
Affiliation(s)
- David N. Zacks
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA;
- Correspondence: ; Tel.: +1-734-936-0871
| | | | - Joanne J. Choi
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Meredith S. Gregory-Ksander
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA;
| | - Marisol Cano
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD 21287, USA; (M.C.); (J.T.H.)
| | - James T. Handa
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD 21287, USA; (M.C.); (J.T.H.)
| |
Collapse
|
5
|
Malik C, Siddiqui SI, Ghosh S. Extracellular Signal-Regulated Kinase1 (ERK1)-Mediated Phosphorylation of Voltage-Dependent Anion Channel (VDAC) Suppresses its Conductance. J Membr Biol 2021; 255:107-116. [PMID: 34731249 DOI: 10.1007/s00232-021-00205-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
ERK1 is one of the members of the mitogen-activated protein kinases that regulate important cellular functions. VDAC is located at the outer membrane of mitochondria. Here, an interaction between VDAC and ERK1 has been studied on an artificial planar lipid bilayer using in vitro electrophysiology experiments. We report that VDAC is phosphorylated by ERK1 in the presence of Mg2+-ATP and its single-channel currents are inhibited on the artificial bilayer membrane. Treatment of Alkaline phosphatase on ERK1 phosphorylated VDAC leads to partial recovery of the single-channel VDAC currents. Later, phosphorylation of VDAC was demonstrated by Pro-Q diamond dye. Mass Spectrometric studies indicate phosphorylation of VDAC at Threonine 33, Threonine 55, and Serine 35. In a nutshell, phosphorylation of VDAC leads to the closure of the channel.
Collapse
Affiliation(s)
- Chetan Malik
- Department of Biophysics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Shumaila Iqbal Siddiqui
- Department of Biophysics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Subhendu Ghosh
- Department of Biophysics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
6
|
Weh E, Lutrzykowska Z, Smith A, Hager H, Pawar M, Wubben TJ, Besirli CG. Hexokinase 2 is dispensable for photoreceptor development but is required for survival during aging and outer retinal stress. Cell Death Dis 2020; 11:422. [PMID: 32499533 PMCID: PMC7272456 DOI: 10.1038/s41419-020-2638-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Photoreceptor death is the ultimate cause of vision loss in many retinal degenerative conditions. Identifying novel therapeutic avenues for prolonging photoreceptor health and function has the potential to improve vision and quality of life for patients suffering from degenerative retinal disorders. Photoreceptors are metabolically unique among other neurons in that they process the majority of their glucose via aerobic glycolysis. One of the main regulators of aerobic glycolysis is hexokinase 2 (HK2). Beyond its enzymatic function of phosphorylating glucose to glucose-6-phosphate, HK2 has additional non-enzymatic roles, including the regulation of apoptotic signaling via AKT signaling. Determining the role of HK2 in photoreceptor homeostasis may identify novel signaling pathways that can be targeted with neuroprotective agents to boost photoreceptor survival during metabolic stress. Here we show that following experimental retinal detachment, p-AKT is upregulated and HK2 translocates to mitochondria. Inhibition of AKT phosphorylation in 661W photoreceptor-like cells results in translocation of mitochondrial HK2 to the cytoplasm, increased caspase activity, and decreased cell viability. Rod-photoreceptors lacking HK2 upregulate HK1 and appear to develop normally. Interestingly, we found that HK2-deficient photoreceptors are more susceptible to acute nutrient deprivation in the experimental retinal detachment model. Additionally, HK2 appears to be important for preserving photoreceptors during aging. We show that retinal glucose metabolism is largely unchanged after HK2 deletion, suggesting that the non-enzymatic role of HK2 is important for maintaining photoreceptor health. These results suggest that HK2 expression is critical for preserving photoreceptors during acute nutrient stress and aging. More specifically, p-AKT mediated translocation of HK2 to the mitochondrial surface may be critical for protecting photoreceptors from acute and chronic stress.
Collapse
Affiliation(s)
- Eric Weh
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall St., Ann Arbor, MI, 48105, US
| | | | - Andrew Smith
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall St., Ann Arbor, MI, 48105, US
| | - Heather Hager
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall St., Ann Arbor, MI, 48105, US
| | - Mercy Pawar
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall St., Ann Arbor, MI, 48105, US
| | - Thomas J Wubben
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall St., Ann Arbor, MI, 48105, US
| | - Cagri G Besirli
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall St., Ann Arbor, MI, 48105, US.
| |
Collapse
|
7
|
Wubben TJ, Pawar M, Weh E, Smith A, Sajjakulnukit P, Zhang L, Dai L, Hager H, Pai MP, Lyssiotis CA, Besirli CG. Small molecule activation of metabolic enzyme pyruvate kinase muscle isozyme 2, PKM2, circumvents photoreceptor apoptosis. Sci Rep 2020; 10:2990. [PMID: 32076076 PMCID: PMC7031539 DOI: 10.1038/s41598-020-59999-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/06/2020] [Indexed: 01/22/2023] Open
Abstract
Photoreceptor cell death is the ultimate cause of vision loss in many retinal disorders, and there is an unmet need for neuroprotective modalities to improve photoreceptor survival. Similar to cancer cells, photoreceptors maintain pyruvate kinase muscle isoform 2 (PKM2) expression, which is a critical regulator in aerobic glycolysis. Unlike PKM1, which has constitutively high catalytic activity, PKM2 is under complex regulation. Recently, we demonstrated that genetically reprogramming photoreceptor metabolism via PKM2-to-PKM1 substitution is a promising neuroprotective strategy. Here, we explored the neuroprotective effects of pharmacologically activating PKM2 via ML-265, a small molecule activator of PKM2, during acute outer retinal stress. We found that ML-265 increased PKM2 activity in 661 W cells and in vivo in rat eyes without affecting the expression of genes involved in glucose metabolism. ML-265 treatment did, however, alter metabolic intermediates of glucose metabolism and those necessary for biosynthesis in cultured cells. Long-term exposure to ML-265 did not result in decreased photoreceptor function or survival under baseline conditions. Notably, though, ML-265-treatment did reduce entrance into the apoptotic cascade in in vitro and in vivo models of outer retinal stress. These data suggest that reprogramming metabolism via activation of PKM2 is a novel, and promising, therapeutic strategy for photoreceptor neuroprotection.
Collapse
Affiliation(s)
- Thomas J Wubben
- University of Michigan, Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, Ann Arbor, USA
| | - Mercy Pawar
- University of Michigan, Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, Ann Arbor, USA
| | - Eric Weh
- University of Michigan, Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, Ann Arbor, USA
| | - Andrew Smith
- University of Michigan, Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, Ann Arbor, USA
| | - Peter Sajjakulnukit
- University of Michigan, Department of Molecular and Integrative Physiology, Ann Arbor, USA
| | - Li Zhang
- University of Michigan Biomedical Research Core Facilities, Metabolomics Core, Ann Arbor, USA
| | - Lipeng Dai
- University of Michigan, College of Pharmacy, Ann Arbor, USA
| | - Heather Hager
- University of Michigan, Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, Ann Arbor, USA
| | | | - Costas A Lyssiotis
- University of Michigan, Department of Molecular and Integrative Physiology, Ann Arbor, USA
| | - Cagri G Besirli
- University of Michigan, Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, Ann Arbor, USA.
| |
Collapse
|
8
|
Pan YR, Song JY, Fan B, Wang Y, Che L, Zhang SM, Chang YX, He C, Li GY. mTOR may interact with PARP-1 to regulate visible light-induced parthanatos in photoreceptors. Cell Commun Signal 2020; 18:27. [PMID: 32066462 PMCID: PMC7025415 DOI: 10.1186/s12964-019-0498-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Excessive light exposure is a detrimental environmental factor that plays a critical role in the pathogenesis of retinal degeneration. However, the mechanism of light-induced death of retina/photoreceptor cells remains unclear. The mammalian/mechanistic target of rapamycin (mTOR) and Poly (ADP-ribose) polymerase-1 (PARP-1) have become the primary targets for treating many neurodegenerative disorders. The aim of this study was to elucidate the mechanisms underlying light-induced photoreceptor cell death and whether the neuroprotective effects of mTOR and PARP-1 inhibition against death are mediated through apoptosis-inducing factor (AIF). METHODS Propidium iodide (PI)/Hoechst staining, lentiviral-mediated short hairpin RNA (shRNA), Western blot analysis, cellular fraction separation, plasmid transient transfection, laser confocal microscopy, a mice model, electroretinography (ERG), and hematoxylin-eosin (H & E) staining were employed to explore the mechanisms by which rapamycin/3-Aminobenzamide (3AB) exert neuroprotective effects of mTOR/PARP-1 inhibition in light-injured retinas. RESULTS A parthanatos-like death mechanism was evaluated in light-injured 661 W cells that are an immortalized photoreceptor-like cell line that exhibit cellular and biochemical feature characteristics of cone photoreceptor cells. The death process featured over-activation of PARP-1 and AIF nuclear translocation. Either PARP-1 or AIF knockdown played a significantly protective role for light-damaged photoreceptors. More importantly, crosstalk was observed between mTOR and PARP-1 signaling and mTOR could have regulated parthanatos via the intermediate factor sirtuin 1 (SIRT1). The parthanatos-like injury was also verified in vivo, wherein either PARP-1 or mTOR inhibition provided significant neuroprotection against light-induced injury, which is evinced by both structural and functional retinal analysis. Overall, these results elucidate the mTOR-regulated parthanatos death mechanism in light-injured photoreceptors/retinas and may facilitate the development of novel neuroprotective therapies for retinal degeneration diseases. CONCLUSIONS Our results demonstrate that inhibition of the mTOR/PARP-1 axis exerts protective effects on photoreceptors against visible-light-induced parthanatos. These protective effects are conducted by regulating the downstream factors of AIF, while mTOR possibly interacts with PARP-1 via SIRT1 to regulate parthanatos. Video Abstract Schematic diagram of mTOR interacting with PARP-1 to regulate visible light-induced parthanatos. Increased ROS caused by light exposure penetrates the nuclear membrane and causes nuclear DNA strand breaks. PARP-1 detects DNA breaks and synthesizes PAR polymers to initiate the DNA repair system that consumes a large amount of cellular NAD+. Over-production of PAR polymers prompts the release of AIF from the mitochondria and translocation to the nucleus, which leads to parthanatos. Activated mTOR may interact with PARP-1 via SIRT1 to regulate visible light-induced parthanatos.
Collapse
Affiliation(s)
- Yi-Ran Pan
- Department of Ophthalmology, Second Hospital of JiLin University, No.218 Zi-Qiang St, ChangChun, 130041 China
| | - Jing-Yao Song
- Department of Ophthalmology, Second Hospital of JiLin University, No.218 Zi-Qiang St, ChangChun, 130041 China
| | - Bin Fan
- Department of Ophthalmology, Second Hospital of JiLin University, No.218 Zi-Qiang St, ChangChun, 130041 China
| | - Ying Wang
- Department of Hemooncolog, Second Hospital of JiLin University, ChangChun, 130041 China
| | - Lin Che
- Department of Ophthalmology, Second Hospital of JiLin University, No.218 Zi-Qiang St, ChangChun, 130041 China
| | - Si-Ming Zhang
- Department of Ophthalmology, Second Hospital of JiLin University, No.218 Zi-Qiang St, ChangChun, 130041 China
| | - Yu-Xin Chang
- Department of Orthopedics, Second Hospital of JiLin University, ChangChun, 130041 China
| | - Chang He
- Department of Genetics,Basic, Medical College of Jilin University, ChangChun, 130041 China
| | - Guang-Yu Li
- Department of Ophthalmology, Second Hospital of JiLin University, No.218 Zi-Qiang St, ChangChun, 130041 China
| |
Collapse
|
9
|
Hong CJ, Yeon J, Yeo BK, Woo H, An HK, Heo W, Kim K, Yu SW. Fas-apoptotic inhibitory molecule 2 localizes to the lysosome and facilitates autophagosome-lysosome fusion through the LC3 interaction region motif-dependent interaction with LC3. FASEB J 2020; 34:161-179. [PMID: 31914609 DOI: 10.1096/fj.201901626r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/20/2019] [Accepted: 10/08/2019] [Indexed: 01/08/2023]
Abstract
Fas-apoptotic inhibitory molecule 2 (FAIM2) is a member of the transmembrane BAX inhibitor motif-containing (TMBIM) family. TMBIM family is comprised of six anti-apoptotic proteins that suppress cell death by regulating endoplasmic reticulum Ca2+ homeostasis. Recent studies have implicated two TMBIM proteins, GRINA and BAX Inhibitor-1, in mediating cytoprotection via autophagy. However, whether FAIM2 plays a role in autophagy has been unknown. Here we show that FAIM2 localizes to the lysosomes at basal state and facilitates autophagy through interaction with microtubule-associated protein 1 light chain 3 proteins in human neuroblastoma SH-SY5Y cells. FAIM2 overexpression increased autophagy flux, while autophagy flux was impaired in shRNA-mediated knockdown (shFAIM2) cells, and the impairment was more evident in the presence of rapamycin. In shFAIM2 cells, autophagosome maturation through fusion with lysosomes was impaired, leading to accumulation of autophagosomes. A functional LC3-interacting region motif within FAIM2 was essential for the interaction with LC3 and rescue of autophagy flux in shFAIM2 cells while LC3-binding property of FAIM2 was dispensable for the anti-apoptotic function in response to Fas receptor-mediated apoptosis. Suppression of autophagosome maturation was also observed in a null mutant of Caenorhabditis elegans lacking xbx-6, the ortholog of FAIM2. Our study suggests that FAIM2 is a novel regulator of autophagy mediating autophagosome maturation through the interaction with LC3.
Collapse
Affiliation(s)
- Caroline Jeeyeon Hong
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Jihye Yeon
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Bo Kyoung Yeo
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Hanwoong Woo
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Hyun-Kyu An
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Woojung Heo
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Kyuhyung Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Seong-Woon Yu
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| |
Collapse
|
10
|
Habib P, Stamm AS, Zeyen T, Noristani R, Slowik A, Beyer C, Wilhelm T, Huber M, Komnig D, Schulz JB, Reich A. EPO regulates neuroprotective Transmembrane BAX Inhibitor-1 Motif-containing (TMBIM) family members GRINA and FAIM2 after cerebral ischemia-reperfusion injury. Exp Neurol 2019; 320:112978. [PMID: 31211943 DOI: 10.1016/j.expneurol.2019.112978] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/03/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND PURPOSE Transmembrane BAX Inhibitor-1 Motif-containing (TMBIM) family members exert inhibitory activities in apoptosis and necroptosis. FAIM2 (TMBIM-2) is neuroprotective against murine focal ischemia and is regulated by erythropoietin (EPO). Similar to FAIM2, GRINA (TMBIM-3) is predominantly expressed in the brain. The role of GRINA in transient brain ischemia, its potential synergistic effects with FAIM2 and its regulation by EPO treatment were assessed. METHODS We performed transient (30 min) middle cerebral artery occlusion (tMCAo) followed by 72 h of reperfusion in GRINA-deficient (GRINA-/-), FAIM2-deficient (FAIM2-/-), double-deficient (GRINA-/-FAIM2-/-) and wildtype littermates (WT) mice. We administered EPO or saline 0, 24 and 48 h after tMCAo. We subjected primary murine cortical neurons (pMCN) of all mouse strains to oxygen-glucose deprivation (OGD) after GRINA and/or FAIM2 gene transfection. RESULTS Compared to wildtype controls GRINA deficiency led to a similar increase in infarct volumes as FAIM2 deficiency (p < .01). We observed the highest neurological deficits and largest infarct sizes in double-deficient mice. EPO administration upregulated GRINA and FAIM2 mRNA levels in wildtype littermates. EPO decreased infarct sizes and abrogated neurological impairments in wildtype controls. GRINA and/or FAIM2 deficient mice showed increased expression levels of cleaved-caspase 3 and of pro-apoptotic BAX mRNA. Further, caspase 8 was upregulated in FAIM2-/- and caspase 9 in GRINA-/- mice. Overexpression of GRINA and FAIM2 in wildtype and in double deficient pMCN decreased cell death rate after OGD. CONCLUSIONS GRINA and FAIM2 are highly expressed in the brain and convey EPO-mediated neuroprotection after ischemic stroke involving different caspases.
Collapse
Affiliation(s)
- Pardes Habib
- Department of Neurology, Medical School, RWTH Aachen University, Aachen, Germany.
| | - Ann-Sophie Stamm
- Department of Neurology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Thomas Zeyen
- Department of Neurology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Rozina Noristani
- Department of Neurology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Alexander Slowik
- Institute of Neuroanatomy, Medical School, RWTH Aachen University, Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, Medical School, RWTH Aachen University, Aachen, Germany
| | - Thomas Wilhelm
- Institute of Biochemistry and Molecular Immunology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Daniel Komnig
- Department of Neurology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Jörg B Schulz
- Department of Neurology, Medical School, RWTH Aachen University, Aachen, Germany; JARA-BRAIN Institute of Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Arno Reich
- Department of Neurology, Medical School, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
11
|
Komnig D, Gertz K, Habib P, Nolte KW, Meyer T, Brockmann MA, Endres M, Rathkolb B, Hrabě de Angelis M, Schulz JB, Falkenburger BH, Reich A. Faim2 contributes to neuroprotection by erythropoietin in transient brain ischemia. J Neurochem 2018; 145:258-270. [PMID: 29315561 DOI: 10.1111/jnc.14296] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/22/2017] [Accepted: 12/23/2017] [Indexed: 11/28/2022]
Abstract
Delayed cell death in the penumbra region of acute ischemic stroke occurs through apoptotic mechanisms, making it amenable to therapeutic interventions. Fas/CD95 mediates apoptotic cell death in response to external stimuli. In mature neurons, Fas/CD95 signaling is modulated by Fas-apoptotic inhibitory molecule 2 (Faim2), which reduces cell death in animal models of stroke, meningitis, and Parkinson disease. Erythropoietin (EPO) has been studied as a therapeutic strategy in ischemic stroke. Erythropoietin stimulates the phosphatidylinositol-3 kinase/Akt (PI3K/Akt) pathway, which regulates Faim2 expression. Therefore, up-regulation of Faim2 may contribute to neuroprotection by EPO. Male Faim2-deficient mice (Faim2-/- ) and wild-type littermates (WT) were subjected to 30 min of middle cerebral artery occlusion (MCAo) followed by 72 h of reperfusion. EPO was applied before (30 min) and after (24 and 48 h) MCAo. In WT mice application of EPO at a low dose (5000 U/kg) significantly reduced stroke volume, whereas treatment with high dose (90 000 U/kg) did not. In Faim2-/- animals administration of low-dose EPO did not result in a significant reduction in stroke volume. Faim2 expression as measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR) increased after low-dose EPO but not with high dose. An extensive phenotyping including analysis of cerebral vessel architecture did not reveal confounding differences between the genotypes. In human post-mortem brain Faim2 displayed a differential expression in areas of penumbral ischemia. Faim2 up-regulation may contribute to the neuroprotective effects of low-dose erythropoietin in transient brain ischemia. The dose-dependency may explain mixed effects of erythropoietin observed in clinical stroke trials.
Collapse
Affiliation(s)
- Daniel Komnig
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Karen Gertz
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany.,Center for Stroke Research Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Pardes Habib
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Kay W Nolte
- Institute of Neuropathology, RWTH Aachen University, Aachen, Germany
| | - Tareq Meyer
- Department of Diagnostic and Interventional Neuroradiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Marc A Brockmann
- Department of Neuroradiology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Matthias Endres
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany.,Center for Stroke Research Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany.,Excellence Cluster NeuroCure, Berlin, Germany.,German Center for Neurodegenerative Disease (DZNE), Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Ludwig-Maximilians-Universität München, Gene Center, Institute of Molecular Animal Breeding and Biotechnology, München, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany
| | | | - Jörg B Schulz
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Björn H Falkenburger
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Arno Reich
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
12
|
Pawar M, Busov B, Chandrasekhar A, Yao J, Zacks DN, Besirli CG. FAS apoptotic inhibitory molecule 2 is a stress-induced intrinsic neuroprotective factor in the retina. Cell Death Differ 2017; 24:1799-1810. [PMID: 28708137 DOI: 10.1038/cdd.2017.109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 05/20/2017] [Accepted: 05/25/2017] [Indexed: 11/09/2022] Open
Abstract
We report the neuroprotective role of FAS apoptotic inhibitory molecule 2 (FAIM2), an inhibitor of the FAS signaling pathway, during stress-induced photoreceptor apoptosis. Retinal detachment resulted in increased FAIM2 levels in photoreceptors with higher amounts detected at the tips of outer segments. Activation of FAS death receptor via FAS-ligand led to JNK-mediated FAIM2 phosphorylation, decreased proteasome-mediated degradation and increased association with the FAS receptor. Photoreceptor apoptosis was accelerated in Faim2 knockout mice following experimental retinal detachment. We show that FAIM2 is primarily involved in reducing stress-induced photoreceptor cell death but this effect was transient. FAIM2 was found to interact with both p53 and HSP90 following the activation of the FAS death pathway and FAIM2/HSP90 interaction was dependent on the phosphorylation of FAIM2. Lack of FAIM2 led to increased expression of proadeath genes Fas and Ripk1 in the retina under physiologic conditions. These results demonstrate that FAIM2 is an intrinsic neuroprotective factor activated by stress in photoreceptors and delays FAS-mediated photoreceptor apoptosis. Modulation of this pathway to increase FAIM2 expression may be a potential therapeutic option to prevent photoreceptor death.
Collapse
Affiliation(s)
- Mercy Pawar
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Boris Busov
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Aaruran Chandrasekhar
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Jingyu Yao
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - David N Zacks
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Cagri G Besirli
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
13
|
Huang X, Xie H, Xue G, Ye M, Zhang L. MiR-3202 - Promoted H5V Cell Apoptosis by Directly Targeting Fas Apoptotic Inhibitory Molecule 2 (FAIM2) in High Glucose Condition. Med Sci Monit 2017; 23:975-983. [PMID: 28228635 PMCID: PMC5335645 DOI: 10.12659/msm.899443] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background Vascular complications are a major concern for patients with diabetes. Endothelial cells (ECs) play a key role in vascular function. MicroRNAs (miRNAs) have been shown to play an important role in mediating EC function; miRNAs are vulnerable to hyperglycemic conditions. Previous reports verified that Fas apoptotic inhibitory molecule 2 (FAIM2) can inhibit cell apoptosis through repressing the FAS-associated death domain protein (FADD) pathway. This current study was designed to explore the potential involvement of miR-3202 in the pathogenesis of ECs in high-glucose conditions. Material/Methods The aim of this study was to investigate the role of miR-3202 in regulating hyperglycemia-induced ECs by targeting FAIM2. The endothelial cell line H5V was cultured in a high-glucose condition to induce damage to FAIM2 expression in ECs; mimic and inhibition of miR-3202 were used to enhance and depress miR-3202’s function to explore its function on FAIM2. Results Our study showed that FAIM2 was inhibited by high-glucose conditions, and miRNA-3202 was induced by high-glucose conditions. FAIM2 was identified as the target gene of miRNA-3202; luciferase reporter assays confirmed that FAIM2 was downregulated by miR-3202 directly, that is, miR-3202 can upregulate Fas/FADD through inhibiting FAIM2. Conclusions MiR-3202 can promote EC apoptosis in hyperglycemic conditions, which demonstrated that EC apoptosis induced by high-glucose conditions partly depends on miR-3202 targeting FAIM2.
Collapse
Affiliation(s)
- Xiaozhong Huang
- Department of Vascular Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (mainland)
| | - Hui Xie
- Department of Vascular Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (mainland)
| | - Guanhua Xue
- Department of Vascular Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (mainland)
| | - Meng Ye
- Department of Vascular Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (mainland)
| | - Lan Zhang
- Department of Vascular Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (mainland)
| |
Collapse
|
14
|
Zhu S, Liu H, Sha H, Qi L, Gao DS, Zhang W. PERK and XBP1 differentially regulate CXCL10 and CCL2 production. Exp Eye Res 2017; 155:1-14. [PMID: 28065589 DOI: 10.1016/j.exer.2017.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/11/2016] [Accepted: 01/04/2017] [Indexed: 02/04/2023]
Abstract
Inflammation plays a key role in the pathogenesis of many retinal degenerative diseases related with photoreceptor dysfunction/degeneration. However the involvement of photoreceptor cells in inflammatory reactions is largely unknown as they are not considered as inflammatory cells. In this study, we assessed whether photoreceptor cells can produce CCL2 and CXCL10, two important players in inflammation during endoplasmic reticulum (ER) stress. After photoreceptor 661 W cells were treated with ER stress inducer thapsigargin (TG), induction of ER stress increased CXCL10 and CCL2 expression at both mRNA and protein levels, which was significantly blocked by an ER stress blocker 4-phenylbutyrate. ER stress contains three pathways: PERK, ATF6 and IRE1α. Knockdown of PERK attenuated TG-induced CXCL10 and CCL2 mRNA expression, associated with significant decreases in phosphorylation of NF-κB RelA and STAT3. In contrast to PERK, knockdown of XBP1, which is activated by IRE1α-mediated splicing, robustly enhanced TG-induced CXCL10 and CCL2 expression and phosphorylation of NF-κB RelA and STAT3. Blockade of NF-κB or STAT3 markedly diminished TG-induced CXCL10 and CCL2 expression. The specific roles of PERK and XBP1 in CXCL10 and CCL2 expression were further investigated by treating photoreceptor cells with advanced glycation end products (AGE) and high glucose (HG), two of the major contributors to diabetic complications. Similarly, AGE and HG induced CXCL10 and CCL2 expression in which PERK was a positive regulator while XBP1 was a negative regulator. These studies suggest that photoreceptors may be involved in retinal inflammation by expressing chemokines CXCL10 and CCL2. PERK and IRE1α/XBP1 in the unfolded protein response differentially regulate the expression of CXCL10 and CCL2 likely through modulation of ER stress-induced NF-κB RelA and STAT3 activation.
Collapse
Affiliation(s)
- Shuang Zhu
- Research Center for Neurology, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Ophthalmology and Visual Sciences, The University of Texas Medical Branch, Galveston, TX, USA
| | - Hua Liu
- Center for Biomedical Engineering, The University of Texas Medical Branch, Galveston, TX, USA
| | - Haibo Sha
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Ling Qi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, USA
| | - Dian-Shuai Gao
- Research Center for Neurology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Wenbo Zhang
- Department of Ophthalmology and Visual Sciences, The University of Texas Medical Branch, Galveston, TX, USA; Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
15
|
Marçola M, Lopes-Ramos CM, Pereira EP, Cecon E, Fernandes PA, Tamura EK, Camargo AA, Parmigiani RB, Markus RP. Light/Dark Environmental Cycle Imposes a Daily Profile in the Expression of microRNAs in Rat CD133+Cells. J Cell Physiol 2016; 231:1953-63. [DOI: 10.1002/jcp.25300] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/04/2016] [Indexed: 02/07/2023]
Affiliation(s)
- Marina Marçola
- Department of Physiology; Laboratory of Chronopharmacology; Institute of Bioscience; University of São Paulo; São Paulo City São Paulo Brazil
| | - Camila M. Lopes-Ramos
- Centro de Oncologia Molecular; Hospital Sírio-Libanês; São Paulo City São Paulo Brazil
| | - Eliana P. Pereira
- Department of Physiology; Laboratory of Chronopharmacology; Institute of Bioscience; University of São Paulo; São Paulo City São Paulo Brazil
| | - Erika Cecon
- Department of Physiology; Laboratory of Chronopharmacology; Institute of Bioscience; University of São Paulo; São Paulo City São Paulo Brazil
| | - Pedro A. Fernandes
- Department of Physiology; Laboratory of Chronopharmacology; Institute of Bioscience; University of São Paulo; São Paulo City São Paulo Brazil
| | - Eduardo K. Tamura
- Department of Physiology; Laboratory of Chronopharmacology; Institute of Bioscience; University of São Paulo; São Paulo City São Paulo Brazil
| | - Anamaria A. Camargo
- Centro de Oncologia Molecular; Hospital Sírio-Libanês; São Paulo City São Paulo Brazil
| | - Raphael B. Parmigiani
- Centro de Oncologia Molecular; Hospital Sírio-Libanês; São Paulo City São Paulo Brazil
| | - Regina P. Markus
- Department of Physiology; Laboratory of Chronopharmacology; Institute of Bioscience; University of São Paulo; São Paulo City São Paulo Brazil
| |
Collapse
|
16
|
Shelby SJ, Angadi PS, Zheng QD, Yao J, Jia L, Zacks DN. Hypoxia inducible factor 1α contributes to regulation of autophagy in retinal detachment. Exp Eye Res 2015; 137:84-93. [PMID: 26093278 DOI: 10.1016/j.exer.2015.06.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 12/17/2022]
Abstract
Photoreceptor (PR) cells receive oxygen and nutritional support from the underlying retinal pigment epithelium (RPE). Retinal detachment results in PR hypoxia and their time-dependent death. Detachment also activates autophagy within the PR, which serves to reduce the rate of PR apoptosis. In this study, we test the hypothesis that autophagy activation in the PR results, at least in part, from the detachment-induced activation of hypoxia-inducible factors (HIF). Retina-RPE separation was created in Brown-Norway rats and C57BL/6J mice by injection of 1% hyaluronic acid into the subretinal space. Retinas were harvested and assayed for HIF protein levels. Cultured 661W photoreceptor cells were subjected to hypoxic conditions and assayed for induction of HIF and autophagy. The requirement of HIF-1α and HIF-2α in regulating photoreceptor autophagy was tested using siRNA in vitro and in vivo. We observed increased levels of HIF-1α and HIF-2α within 1 day post-detachment, as well as increased levels of BNIP3, a downstream target of HIF-1α that contributes to autophagy activation. Exposing 661W cells to hypoxia resulted in increased HIF-1α and HIF-2α levels and increase in conversion of LC3-I to LC3-II. Silencing of HIF-1α, but not HIF-2α, reduced the hypoxia-induced increase in LC3-II formation and increased cell death in 661W cells. Silencing of HIF-1α in rat retinas prevented the detachment-induced increase in BNIP3 and LC3-II, resulting in increased PR cell death. Our data support the hypothesis that HIF-1α, but not HIF-2α, serves as an early response signal to induce autophagy and reduce photoreceptor cell death.
Collapse
Affiliation(s)
- Shameka J Shelby
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, 1000 Wall St, Ann Arbor, MI, 48105-0714, USA
| | - Pavan S Angadi
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, 1000 Wall St, Ann Arbor, MI, 48105-0714, USA
| | - Qiong-Duon Zheng
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, 1000 Wall St, Ann Arbor, MI, 48105-0714, USA
| | - Jingyu Yao
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, 1000 Wall St, Ann Arbor, MI, 48105-0714, USA
| | - Lin Jia
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, 1000 Wall St, Ann Arbor, MI, 48105-0714, USA
| | - David N Zacks
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, 1000 Wall St, Ann Arbor, MI, 48105-0714, USA.
| |
Collapse
|
17
|
Cuenca N, Fernández-Sánchez L, Campello L, Maneu V, De la Villa P, Lax P, Pinilla I. Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases. Prog Retin Eye Res 2014; 43:17-75. [PMID: 25038518 DOI: 10.1016/j.preteyeres.2014.07.001] [Citation(s) in RCA: 316] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 01/17/2023]
Abstract
Retinal neurodegenerative diseases like age-related macular degeneration, glaucoma, diabetic retinopathy and retinitis pigmentosa each have a different etiology and pathogenesis. However, at the cellular and molecular level, the response to retinal injury is similar in all of them, and results in morphological and functional impairment of retinal cells. This retinal degeneration may be triggered by gene defects, increased intraocular pressure, high levels of blood glucose, other types of stress or aging, but they all frequently induce a set of cell signals that lead to well-established and similar morphological and functional changes, including controlled cell death and retinal remodeling. Interestingly, an inflammatory response, oxidative stress and activation of apoptotic pathways are common features in all these diseases. Furthermore, it is important to note the relevant role of glial cells, including astrocytes, Müller cells and microglia, because their response to injury is decisive for maintaining the health of the retina or its degeneration. Several therapeutic approaches have been developed to preserve retinal function or restore eyesight in pathological conditions. In this context, neuroprotective compounds, gene therapy, cell transplantation or artificial devices should be applied at the appropriate stage of retinal degeneration to obtain successful results. This review provides an overview of the common and distinctive features of retinal neurodegenerative diseases, including the molecular, anatomical and functional changes caused by the cellular response to damage, in order to establish appropriate treatments for these pathologies.
Collapse
Affiliation(s)
- Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain; Multidisciplinary Institute for Environmental Studies "Ramon Margalef", University of Alicante, Alicante, Spain.
| | - Laura Fernández-Sánchez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Laura Campello
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, Alicante, Spain
| | - Pedro De la Villa
- Department of Systems Biology, University of Alcalá, Alcalá de Henares, Spain
| | - Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Isabel Pinilla
- Department of Ophthalmology, Lozano Blesa University Hospital, Aragon Institute of Health Sciences, Zaragoza, Spain
| |
Collapse
|
18
|
|
19
|
Corella D, Sorlí JV, González JI, Ortega C, Fitó M, Bulló M, Martínez-González MA, Ros E, Arós F, Lapetra J, Gómez-Gracia E, Serra-Majem L, Ruiz-Gutierrez V, Fiol M, Coltell O, Vinyoles E, Pintó X, Martí A, Saiz C, Ordovás JM, Estruch R. Novel association of the obesity risk-allele near Fas Apoptotic Inhibitory Molecule 2 (FAIM2) gene with heart rate and study of its effects on myocardial infarction in diabetic participants of the PREDIMED trial. Cardiovasc Diabetol 2014; 13:5. [PMID: 24393375 PMCID: PMC3922966 DOI: 10.1186/1475-2840-13-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 12/31/2013] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The Fas apoptotic pathway has been implicated in type 2 diabetes and cardiovascular disease. Although a polymorphism (rs7138803; G > A) near the Fas apoptotic inhibitory molecule 2 (FAIM2) locus has been related to obesity, its association with other cardiovascular risk factors and disease remains uncertain. METHODS We analyzed the association between the FAIM2-rs7138803 polymorphism and obesity, blood pressure and heart rate in 7,161 participants (48.3% with type 2 diabetes) in the PREDIMED study at baseline. We also explored gene-diet interactions with adherence to the Mediterranean diet (MedDiet) and examined the effects of the polymorphism on cardiovascular disease incidence per diabetes status after a median 4.8-year dietary intervention (MedDiet versus control group) follow-up. RESULTS We replicated the association between the FAIM2-rs7138803 polymorphism and greater obesity risk (OR: 1.08; 95% CI: 1.01-1.16; P = 0.011; per-A allele). Moreover, we detected novel associations of this polymorphism with higher diastolic blood pressure (DBP) and heart rate at baseline (B = 1.07; 95% CI: 0.97-1.28 bmp in AA vs G-carriers for the whole population), that remained statistically significant even after adjustment for body mass index (P = 0.012) and correction for multiple comparisons. This association was greater and statistically significant in type-2 diabetic subjects (B = 1.44: 95% CI: 0.23-2.56 bmp; P = 0.010 for AA versus G-carriers). Likewise, these findings were also observed longitudinally over 5-year follow-up. Nevertheless, we found no statistically significant gene-diet interactions with MedDiet for this trait. On analyzing myocardial infarction risk, we detected a nominally significant (P = 0.041) association in type-2 diabetic subjects (HR: 1.86; 95% CI:1.03-3.37 for AA versus G-carriers), although this association did not remain statistically significant following correction for multiple comparisons. CONCLUSIONS We confirmed the FAIM2-rs7138803 relationship with obesity and identified novel and consistent associations with heart rate in particular in type 2 diabetic subjects. Furthermore, our results suggest a possible association of this polymorphism with higher myocardial infarction risk in type-2 diabetic subjects, although this result needs to be replicated as it could represent a false positive.
Collapse
Affiliation(s)
- Dolores Corella
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, Valencia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Genetic and Molecular Epidemiology Unit, Valencia University, Blasco Ibañez, 15, 46010 Valencia, Spain
| | - Jose V Sorlí
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, Valencia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - José I González
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, Valencia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Ortega
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, Valencia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Montserrat Fitó
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Cardiovascula Risk and Nutrition Research Group, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Monica Bulló
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Human Nutrition Unit, Faculty of Medicine, IISPV, University Rovira i Virgili, Reus, Spain
| | - Miguel Angel Martínez-González
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, Pamplona, Spain
| | - Emilio Ros
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clinic, Barcelona, Spain
| | - Fernando Arós
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Cardiology, Araba University Hospital, Vitoria, Spain
| | - José Lapetra
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Family Medicine, Primary Care Division of Sevilla, San Pablo Health Center, Sevilla, Spain
| | - Enrique Gómez-Gracia
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Epidemiology, School of Medicine, University of Malaga, Malaga, Spain
| | - Lluís Serra-Majem
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Clinical Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Valentina Ruiz-Gutierrez
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Miquel Fiol
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- University Institute for Health Sciences Investigation, Hospital Son Dureta, Palma de Mallorca, Spain
| | - Oscar Coltell
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Computer Languages and Systems, School of Technology and Experimental Sciences, Jaume I University, Castellón, Spain
| | - Ernest Vinyoles
- Primary Care Division, Catalan Institute of Health, Barcelona, Spain
| | - Xavier Pintó
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Lipids and Vascular Risk Unit, Internal Medicine, Hospital Universitario de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - Amelia Martí
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Nutrition and Physiology, Faculty of Pharmacy, University of Navarra, Pamplona, Spain
| | - Carmen Saiz
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, Valencia, Spain
| | - José M Ordovás
- Department of Cardiovascular Epidemiology and Population Genetics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- IMDEA Alimentación, Madrid, Spain
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Ramón Estruch
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Internal Medicine, Hospital Clinic, IDIBAPS, Barcelona, Spain
| |
Collapse
|