1
|
Freas CA, Spetch ML. Route retracing: way pointing and multiple vector memories in trail-following ants. J Exp Biol 2024; 227:jeb246695. [PMID: 38126715 PMCID: PMC10906666 DOI: 10.1242/jeb.246695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Maintaining positional estimates of goal locations is a fundamental task for navigating animals. Diverse animal groups, including both vertebrates and invertebrates, can accomplish this through path integration. During path integration, navigators integrate movement changes, tracking both distance and direction, to generate a spatial estimate of their start location, or global vector, allowing efficient direct return travel without retracing the outbound route. In ants, path integration is accomplished through the coupling of pedometer and celestial compass estimates. Within path integration, it has been theorized navigators may use multiple vector memories for way pointing. However, in many instances, these navigators may instead be homing via view alignment. Here, we present evidence that trail-following ants can attend to segments of their global vector to retrace their non-straight pheromone trails, without the confound of familiar views. Veromessor pergandei foragers navigate to directionally distinct intermediate sites via path integration by orienting along separate legs of their inbound route at unfamiliar locations, indicating these changes are not triggered by familiar external cues, but by vector state. These findings contrast with path integration as a singular memory estimate in ants and underscore the system's ability to way point to intermediate goals along the inbound route via multiple vector memories, akin to trapline foraging in bees visiting multiple flower patches. We discuss how reliance on non-straight pheromone-marked trails may support attending to separate vectors to remain on the pheromone rather than attempting straight-line shortcuts back to the nest.
Collapse
Affiliation(s)
- Cody A. Freas
- Department of Psychology, University of Alberta, Edmonton, AB, Canada, T6G 2E9
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Marcia L. Spetch
- Department of Psychology, University of Alberta, Edmonton, AB, Canada, T6G 2E9
| |
Collapse
|
2
|
Visual navigation: properties, acquisition and use of views. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022:10.1007/s00359-022-01599-2. [PMID: 36515743 DOI: 10.1007/s00359-022-01599-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022]
Abstract
Panoramic views offer information on heading direction and on location to visually navigating animals. This review covers the properties of panoramic views and the information they provide to navigating animals, irrespective of image representation. Heading direction can be retrieved by alignment matching between memorized and currently experienced views, and a gradient descent in image differences can lead back to the location at which a view was memorized (positional image matching). Central place foraging insects, such as ants, bees and wasps, conduct distinctly choreographed learning walks and learning flights upon first leaving their nest that are likely to be designed to systematically collect scene memories tagged with information provided by path integration on the direction of and the distance to the nest. Equally, traveling along routes, ants have been shown to engage in scanning movements, in particular when routes are unfamiliar, again suggesting a systematic process of acquiring and comparing views. The review discusses what we know and do not know about how view memories are represented in the brain of insects, how they are acquired and how they are subsequently used for traveling along routes and for pinpointing places.
Collapse
|
3
|
Woodgate JL, Perl C, Collett TS. The routes of one-eyed ants suggest a revised model of normal route following. J Exp Biol 2021; 224:271814. [PMID: 34382659 DOI: 10.1242/jeb.242167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 07/12/2021] [Indexed: 11/20/2022]
Abstract
The prevailing account of visually controlled routes is that an ant learns views as it follows a route, while guided by other path-setting mechanisms. Once a set of route views is memorised, the insect follows the route by turning and moving forwards when the view on the retina matches a stored view. We engineered a situation in which this account cannot suffice in order to discover whether there may be additional components to the performance of routes. One-eyed wood ants were trained to navigate a short route in the laboratory, guided by a single black, vertical bar placed in the blinded visual field. Ants thus had to turn away from the route to see the bar. They often turned to look at or beyond the bar and then turned to face in the direction of the goal. Tests in which the bar was shifted to be more peripheral or more frontal than in training produced a corresponding directional change in the ants' paths, demonstrating that they were guided by the bar. Examination of the endpoints of turns towards and away from the bar indicate that ants use the bar for guidance by learning how large a turn-back is needed to face the goal. We suggest that the ants' zigzag paths are, in part, controlled by turns of a learnt amplitude and that these turns are an integral component of visually guided route following.
Collapse
Affiliation(s)
- Joseph L Woodgate
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Craig Perl
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Thomas S Collett
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| |
Collapse
|
4
|
Homing in the arachnid taxa Araneae and Amblypygi. Anim Cogn 2020; 23:1189-1204. [PMID: 32894371 DOI: 10.1007/s10071-020-01424-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 01/06/2023]
Abstract
Adequate homing is essential for the survival of any animal when it leaves its home to find prey or a mate. There are several strategies by which homing can be carried out: (a) retrace the outbound path; (b) use a 'cognitive map'; or (c) use path integration (PI). Here, I review the state of the art of research on spiders (Araneae) and whip spiders (Amblypygi) homing behaviour. The main strategy described in the literature as being used by these arachnids is PI. Behavioural and neural substrates of PI are described in a small group of spider families (Agelenidae, Lycosidae, Gnaphosidae, Ctenidae and Theraphosidae) and a whip spider family (Phrynidae). In spiders, the cues used to detect the position of the animal relative to its home are the position of the sun, polarized light patterns, web elasticity and landmarks. In whip spiders, the cues used are olfactory, tactile and, with a more minor role, visual. The use of a magnetic field in whip spiders has been rejected both with field and laboratory studies. Concerning the distance walked in PI, the possibility of using optic flow and idiothetic information in spiders is considered. The studies about outbound and inbound paths in whip spiders seem to suggest they do not follow the PI rules. As a conclusion, these arachnids' navigation relies on multimodal cues. We have detailed knowledge about the sensory origin (visual, olfactory, mechanosensory receptors) of neural information, but we are far from knowing the central neural structures where sensory information is integrated.
Collapse
|
5
|
Spatial cognition in the context of foraging styles and information transfer in ants. Anim Cogn 2020; 23:1143-1159. [PMID: 32840698 DOI: 10.1007/s10071-020-01423-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/13/2020] [Accepted: 08/13/2020] [Indexed: 02/08/2023]
Abstract
Ants are central-place foragers: they always return to the nest, and this requires the ability to remember relationships between features of the environment, or an individual's path through the landscape. The distribution of these cognitive responsibilities within a colony depends on a species' foraging style. Solitary foraging as well as leader-scouting, which is based on information transmission about a distant targets from scouts to foragers, can be considered the most challenging tasks in the context of ants' spatial cognition. Solitary foraging is found in species of almost all subfamilies of ants, whereas leader-scouting has been discovered as yet only in the Formica rufa group of species (red wood ants). Solitary foraging and leader-scouting ant species, although enormously different in their levels of sociality and ecological specificities, have many common traits of individual cognitive navigation, such as the primary use of visual navigation, excellent visual landmark memories, and the subordinate role of odour orientation. In leader-scouting species, spatial cognition and the ability to transfer information about a distant target dramatically differ among scouts and foragers, suggesting individual cognitive specialization. I suggest that the leader-scouting style of recruitment is closely connected with the ecological niche of a defined group of species, in particular, their searching patterns within the tree crown. There is much work to be done to understand what cognitive mechanisms underpin route planning and communication about locations in ants.
Collapse
|
6
|
Multimodal interactions in insect navigation. Anim Cogn 2020; 23:1129-1141. [PMID: 32323027 PMCID: PMC7700066 DOI: 10.1007/s10071-020-01383-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 01/06/2023]
Abstract
Animals travelling through the world receive input from multiple sensory modalities that could be important for the guidance of their journeys. Given the availability of a rich array of cues, from idiothetic information to input from sky compasses and visual information through to olfactory and other cues (e.g. gustatory, magnetic, anemotactic or thermal) it is no surprise to see multimodality in most aspects of navigation. In this review, we present the current knowledge of multimodal cue use during orientation and navigation in insects. Multimodal cue use is adapted to a species’ sensory ecology and shapes navigation behaviour both during the learning of environmental cues and when performing complex foraging journeys. The simultaneous use of multiple cues is beneficial because it provides redundant navigational information, and in general, multimodality increases robustness, accuracy and overall foraging success. We use examples from sensorimotor behaviours in mosquitoes and flies as well as from large scale navigation in ants, bees and insects that migrate seasonally over large distances, asking at each stage how multiple cues are combined behaviourally and what insects gain from using different modalities.
Collapse
|
7
|
Abstract
Continuously monitoring its position in space relative to a goal is one of the most essential tasks for an animal that moves through its environment. Species as diverse as rats, bees, and crabs achieve this by integrating all changes of direction with the distance covered during their foraging trips, a process called path integration. They generate an estimate of their current position relative to a starting point, enabling a straight-line return, following what is known as a home vector. While in theory path integration always leads the animal precisely back home, in the real world noise limits the usefulness of this strategy when operating in isolation. Noise results from stochastic processes in the nervous system and from unreliable sensory information, particularly when obtaining heading estimates. Path integration, during which angular self-motion provides the sole input for encoding heading (idiothetic path integration), results in accumulating errors that render this strategy useless over long distances. In contrast, when using an external compass this limitation is avoided (allothetic path integration). Many navigating insects indeed rely on external compass cues for estimating body orientation, whereas they obtain distance information by integration of steps or optic-flow-based speed signals. In the insect brain, a region called the central complex plays a key role for path integration. Not only does the central complex house a ring-attractor network that encodes head directions, neurons responding to optic flow also converge with this circuit. A neural substrate for integrating direction and distance into a memorized home vector has therefore been proposed in the central complex. We discuss how behavioral data and the theoretical framework of path integration can be aligned with these neural data.
Collapse
Affiliation(s)
| | | | - Allen Cheung
- The University of Queensland, Queensland Brain Institute, Upland Road, St. Lucia, Queensland, Australia
| |
Collapse
|
8
|
Buehlmann C, Fernandes ASD, Graham P. The interaction of path integration and terrestrial visual cues in navigating desert ants: what can we learn from path characteristics? ACTA ACUST UNITED AC 2018; 221:jeb.167304. [PMID: 29146769 DOI: 10.1242/jeb.167304] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/12/2017] [Indexed: 11/20/2022]
Abstract
Ant foragers make use of multiple navigational cues to navigate through the world and the combination of innate navigational strategies and the learning of environmental information is the secret to their navigational success. We present here detailed information about the paths of Cataglyphis fortis desert ants navigating by an innate strategy, namely path integration. Firstly, we observed that the ants' walking speed decreases significantly along their homing paths, such that they slow down just before reaching the goal, and maintain a slower speed during subsequent search paths. Interestingly, this drop in walking speed is independent of absolute home-vector length and depends on the proportion of the home vector that has been completed. Secondly, we found that ants are influenced more strongly by novel or altered visual cues the further along the homing path they are. These results suggest that path integration modulates speed along the homing path in a way that might help ants search for, utilise or learn environmental information at important locations. Ants walk more slowly and sinuously when encountering novel or altered visual cues and occasionally stop and scan the world; this might indicate the re-learning of visual information.
Collapse
Affiliation(s)
- Cornelia Buehlmann
- University of Sussex, School of Life Sciences, Falmer, Brighton BN1 9QG, UK
| | | | - Paul Graham
- University of Sussex, School of Life Sciences, Falmer, Brighton BN1 9QG, UK
| |
Collapse
|
9
|
Narendra A, Kamhi JF, Ogawa Y. Moving in Dim Light: Behavioral and Visual Adaptations in Nocturnal Ants. Integr Comp Biol 2017; 57:1104-1116. [DOI: 10.1093/icb/icx096] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
10
|
Egocentric and geocentric navigation during extremely long foraging paths of desert ants. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:609-16. [DOI: 10.1007/s00359-015-0998-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 10/23/2022]
|
11
|
Path integration, views, search, and matched filters: the contributions of Rüdiger Wehner to the study of orientation and navigation. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:517-32. [DOI: 10.1007/s00359-015-0984-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/11/2015] [Accepted: 01/27/2015] [Indexed: 10/24/2022]
|
12
|
Basari N, Bruendl AC, Hemingway CE, Roberts NW, Sendova-Franks AB, Franks NR. Landmarks and ant search strategies after interrupted tandem runs. ACTA ACUST UNITED AC 2013; 217:944-54. [PMID: 24198259 DOI: 10.1242/jeb.087296] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During a tandem run, a single leading ant recruits a single follower to an important resource such as a new nest. To examine this process, we used a motorized gantry, which has not previously been used in ant studies, to track tandem running ants accurately in a large arena and we compared their performance in the presence of different types of landmark. We interrupted tandem runs by taking away the leader and moved a large distant landmark behind the new nest just at the time of this separation. Our aim was to determine what information followers might have obtained from the incomplete tandem run they had followed, and how they behaved after the tandem run had been interrupted. Our results show that former followers search by using composite random strategies with elements of sub-diffusive and diffusive movements. Furthermore, when we provided more landmarks former followers searched for longer. However, when all landmarks were removed completely from the arena, the ants' search duration lasted up to four times longer. Hence, their search strategy changes in the presence or absence of landmarks. Even after extensive search of this kind, former followers headed back to their old nest but did not return along the path of the tandem run they had followed. The combination of the position to which the large distant landmark behind the new nest was moved and the presence or absence of additional landmarks influenced the orientation of the former followers' paths back to the old nest. We also found that these ants exhibit behavioural lateralization in which they possibly use their right eye more than their left eye to recognize landmarks for navigation. Our results suggest that former follower ants learn landmarks during tandem running and use this information to make strategic decisions.
Collapse
Affiliation(s)
- Norasmah Basari
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol, BS8 1UG, UK
| | | | | | | | | | | |
Collapse
|
13
|
Cheung A. Animal path integration: a model of positional uncertainty along tortuous paths. J Theor Biol 2013; 341:17-33. [PMID: 24096099 DOI: 10.1016/j.jtbi.2013.09.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 11/18/2022]
Abstract
Exact closed form mathematical solutions are reported which quantify the dynamic uncertainty resulting from path integration (PI) along tortuous paths. Based on a correlated random walk model, the derived results quantify positional estimation error moments with and without a compass, in discrete and continuous time. Consistent with earlier studies on attempted straight-line navigation, using a compass significantly reduces the uncertainty during PI, making purely idiothetic PI biologically implausible except over short distances. Examples are used to illustrate the contributions of angular noise, linear noise and path tortuosity, under different conditions. Linear noise is shown to be relatively more important with a compass while angular noise is more important without. It is shown that increasing path tortuosity decreases positional uncertainty, true for long and short journeys, irrespective of whether a compass is used, or the level of noise. In contrast, reducing angular noise also reduces uncertainty, but only below some critical level of noise. Using canonical equations of PI, it is shown that polar PI using a compass accumulates uncertainty in a manner similar to Cartesian PI without a compass. Issues of data sampling bias and intermittent use of a compass are also considered for PI along tortuous paths.
Collapse
Affiliation(s)
- Allen Cheung
- The University of Queensland, Queensland Brain Institute, QLD 4072, Australia.
| |
Collapse
|
14
|
Narendra A, Gourmaud S, Zeil J. Mapping the navigational knowledge of individually foraging ants, Myrmecia croslandi. Proc Biol Sci 2013; 280:20130683. [PMID: 23804615 DOI: 10.1098/rspb.2013.0683] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ants are efficient navigators, guided by path integration and visual landmarks. Path integration is the primary strategy in landmark-poor habitats, but landmarks are readily used when available. The landmark panorama provides reliable information about heading direction, routes and specific location. Visual memories for guidance are often acquired along routes or near to significant places. Over what area can such locally acquired memories provide information for reaching a place? This question is unusually approachable in the solitary foraging Australian jack jumper ant, since individual foragers typically travel to one or two nest-specific foraging trees. We find that within 10 m from the nest, ants both with and without home vector information available from path integration return directly to the nest from all compass directions, after briefly scanning the panorama. By reconstructing panoramic views within the successful homing range, we show that in the open woodland habitat of these ants, snapshot memories acquired close to the nest provide sufficient navigational information to determine nest-directed heading direction over a surprisingly large area, including areas that animals may have not visited previously.
Collapse
Affiliation(s)
- Ajay Narendra
- ARC Centre of Excellence in Vision Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 0200, Australia.
| | | | | |
Collapse
|
15
|
Narendra A, Raderschall C, Robson S. Homing abilities of the Australian intertidal ant, Polyrhachis sokolova. J Exp Biol 2013; 216:3674-81. [DOI: 10.1242/jeb.089649] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
The pressure of returning and locating the nest after a successful foraging trip is immense in ants. To find their way back home, ants use a number of different strategies (e.g., path integration, trail-following) and rely on a range of cues (e.g., pattern of polarised skylight, landmark panorama) available in their environment. How ants weigh different cues has been a question of great interest and has primarily been addressed in the desert ants from Africa and Australia. We here identify the navigational abilities of an intertidal ant, Polyrhachis sokolova that lives on mudflats where nests and foraging areas are frequently inundated with tidal water. We find that these solitary foraging ants rely heavily on visual landmark information for navigation but they are also capable of path integration. By displacing ants with and without vector information at different locations within the local familiar territory we created conflicts between information from the landmarks and the path integrator. The homing success of full-vector ants, compared to the zero-vector ants, when displaced 5 m behind the feeder indicate that vector information had to be coupled with landmark information for successful homing. To explain the differences in the homing abilities of ants from different locations we determined the navigational information content at each release station and compared it to that available at the feeder location. We report here the interaction of multiple navigation strategies in the context of the information content in the environment.
Collapse
|