1
|
Konno Y, Uriu K, Chikata T, Takada T, Kurita JI, Ueda MT, Islam S, Yang Tan BJ, Ito J, Aso H, Kumata R, Williamson C, Iwami S, Takiguchi M, Nishimura Y, Morita E, Satou Y, Nakagawa S, Koyanagi Y, Sato K. Two-step evolution of HIV-1 budding system leading to pandemic in the human population. Cell Rep 2024; 43:113697. [PMID: 38294901 DOI: 10.1016/j.celrep.2024.113697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/19/2023] [Accepted: 01/05/2024] [Indexed: 02/02/2024] Open
Abstract
The pandemic HIV-1, HIV-1 group M, emerged from a single spillover event of its ancestral lentivirus from a chimpanzee. During human-to-human spread worldwide, HIV-1 diversified into multiple subtypes. Here, our interdisciplinary investigation mainly sheds light on the evolutionary scenario of the viral budding system of HIV-1 subtype C (HIV-1C), a most successfully spread subtype. Of the two amino acid motifs for HIV-1 budding, the P(T/S)AP and YPxL motifs, HIV-1C loses the YPxL motif. Our data imply that HIV-1C might lose this motif to evade immune pressure. Additionally, the P(T/S)AP motif is duplicated dependently of the level of HIV-1 spread in the human population, and >20% of HIV-1C harbored the duplicated P(T/S)AP motif. We further show that the duplication of the P(T/S)AP motif is caused by the expansion of the CTG triplet repeat. Altogether, our results suggest that HIV-1 has experienced a two-step evolution of the viral budding process during human-to-human spread worldwide.
Collapse
Affiliation(s)
- Yoriyuki Konno
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
| | - Keiya Uriu
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan; Graduate School of Medicine, the University of Tokyo, Tokyo 1130033, Japan; Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Aomori 0368561, Japan
| | - Takayuki Chikata
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8608556, Japan
| | - Toru Takada
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 8128581, Japan
| | - Jun-Ichi Kurita
- Graduate School of Medical Life Science, Yokohama City University, Kanagawa 2300045, Japan
| | - Mahoko Takahashi Ueda
- Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa 2591193, Japan
| | - Saiful Islam
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8608556, Japan
| | - Benjy Jek Yang Tan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8608556, Japan
| | - Jumpei Ito
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
| | - Hirofumi Aso
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan; Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 6068501, Japan
| | - Ryuichi Kumata
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
| | - Carolyn Williamson
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Shingo Iwami
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 8128581, Japan; MIRAI, Japan Science and Technology Agency, Kawaguchi 3320012, Japan
| | - Masafumi Takiguchi
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8608556, Japan
| | - Yoshifumi Nishimura
- Graduate School of Medical Life Science, Yokohama City University, Kanagawa 2300045, Japan
| | - Eiji Morita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Aomori 0368561, Japan
| | - Yorifumi Satou
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8608556, Japan
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa 2591193, Japan
| | - Yoshio Koyanagi
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 6068501, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan; Graduate School of Medicine, the University of Tokyo, Tokyo 1130033, Japan; International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan; International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan; Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 2778561, Japan; CREST, Japan Science and Technology Agency, Kawaguchi 3320012, Japan.
| |
Collapse
|
2
|
Benner BE, Bruce JW, Kentala JR, Murray M, Becker JT, Garcia-Miranda P, Ahlquist P, Butcher SE, Sherer NM. Perturbing HIV-1 Ribosomal Frameshifting Frequency Reveals a cis Preference for Gag-Pol Incorporation into Assembling Virions. J Virol 2022; 96:e0134921. [PMID: 34643428 PMCID: PMC8754204 DOI: 10.1128/jvi.01349-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/30/2021] [Indexed: 12/29/2022] Open
Abstract
HIV-1 virion production is driven by Gag and Gag-Pol (GP) proteins, with Gag forming the bulk of the capsid and driving budding, while GP binds Gag to deliver the essential virion enzymes protease, reverse transcriptase, and integrase. Virion GP levels are traditionally thought to reflect the relative abundances of GP and Gag in cells (∼1:20), dictated by the frequency of a -1 programmed ribosomal frameshifting (PRF) event occurring in gag-pol mRNAs. Here, we exploited a panel of PRF mutant viruses to show that mechanisms in addition to PRF regulate GP incorporation into virions. First, we show that GP is enriched ∼3-fold in virions relative to cells, with viral infectivity being better maintained at subphysiological levels of GP than when GP levels are too high. Second, we report that GP is more efficiently incorporated into virions when Gag and GP are synthesized in cis (i.e., from the same gag-pol mRNA) than in trans, suggesting that Gag/GP translation and assembly are spatially coupled processes. Third, we show that, surprisingly, virions exhibit a strong upper limit to trans-delivered GP incorporation; an adaptation that appears to allow the virus to temper defects to GP/Gag cleavage that may negatively impact reverse transcription. Taking these results together, we propose a "weighted Goldilocks" scenario for HIV-1 GP incorporation, wherein combined mechanisms of GP enrichment and exclusion buffer virion infectivity over a broad range of local GP concentrations. These results provide new insights into the HIV-1 virion assembly pathway relevant to the anticipated efficacy of PRF-targeted antiviral strategies. IMPORTANCE HIV-1 infectivity requires incorporation of the Gag-Pol (GP) precursor polyprotein into virions during the process of virus particle assembly. Mechanisms dictating GP incorporation into assembling virions are poorly defined, with GP levels in virions traditionally thought to solely reflect relative levels of Gag and GP expressed in cells, dictated by the frequency of a -1 programmed ribosomal frameshifting (PRF) event that occurs in gag-pol mRNAs. Herein, we provide experimental support for a "weighted Goldilocks" scenario for GP incorporation, wherein the virus exploits both random and nonrandom mechanisms to buffer infectivity over a wide range of GP expression levels. These mechanistic data are relevant to ongoing efforts to develop antiviral strategies targeting PRF frequency and/or HIV-1 virion maturation.
Collapse
Affiliation(s)
- Bayleigh E. Benner
- Department of Oncology (McArdle Laboratory for Cancer Research), Institute for Molecular Virology, and Carbone Cancer Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- UW—Madison Microbiology Doctoral Training Program, Madison, Wisconsin, USA
| | - James W. Bruce
- Department of Oncology (McArdle Laboratory for Cancer Research), Institute for Molecular Virology, and Carbone Cancer Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Jacob R. Kentala
- Department of Oncology (McArdle Laboratory for Cancer Research), Institute for Molecular Virology, and Carbone Cancer Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Magdalena Murray
- Department of Oncology (McArdle Laboratory for Cancer Research), Institute for Molecular Virology, and Carbone Cancer Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Jordan T. Becker
- Department of Oncology (McArdle Laboratory for Cancer Research), Institute for Molecular Virology, and Carbone Cancer Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Pablo Garcia-Miranda
- Department of Oncology (McArdle Laboratory for Cancer Research), Institute for Molecular Virology, and Carbone Cancer Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Paul Ahlquist
- Department of Oncology (McArdle Laboratory for Cancer Research), Institute for Molecular Virology, and Carbone Cancer Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Samuel E. Butcher
- Department of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Nathan M. Sherer
- Department of Oncology (McArdle Laboratory for Cancer Research), Institute for Molecular Virology, and Carbone Cancer Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Takagi S, Momose F, Morikawa Y. FRET analysis of HIV-1 Gag and GagPol interactions. FEBS Open Bio 2017; 7:1815-1825. [PMID: 29123989 PMCID: PMC5666392 DOI: 10.1002/2211-5463.12328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 11/26/2022] Open
Abstract
The Gag protein of HIV multimerizes to form viral particles. The GagPol protein encoding virus‐specific enzymes, such as protease, reverse transcriptase, and integrase, is incorporated into HIV particles via interactions with Gag. The catalytically active forms of these enzymes are dimeric or tetrameric. We employed Förster resonance energy transfer (FRET) assays to evaluate Gag–Gag, Gag–GagPol, and GagPol–GagPol interactions and investigated Gag and Pol interdomains tolerant to fluorescent protein insertion for FRET assays. Our data indicated that the matrix (MA)–capsid (CA) domain junction in the Gag region and the Gag C terminus were equally available for Gag–Gag and Gag–GagPol interaction assays. For GagPol dimerization assays, insertion at the MA–CA domain junction was most favorable.
Collapse
Affiliation(s)
- Shimon Takagi
- Kitasato Institute for Life Sciences and Graduate School for Infection Control Kitasato University Tokyo Japan.,Present address: A2 Healthcare Corporation Sumitomo Fudosan Korakuen Bldg., Koishikawa 1-4-1, Bunkyo-ku Tokyo 112-0002 Japan
| | - Fumitaka Momose
- Kitasato Institute for Life Sciences and Graduate School for Infection Control Kitasato University Tokyo Japan
| | - Yuko Morikawa
- Kitasato Institute for Life Sciences and Graduate School for Infection Control Kitasato University Tokyo Japan
| |
Collapse
|
4
|
Galilee M, Britan-Rosich E, Griner SL, Uysal S, Baumgärtel V, Lamb DC, Kossiakoff AA, Kotler M, Stroud RM, Marx A, Alian A. The Preserved HTH-Docking Cleft of HIV-1 Integrase Is Functionally Critical. Structure 2016; 24:1936-1946. [PMID: 27692964 DOI: 10.1016/j.str.2016.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/19/2016] [Accepted: 08/19/2016] [Indexed: 02/06/2023]
Abstract
HIV-1 integrase (IN) catalyzes viral DNA integration into the host genome and facilitates multifunctional steps including virus particle maturation. Competency of IN to form multimeric assemblies is functionally critical, presenting an approach for anti-HIV strategies. Multimerization of IN depends on interactions between the distinct subunit domains and among the flanking protomers. Here, we elucidate an overlooked docking cleft of IN core domain that anchors the N-terminal helix-turn-helix (HTH) motif in a highly preserved and functionally critical configuration. Crystallographic structure of IN core domain in complex with Fab specifically targeting this cleft reveals a steric overlap that would inhibit HTH-docking, C-terminal domain contacts, DNA binding, and subsequent multimerization. While Fab inhibits in vitro IN integration activity, in vivo it abolishes virus particle production by specifically associating with preprocessed IN within Gag-Pol and interfering with early cytosolic Gag/Gag-Pol assemblies. The HTH-docking cleft may offer a fresh hotspot for future anti-HIV intervention strategies.
Collapse
Affiliation(s)
- Meytal Galilee
- Department of Biology, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Elena Britan-Rosich
- Department of Immunology and Pathology, The Lautenberg Center for General and Tumor Immunology, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel
| | - Sarah L Griner
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Serdar Uysal
- Department of Biophysics, Bezmialem Vakif University, Istanbul 34093, Turkey
| | - Viola Baumgärtel
- Physical Chemistry, Department of Chemistry, Nanosystem Initiative Munich (NIM), Center for Integrated Protein Science Munich (CiPSM), Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Nanosystem Initiative Munich (NIM), Center for Integrated Protein Science Munich (CiPSM), Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Moshe Kotler
- Department of Immunology and Pathology, The Lautenberg Center for General and Tumor Immunology, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ailie Marx
- Department of Biology, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Akram Alian
- Department of Biology, Technion - Israel Institute of Technology, Haifa 320003, Israel.
| |
Collapse
|
5
|
Guo TW, Yu FH, Huang KJ, Wang CT. p6gag domain confers cis HIV-1 Gag-Pol assembly and release capability. J Gen Virol 2015; 97:209-219. [PMID: 26489905 DOI: 10.1099/jgv.0.000321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During virus assembly, HIV-1 Gag-Pol is packaged into virions via interaction with Pr55gag. Studies suggest that Gag-Pol by itself is incapable of virus particle assembly or cell release, perhaps due to the lack of a budding domain in the form of p6gag, which is truncated within Gag-Pol because of a ribosomal frameshift during Gag translation. Additionally (or alternatively), large molecular size may not support Gag-Pol assembly into virus-like particles (VLPs) or release from cells. To test these hypotheses, we constructed Gag-Pol expression vectors retaining and lacking p6gag, and then reduced Gag-Pol molecular size by removing various lengths of the Pol sequence. Results indicate that Gag-Pol constructs retaining p6gag were capable of forming VLPs with a WT HIV-1 particle density. Gag-Pol molecular size reduction via partial removal of the Pol sequence mitigated the Gag-Pol assembly defect to a moderate degree. Our results suggest that the Gag-Pol assembly and budding defects are largely due to a lack of p6gag, but also in part due to size limitation.
Collapse
Affiliation(s)
- Ting-Wei Guo
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institutes of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Fu-Hsien Yu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institutes of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Kuo-Jung Huang
- Institutes of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Chin-Tien Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institutes of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| |
Collapse
|
6
|
Correction: A Large Extension to HIV-1 Gag, Like Pol, Has Negative Impacts on Virion Assembly. PLoS One 2015; 10:e0117765. [PMID: 25607848 PMCID: PMC4301633 DOI: 10.1371/journal.pone.0117765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|